Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(9): e2318851121, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38377197

RESUMEN

Solutions of long, flexible polymer molecules are complex fluids that simultaneously exhibit fluid-like and solid-like behavior. When subjected to an external flow, dilute polymer solutions exhibit elastic turbulence-a unique, chaotic flow state absent in Newtonian fluids, like water. Unlike its Newtonian counterpart, elastic turbulence is caused by polymer molecules stretching and aligning in the flow, and can occur at vanishing inertia. While experimental realizations of elastic turbulence are well-documented, there is currently no understanding of its mechanism. Here, we present large-scale direct numerical simulations of elastic turbulence in pressure-driven flows through straight channels. We demonstrate that the transition to elastic turbulence is sub-critical, giving rise to spot-like flow structures that, further away from the transition, eventually spread throughout the domain. We provide evidence that elastic turbulence is organized around unstable coherent states that are localized close to the channel midplane.

2.
Chaos ; 30(1): 013113, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32013508

RESUMEN

Machine Learning (ML) inspired algorithms provide a flexible set of tools for analyzing and forecasting chaotic dynamical systems. We analyze here the performance of one algorithm for the prediction of extreme events in the two-dimensional Hénon map at the classical parameters. The task is to determine whether a trajectory will exceed a threshold after a set number of time steps into the future. This task has a geometric interpretation within the dynamics of the Hénon map, which we use to gauge the performance of the neural networks that are used in this work. We analyze the dependence of the success rate of the ML models on the prediction time T, the number of training samples NT, and the size of the network Np. We observe that in order to maintain a certain accuracy, NT∝exp⁡(2hT) and Np∝exp⁡(hT), where h is the topological entropy. Similar relations between the intrinsic chaotic properties of the dynamics and ML parameters might be observable in other systems as well.

3.
Nat Commun ; 15(1): 3864, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740802

RESUMEN

Despite its great scientific and technological importance, wall-bounded turbulence is an unresolved problem in classical physics that requires new perspectives to be tackled. One of the key strategies has been to study interactions among the energy-containing coherent structures in the flow. Such interactions are explored in this study using an explainable deep-learning method. The instantaneous velocity field obtained from a turbulent channel flow simulation is used to predict the velocity field in time through a U-net architecture. Based on the predicted flow, we assess the importance of each structure for this prediction using the game-theoretic algorithm of SHapley Additive exPlanations (SHAP). This work provides results in agreement with previous observations in the literature and extends them by revealing that the most important structures in the flow are not necessarily the ones with the highest contribution to the Reynolds shear stress. We also apply the method to an experimental database, where we can identify structures based on their importance score. This framework has the potential to shed light on numerous fundamental phenomena of wall-bounded turbulence, including novel strategies for flow control.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA