Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Hum Mutat ; 42(11): 1488-1502, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34420246

RESUMEN

Germline pathogenic variants in BRCA1 confer a high risk of developing breast and ovarian cancer. The BRCA1 exon 11 (formally exon 10) is one of the largest exons and codes for the nuclear localization signals of the corresponding gene product. This exon can be partially or entirely skipped during pre-mRNA splicing, leading to three major in-frame isoforms that are detectable in most cell types and tissue, and in normal and cancer settings. However, it is unclear whether the splicing imbalance of this exon is associated with cancer risk. Here we identify a common genetic variant in intron 10, rs5820483 (NC_000017.11:g.43095106_43095108dup), which is associated with exon 11 isoform expression and alternative splicing, and with the risk of breast cancer, but not ovarian cancer, in BRCA1 pathogenic variant carriers. The identification of this genetic effect was confirmed by analogous observations in mouse cells and tissue in which a loxP sequence was inserted in the syntenic intronic region. The prediction that the rs5820483 minor allele variant would create a binding site for the splicing silencer hnRNP A1 was confirmed by pull-down assays. Our data suggest that perturbation of BRCA1 exon 11 splicing modifies the breast cancer risk conferred by pathogenic variants of this gene.


Asunto(s)
Neoplasias de la Mama/genética , Exones , Genes BRCA1 , Tamización de Portadores Genéticos , Predisposición Genética a la Enfermedad , Empalme del ARN , Femenino , Humanos , Intrones
2.
Int J Cancer ; 140(7): 1564-1570, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-27997688

RESUMEN

Tumors carrying hereditary mutations in BRCA1, which attenuate the BRCA1 DNA damage repair pathway, are more susceptible to dual treatment with PARP inhibitors and DNA damaging therapeutics. Conversely, breast cancer tumors with nonmutated functional BRCA1 are less sensitive to PARP inhibition. We describe a method that triggers susceptibility to PARP inhibition in BRCA1-functional tumor cells. BRCA1 exon 11 is a key for the function of BRCA1 in DNA damage repair. Analysis of the BRCA1 exon 11 splicing mechanism identified a key region within this exon which, when deleted, induced exon 11 skipping. An RNA splice-switching oligonucleotide (SSO) developed to target this region was shown to artificially stimulate skipping of exon 11 in endogenous BRCA1 pre-mRNA. SSO transfection rendered wild-type BRCA1 expressing cell lines more susceptible to PARP inhibitor treatment, as demonstrated by a reduction in cell survival at all SSO concentrations tested. Combined SSO and PARP inhibitor treatment increased γH2AX expression indicating that SSO-dependent skipping of BRCA1 exon 11 was able to promote DSBs and therefore synthetic lethality. In conclusion, this SSO provides a new potential therapeutic strategy for targeting BRCA1-functional breast cancer by enhancing the effect of PARP inhibitors.


Asunto(s)
Empalme Alternativo , Neoplasias de la Mama/genética , Genes BRCA1 , Oligonucleótidos/genética , Inhibidores de Poli(ADP-Ribosa) Polimerasas/química , Apoptosis/efectos de los fármacos , Bencimidazoles/uso terapéutico , Línea Celular Tumoral , Supervivencia Celular , Daño del ADN , Reparación del ADN/efectos de los fármacos , Exones , Femenino , Humanos , Células MCF-7 , Mutación , Oligonucleótidos/química , Poli(ADP-Ribosa) Polimerasas/metabolismo , Reacción en Cadena de la Polimerasa , Precursores del ARN
3.
Int J Mol Sci ; 12(12): 9471-80, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22272144

RESUMEN

The steroid 5α-reductase type II enzyme catalyzes the conversion of testosterone (T) to dihydrotestosterone (DHT), and its deficiency leads to undervirilization in 46,XY individuals, due to an impairment of this conversion in genital tissues. Molecular analysis in the steroid 5α-reductase type II gene (SRD5A2) was performed in two 46,XY female siblings. SRD5A2 gene sequencing revealed that the patients were homozygous for p.Gln126Arg missense mutation, which results from the CGA > CAA nucleotide substitution. The molecular result confirmed clinical diagnosis of 46,XY disorder of sex development (DSD) for the older sister and directed the investigation to other family members. Studies on SRD5A2 protein structure showed severe changes at NADPH binding region indicating that structural modeling analysis can be useful to evaluate the deleterious role of a mutation as causing 5α-reductase type II enzyme deficiency.


Asunto(s)
3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/genética , Trastorno del Desarrollo Sexual 46,XY/genética , Proteínas de la Membrana/genética , Mutación Missense , 3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/química , 3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/metabolismo , Adolescente , Secuencia de Aminoácidos , Sitios de Unión , Brasil , Niño , Trastorno del Desarrollo Sexual 46,XY/diagnóstico , Femenino , Homocigoto , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , Linaje
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA