Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 38(13): e101032, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31268609

RESUMEN

The molecular mechanisms discriminating between regenerative failure and success remain elusive. While a regeneration-competent peripheral nerve injury mounts a regenerative gene expression response in bipolar dorsal root ganglia (DRG) sensory neurons, a regeneration-incompetent central spinal cord injury does not. This dichotomic response offers a unique opportunity to investigate the fundamental biological mechanisms underpinning regenerative ability. Following a pharmacological screen with small-molecule inhibitors targeting key epigenetic enzymes in DRG neurons, we identified HDAC3 signalling as a novel candidate brake to axonal regenerative growth. In vivo, we determined that only a regenerative peripheral but not a central spinal injury induces an increase in calcium, which activates protein phosphatase 4 that in turn dephosphorylates HDAC3, thus impairing its activity and enhancing histone acetylation. Bioinformatics analysis of ex vivo H3K9ac ChIPseq and RNAseq from DRG followed by promoter acetylation and protein expression studies implicated HDAC3 in the regulation of multiple regenerative pathways. Finally, genetic or pharmacological HDAC3 inhibition overcame regenerative failure of sensory axons following spinal cord injury. Together, these data indicate that PP4-dependent HDAC3 dephosphorylation discriminates between axonal regeneration and regenerative failure.


Asunto(s)
Ganglios Espinales/fisiología , Histona Desacetilasas/metabolismo , Traumatismos de los Nervios Periféricos/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Axones , Células Cultivadas , Modelos Animales de Enfermedad , Epigénesis Genética/efectos de los fármacos , Femenino , Masculino , Ratones , Regeneración Nerviosa , Fosforilación/efectos de los fármacos , Transducción de Señal
2.
Proc Natl Acad Sci U S A ; 117(52): 33597-33607, 2020 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-33318207

RESUMEN

Axon injury is a hallmark of many neurodegenerative diseases, often resulting in neuronal cell death and functional impairment. Dual leucine zipper kinase (DLK) has emerged as a key mediator of this process. However, while DLK inhibition is robustly protective in a wide range of neurodegenerative disease models, it also inhibits axonal regeneration. Indeed, there are no genetic perturbations that are known to both improve long-term survival and promote regeneration. To identify such a neuroprotective target, we conducted a set of complementary high-throughput screens using a protein kinase inhibitor library in human stem cell-derived retinal ganglion cells (hRGCs). Overlapping compounds that promoted both neuroprotection and neurite outgrowth were bioinformatically deconvoluted to identify specific kinases that regulated neuronal death and axon regeneration. This work identified the role of germinal cell kinase four (GCK-IV) kinases in cell death and additionally revealed their unexpected activity in suppressing axon regeneration. Using an adeno-associated virus (AAV) approach, coupled with genome editing, we validated that GCK-IV kinase knockout improves neuronal survival, comparable to that of DLK knockout, while simultaneously promoting axon regeneration. Finally, we also found that GCK-IV kinase inhibition also prevented the attrition of RGCs in developing retinal organoid cultures without compromising axon outgrowth, addressing a major issue in the field of stem cell-derived retinas. Together, these results demonstrate a role for the GCK-IV kinases in dissociating the cell death and axonal outgrowth in neurons and their druggability provides for therapeutic options for neurodegenerative diseases.


Asunto(s)
Axones/enzimología , Axones/patología , Sistema Nervioso Central/patología , Quinasas del Centro Germinal/metabolismo , Regeneración Nerviosa , Animales , Secuencia de Bases , Sistemas CRISPR-Cas/genética , Muerte Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Dependovirus/metabolismo , Modelos Animales de Enfermedad , Humanos , Ratones Endogámicos C57BL , Regeneración Nerviosa/efectos de los fármacos , Proyección Neuronal/efectos de los fármacos , Traumatismos del Nervio Óptico/metabolismo , Traumatismos del Nervio Óptico/patología , Organoides/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Células Ganglionares de la Retina/efectos de los fármacos , Células Ganglionares de la Retina/metabolismo , Transducción de Señal/efectos de los fármacos
3.
J Neurosci ; 41(1): 3-10, 2021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-33408132

RESUMEN

In 1981, I published a paper in the first issue of the Journal of Neuroscience with my postdoctoral mentor, Alan Pearlman. It reported a quantitative analysis of the receptive field properties of neurons in reeler mouse visual cortex and the surprising conclusion that although the neuronal somas were strikingly malpositioned, their receptive fields were unchanged. This suggested that in mouse cortex at least, neuronal circuits have very robust systems in place to ensure the proper formation of connections. This had the unintended consequence of transforming me from an electrophysiologist into a cellular and molecular neuroscientist who studied cell adhesion molecules and the molecular mechanisms they use to regulate axon growth. It took me a surprisingly long time to appreciate that your science is driven by the people around you and by the technologies that are locally available. As a professional puzzler, I like all different kinds of puzzles, but the most fun puzzles involve playing with other puzzlers. This is my story of learning how to find like-minded puzzlers to solve riddles about axon growth and regeneration.


Asunto(s)
Axones , Neurología/historia , Corteza Visual/crecimiento & desarrollo , Corteza Visual/fisiología , Animales , Historia del Siglo XX , Ratones , Ratones Mutantes Neurológicos , Neuronas/fisiología , Vías Visuales/fisiología
4.
Mol Cell Neurosci ; 92: 114-127, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30077771

RESUMEN

Axon regeneration is a necessary step toward functional recovery after spinal cord injury. The AP-1 transcription factor c-Jun has long been known to play an important role in directing the transcriptional response of Dorsal Root Ganglion (DRG) neurons to peripheral axotomy that results in successful axon regeneration. Here we performed ChIPseq for Jun in mouse DRG neurons after a sciatic nerve crush or sham surgery in order to measure the changes in Jun's DNA binding in response to peripheral axotomy. We found that the majority of Jun's injury-responsive changes in DNA binding occur at putative enhancer elements, rather than proximal to transcription start sites. We also used a series of single polypeptide chain tandem transcription factors to test the effects of different Jun-containing dimers on neurite outgrowth in DRG, cortical and hippocampal neurons. These experiments demonstrated that dimers composed of Jun and Atf3 promoted neurite outgrowth in rat CNS neurons as well as mouse DRG neurons. Our work provides new insight into the mechanisms underlying Jun's role in axon regeneration.


Asunto(s)
Proyección Neuronal , Multimerización de Proteína , Proteínas Proto-Oncogénicas c-jun/metabolismo , Factor de Transcripción Activador 3/metabolismo , Animales , Encéfalo/citología , Encéfalo/metabolismo , Células Cultivadas , Elementos de Facilitación Genéticos , Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/citología , Neuronas/metabolismo , Unión Proteica , Ratas , Ratas Sprague-Dawley
5.
J Neurosci ; 37(30): 7079-7095, 2017 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-28626016

RESUMEN

The mammalian target of rapamycin (mTOR) positively regulates axon growth in the mammalian central nervous system (CNS). Although axon regeneration and functional recovery from CNS injuries are typically limited, knockdown or deletion of PTEN, a negative regulator of mTOR, increases mTOR activity and induces robust axon growth and regeneration. It has been suggested that inhibition of S6 kinase 1 (S6K1, gene symbol: RPS6KB1), a prominent mTOR target, would blunt mTOR's positive effect on axon growth. In contrast to this expectation, we demonstrate that inhibition of S6K1 in CNS neurons promotes neurite outgrowth in vitro by twofold to threefold. Biochemical analysis revealed that an mTOR-dependent induction of PI3K signaling is involved in mediating this effect of S6K1 inhibition. Importantly, treating female mice in vivo with PF-4708671, a selective S6K1 inhibitor, stimulated corticospinal tract regeneration across a dorsal spinal hemisection between the cervical 5 and 6 cord segments (C5/C6), increasing axon counts for at least 3 mm beyond the injury site at 8 weeks after injury. Concomitantly, treatment with PF-4708671 produced significant locomotor recovery. Pharmacological targeting of S6K1 may therefore constitute an attractive strategy for promoting axon regeneration following CNS injury, especially given that S6K1 inhibitors are being assessed in clinical trials for nononcological indications.SIGNIFICANCE STATEMENT Despite mTOR's well-established function in promoting axon regeneration, the role of its downstream target, S6 kinase 1 (S6K1), has been unclear. We used cellular assays with primary neurons to demonstrate that S6K1 is a negative regulator of neurite outgrowth, and a spinal cord injury model to show that it is a viable pharmacological target for inducing axon regeneration. We provide mechanistic evidence that S6K1's negative feedback to PI3K signaling is involved in axon growth inhibition, and show that phosphorylation of S6K1 is a more appropriate regeneration indicator than is S6 phosphorylation.


Asunto(s)
Axones/metabolismo , Imidazoles/administración & dosificación , Piperazinas/administración & dosificación , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/enzimología , Regeneración de la Medula Espinal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Animales , Células Cultivadas , Sistemas de Liberación de Medicamentos , Regulación Enzimológica de la Expresión Génica/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Terapia Molecular Dirigida , Proyección Neuronal/efectos de los fármacos , Unión Proteica , Proteínas Quinasas S6 Ribosómicas 90-kDa/antagonistas & inhibidores , Especificidad por Sustrato , Resultado del Tratamiento
6.
Mol Cell Neurosci ; 80: 161-169, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27444126

RESUMEN

High-throughput, target-based screening techniques have been utilized extensively for drug discovery in the past several decades. However, the need for more predictive in vitro models of in vivo disease states has generated a shift in strategy towards phenotype-based screens. Phenotype based screens are particularly valuable in studying complex conditions such as CNS injury and degenerative disease, as many factors can contribute to a specific cellular response. In this review, we will discuss different screening frameworks and their relative utility in examining mechanisms of neurodegeneration and axon regrowth, particularly in cell-based in vitro disease models.


Asunto(s)
Descubrimiento de Drogas , Evaluación Preclínica de Medicamentos , Degeneración Nerviosa/tratamiento farmacológico , Regeneración Nerviosa/efectos de los fármacos , Animales , Humanos , Fenotipo
8.
Mol Cell Neurosci ; 59: 97-105, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24521823

RESUMEN

A number of genes regulate regeneration of peripheral axons, but their ability to drive axon growth and regeneration in the central nervous system (CNS) remains largely untested. To address this question we overexpressed eight transcription factors and one small GTPase alone and in pairwise combinations to test whether combinatorial overexpression would have a synergistic impact on CNS neuron neurite growth. The Jun oncogene/signal transducer and activator of transcription 6 (JUN/STAT6) combination increased neurite growth in dissociated cortical neurons and in injured cortical slices. In injured cortical slices, JUN overexpression increased axon growth to a similar extent as JUN and STAT6 together. Interestingly, JUN overexpression was not associated with increased growth associated protein 43 (GAP43) or integrin alpha 7 (ITGA7) expression, though these are predicted transcriptional targets. This study demonstrates that JUN overexpression in cortical neurons stimulates axon growth, but does so independently of changes in expression of genes thought to be critical for JUNs effects on axon growth. We conclude that JUN activity underlies this CNS axonal growth response, and that it is mechanistically distinct from peripheral regeneration responses, in which increases in JUN expression coincide with increases in GAP43 expression.


Asunto(s)
Axones/metabolismo , Corteza Cerebral/crecimiento & desarrollo , Proteína Oncogénica p65(gag-jun)/metabolismo , Animales , Antígenos CD/genética , Antígenos CD/metabolismo , Axones/fisiología , Células Cultivadas , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Proteína GAP-43/genética , Proteína GAP-43/metabolismo , Regulación del Desarrollo de la Expresión Génica , Células HEK293 , Humanos , Cadenas alfa de Integrinas/genética , Cadenas alfa de Integrinas/metabolismo , Regeneración Nerviosa , Neurogénesis , Proteína Oncogénica p65(gag-jun)/genética , Ratas , Ratas Sprague-Dawley , Factor de Transcripción STAT6/genética , Factor de Transcripción STAT6/metabolismo
9.
Proc Natl Acad Sci U S A ; 109(19): 7517-22, 2012 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-22529377

RESUMEN

Axon regeneration in the central nervous system normally fails, in part because of a developmental decline in the intrinsic ability of CNS projection neurons to extend axons. Members of the KLF family of transcription factors regulate regenerative potential in developing CNS neurons. Expression of one family member, KLF7, is down-regulated developmentally, and overexpression of KLF7 in cortical neurons in vitro promotes axonal growth. To circumvent difficulties in achieving high neuronal expression of exogenous KLF7, we created a chimera with the VP16 transactivation domain, which displayed enhanced neuronal expression compared with the native protein while maintaining transcriptional activation and growth promotion in vitro. Overexpression of VP16-KLF7 overcame the developmental loss of regenerative ability in cortical slice cultures. Adult corticospinal tract (CST) neurons failed to up-regulate KLF7 in response to axon injury, and overexpression of VP16-KLF7 in vivo promoted both sprouting and regenerative axon growth in the CST of adult mice. These findings identify a unique means of promoting CST axon regeneration in vivo by reengineering a developmentally down-regulated, growth-promoting transcription factor.


Asunto(s)
Axones/fisiología , Factores de Transcripción de Tipo Kruppel/metabolismo , Regeneración Nerviosa/fisiología , Tractos Piramidales/fisiología , Animales , Axones/metabolismo , Células Cultivadas , Etopósido , Femenino , Expresión Génica , Ingeniería Genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Proteína Vmw65 de Virus del Herpes Simple/genética , Humanos , Inmunohistoquímica , Factores de Transcripción de Tipo Kruppel/genética , Mediciones Luminiscentes/métodos , Ratones , Ratones Endogámicos C57BL , Mutación , Regeneración Nerviosa/genética , Neuritas/metabolismo , Neuritas/fisiología , Neuronas/citología , Neuronas/metabolismo , Neuronas/fisiología , Tractos Piramidales/citología , Tractos Piramidales/metabolismo , Ratas , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Traumatismos de la Médula Espinal/genética , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/fisiopatología , Activación Transcripcional
10.
J Neurosci ; 32(25): 8491-500, 2012 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-22723689

RESUMEN

In neurons, the type 3 deiodinase (D3) inactivates thyroid hormone and reduces oxygen consumption, thus creating a state of cell-specific hypothyroidism. Here we show that hypoxia leads to nuclear import of D3 in neurons, without which thyroid hormone signaling and metabolism cannot be reduced. After unilateral hypoxia in the rat brain, D3 protein level is increased predominantly in the nucleus of the neurons in the pyramidal and granular ipsilateral layers, as well as in the hilus of the dentate gyrus of the hippocampal formation. In hippocampal neurons in culture as well as in a human neuroblastoma cell line (SK-N-AS), a 24 h hypoxia period redirects active D3 from the endoplasmic reticulum to the nucleus via the cochaperone Hsp40 pathway. Preventing nuclear D3 import by Hsp40 knockdown resulted an almost doubling in the thyroid hormone-dependent glycolytic rate and quadrupling the transcription of thyroid hormone target gene ENPP2. In contrast, Hsp40 overexpression increased nuclear import of D3 and minimized thyroid hormone effects in cell metabolism. In conclusion, ischemia/hypoxia induces an Hsp40-mediated translocation of D3 to the nucleus, facilitating thyroid hormone inactivation proximal to the thyroid hormone receptors. This adaptation decreases thyroid hormone signaling and may function to reduce ischemia-induced hypoxic brain damage.


Asunto(s)
Hipoxia de la Célula/fisiología , Núcleo Celular/metabolismo , Proteínas del Choque Térmico HSP40/fisiología , Yoduro Peroxidasa/metabolismo , Neuronas/metabolismo , Animales , Isquemia Encefálica/metabolismo , Núcleo Celular/enzimología , Células Cultivadas , ADN/genética , Retículo Endoplásmico/metabolismo , Glicosilación , Hipocampo/citología , Hipocampo/metabolismo , Inmunohistoquímica , Inmunoprecipitación , Masculino , Microscopía Electrónica , Arteria Cerebral Media/fisiología , Consumo de Oxígeno/fisiología , Reacción en Cadena de la Polimerasa , Ratas , Ratas Sprague-Dawley , Receptores de Hormona Tiroidea/metabolismo , Transducción de Señal/fisiología , Hormonas Tiroideas/fisiología
11.
J Neurosci Res ; 91(1): 42-50, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23073969

RESUMEN

L1 is a cell adhesion molecule associated with a spectrum of human neurological diseases, the most well-known being X-linked hydrocephalus. L1 knockout (L1-KO) mice have revealed a variety of functions of L1 that were crucial in brain development in different brain regions. However; the function of L1 in neuronal migration during cortical histogenesis remains to be clarified. We therefore investigated the corticogenesis of mouse embryos in which L1 molecules were knocked down in selected neurons, by employing in utero electroporation with shRNAs targeting L1 (L1 shRNA). Although more than 50% of the cells transfected with no small hairpin RNA (shRNA; monster green fluorescent protein: MGFP only) vector at embryonic day 13 (E13) reached the cortical plate at E16, significantly fewer (27%) cells transfected with L1 shRNA migrated to the same extent. At E17, 22% of cells transfected with the MGFP-only vector were found in the intermediate zone, and significantly more (34%) cells transfected with L1 shRNA remained in the same zone. Furthermore, the directions of the leading process of neurons transfected with L1 shRNA became more dispersed compared with cells with the MGFP-only vector. In addition, two transcription factors expressed in the neurons, Satb2 and Tbr1, were shown to be reduced or aberrantly expressed in neurons transfected with L1 shRNA. These observations suggest that L1 plays an important role in regulating the locomotion and orientation of migrating neurons and the expression of transcription factors during neocortical development that might partially be responsible for the abnormal tract formation seen in L1-KO mice.


Asunto(s)
Movimiento Celular/fisiología , Proteínas de Unión al ADN/biosíntesis , Proteínas de Unión a la Región de Fijación a la Matriz/biosíntesis , Neocórtex/metabolismo , Molécula L1 de Adhesión de Célula Nerviosa/metabolismo , Neurogénesis/fisiología , Factores de Transcripción/biosíntesis , Animales , Regulación hacia Abajo , Electroporación , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Molécula L1 de Adhesión de Célula Nerviosa/genética , ARN Interferente Pequeño , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas de Dominio T Box
12.
Mol Cell Neurosci ; 50(2): 201-10, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22579729

RESUMEN

Interaction of the cell adhesion molecule L1 with the cytoskeletal adaptor ankyrin is essential for topographic mapping of retinal ganglion cell (RGC) axons to synaptic targets in the superior colliculus (SC). Mice mutated in the L1 ankyrin-binding motif (FIGQY(1229)H) display abnormal mapping of RGC axons along the mediolateral axis of the SC, resembling mouse mutant phenotypes in EphB receptor tyrosine kinases. To investigate whether L1 functionally interacts with EphBs, we investigated the role of EphB kinases in phosphorylating L1 using a phospho-specific antibody to the tyrosine phosphorylated FIGQY(1229) motif. EphB2, but not an EphB2 kinase dead mutant, induced tyrosine phosphorylation of L1 at FIGQY(1229) and perturbed ankyrin recruitment to the membrane in L1-transfected HEK293 cells. Src family kinases mediated L1 phosphorylation at FIGQY(1229) by EphB2. Other EphB receptors that regulate medial-lateral retinocollicular mapping, EphB1 and EphB3, also mediated phosphorylation of L1 at FIGQY(1229). Tyrosine(1176) in the cytoplasmic domain of L1, which regulates AP2/clathrin-mediated endocytosis and axonal trafficking, was not phosphorylated by EphB2. Accordingly mutation of Tyr(1176) to Ala in L1-Y(1176)A knock-in mice resulted in normal retinocollicular mapping of ventral RGC axons. Immunostaining of the mouse SC during retinotopic mapping showed that L1 colocalized with phospho-FIGQY in RGC axons in retinorecipient layers. Immunoblotting of SC lysates confirmed that L1 was phosphorylated at FIGQY(1229) in wild type but not L1-FIGQY(1229)H (L1Y(1229)H) mutant SC, and that L1 phosphorylation was decreased in the EphB2/B3 mutant SC. Inhibition of ankyrin binding in L1Y(1229)H mutant RGCs resulted in increased neurite outgrowth compared to WT RGCs in retinal explant cultures, suggesting that L1-ankyrin binding serves to constrain RGC axon growth. These findings are consistent with a model in which EphB kinases phosphorylate L1 at FIGQY(1229) in retinal axons to modulate L1-ankyrin binding important for mediolateral retinocollicular topography.


Asunto(s)
Mapeo Encefálico , Molécula L1 de Adhesión de Célula Nerviosa/metabolismo , Receptor EphB2/metabolismo , Células Ganglionares de la Retina/fisiología , Colículos Superiores/fisiología , Animales , Ancirinas/metabolismo , Células Cultivadas , Células HEK293 , Humanos , Ratones , Ratones Mutantes , Mutación , Molécula L1 de Adhesión de Célula Nerviosa/química , Molécula L1 de Adhesión de Célula Nerviosa/genética , Fosforilación , Dominios y Motivos de Interacción de Proteínas , Receptor EphB2/genética , Receptores de la Familia Eph/metabolismo , Células Ganglionares de la Retina/metabolismo , Tirosina/genética
13.
Mol Cell Neurosci ; 50(2): 125-35, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22561309

RESUMEN

Injury to the central nervous system (CNS) can result in lifelong loss of function due in part to the regenerative failure of CNS neurons. Inhibitory proteins derived from myelin and the astroglial scar are major barriers for the successful regeneration of injured CNS neurons. Previously, we described the identification of a novel compound, F05, which promotes neurite growth from neurons challenged with inhibitory substrates in vitro, and promotes axonal regeneration in vivo (Usher et al., 2010). To identify additional regeneration-promoting compounds, we used F05-induced gene expression profiles to query the Broad Institute Connectivity Map, a gene expression database of cells treated with >1300 compounds. Despite no shared chemical similarity, F05-induced changes in gene expression were remarkably similar to those seen with a group of piperazine phenothiazine antipsychotics (PhAPs). In contrast to antipsychotics of other structural classes, PhAPs promoted neurite growth of CNS neurons challenged with two different glial derived inhibitory substrates. Our pharmacological studies suggest a mechanism whereby PhAPs promote growth through antagonism of calmodulin signaling, independent of dopamine receptor antagonism. These findings shed light on mechanisms underlying neurite-inhibitory signaling, and suggest that clinically approved antipsychotic compounds may be repurposed for use in CNS injured patients.


Asunto(s)
Antipsicóticos/farmacología , Neuritas/efectos de los fármacos , Fenotiazinas/farmacología , Piperazinas/farmacología , Regeneración/efectos de los fármacos , Animales , Antipsicóticos/química , Encéfalo/fisiología , Células CHO , Señalización del Calcio/efectos de los fármacos , Señalización del Calcio/fisiología , Línea Celular Tumoral , Células Cultivadas , Proteoglicanos Tipo Condroitín Sulfato/farmacología , Cricetinae , Cricetulus , Perfilación de la Expresión Génica , Humanos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/fisiología , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotiazinas/química , Piperazinas/química , Ratas
14.
Mol Brain ; 16(1): 79, 2023 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-37980537

RESUMEN

Protein kinases are responsible for protein phosphorylation and are involved in important intracellular signal transduction pathways in various cells, including neurons; however, a considerable number of poorly characterized kinases may be involved in neuronal development. Here, we considered mitogen-activated protein kinase kinase kinase kinases (MAP4Ks), related to as candidate regulators of neurite outgrowth and synaptogenesis, by examining the effects of a selective MAP4K inhibitor PF06260933. PF06260933 treatments of the cultured neurons reduced neurite lengths, not the number of synapses, and phosphorylation of GAP43 and JNK, relative to the control. These results suggest that MAP4Ks are physiologically involved in normal neuronal development and that the resultant impaired neurite outgrowth by diminished MAP4Ks' activity, is related to psychiatric disorders.


Asunto(s)
Neuritas , Neuronas , Humanos , Neuronas/metabolismo , Neuritas/metabolismo , Transducción de Señal , Fosforilación , Proyección Neuronal
15.
Neuropathology ; 32(4): 420-31, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22151581

RESUMEN

Axon regeneration is a fundamental problem facing neuroscientists and clinicians. Failure of axon regeneration is caused by both extrinsic and intrinsic mechanisms. New techniques to examine gene expression such as Next Generation Sequencing of the Transcriptome (RNA-Seq) drastically increase our knowledge of both gene expression complexity (RNA isoforms) and gene expression regulation. By utilizing RNA-Seq, gene expression can now be defined at the level of isoforms, an essential step for understanding the mechanisms governing cell identity, growth and ultimately cellular responses to injury and disease.


Asunto(s)
Axones/fisiología , Regeneración Nerviosa/fisiología , Animales , Humanos , Isoformas de Proteínas/fisiología
16.
Mol Cell Neurosci ; 46(1): 32-44, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20696251

RESUMEN

Neurons in the peripheral nervous system (PNS) display a higher capacity to regenerate after injury than those in the central nervous system, suggesting cell specific transcriptional modules underlying axon growth and inhibition. We report a systems biology based search for PNS specific transcription factors (TFs). Messenger RNAs enriched in dorsal root ganglion (DRG) neurons compared to cerebellar granule neurons (CGNs) were identified using subtractive hybridization and DNA microarray approaches. Network and transcription factor binding site enrichment analyses were used to further identify TFs that may be differentially active. Combining these techniques, we identified 32 TFs likely to be enriched and/or active in the PNS. Twenty-five of these TFs were then tested for an ability to promote CNS neurite outgrowth in an overexpression screen. Real-time PCR and immunohistochemical studies confirmed that one representative TF, STAT3, is intrinsic to PNS neurons, and that constitutively active STAT3 is sufficient to promote CGN neurite outgrowth.


Asunto(s)
Neuronas/fisiología , Sistema Nervioso Periférico/fisiología , Factores de Transcripción/metabolismo , Transcripción Genética , Animales , Cerebelo/citología , Ganglios Espinales/citología , Perfilación de la Expresión Génica/métodos , Ratones , Ratones Endogámicos C57BL , Análisis por Micromatrices/métodos , Neuronas/citología , Hibridación de Ácido Nucleico/métodos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/fisiología , Factores de Transcripción/genética
17.
Exp Neurol ; 354: 114085, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35460760

RESUMEN

Injuries to the cervical spinal cord represent around 60% of all spinal cord injuries (SCIs). A major priority for patients with cervical SCIs is the recovery of any hand or arm function. The similarities between human and rodent "reach-to-eat movements" indicate that analyzing mouse forelimb reaching behavior may be a method of identifying clinically relevant treatments for people with cervical SCIs. One popular behavioral measure of forelimb functional recovery comprises the Single Pellet Retrieval Task (SPRT). The most common outcome measure for this task, however (percentage of pellets successfully retrieved), cannot readily distinguish between recovery of pre-injury motor patterns and strategic compensation. Our objective was to establish outcome measures for the SPRT that are readily adopted by different investigators and capable of measuring recovery of limb function after SCI. We used a simple semi-automated approach to high-speed tracking of mouse forepaw movements during pellet retrieval. DeepLabCut™, a machine learning based computer vision software package, was used to track individual features of the mouse forepaw, allowing a more detailed assessment of reaching behavior after SCI. Interestingly, kinematic analysis of movements pre- and post-injury illuminated persistent deficits in specific features of the reaching motor patterns, namely pronation and paw trajectory, that were poorly correlated with recovery of the ability to successfully retrieve pellets. Thus, we have developed an inexpensive method for detailed analysis of mouse reach-to-eat behavior following SCI. Further, our results suggest that binary success/fail outcome measures primarily assess an animal's ability to compensate rather than a restoration of normal function in the injured pathways and networks.


Asunto(s)
Médula Cervical , Traumatismos de la Médula Espinal , Animales , Médula Cervical/lesiones , Modelos Animales de Enfermedad , Miembro Anterior , Humanos , Ratones , Destreza Motora , Recuperación de la Función , Médula Espinal
18.
Mol Brain ; 15(1): 68, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35883152

RESUMEN

Protein kinases are responsible for protein phosphorylation and are involved in important signal transduction pathways; however, a considerable number of poorly characterized kinases may be involved in neuronal development. Here, we considered cyclin G-associated kinase (GAK) as a candidate regulator of neurite outgrowth and synaptogenesis by examining the effects of the selective GAK inhibitor SGC-GAK-1. SGC-GAK-1 treatment of cultured neurons reduced neurite length and decreased synapse number and phosphorylation of neurofilament 200-kDa subunits relative to the control. In addition, the related kinase inhibitor erlotinib, which has distinct specificity and potency from SGC-GAK-1, had no effect on neurite growth, unlike SGC-GAK-1. These results suggest that GAK may be physiologically involved in normal neuronal development, and that decreased GAK function and the resultant impaired neurite outgrowth and synaptogenesis may be related to neurodevelopmental disorders.


Asunto(s)
Proteínas Quinasas Dependientes de GMP Cíclico , Ciclinas , Proteínas Quinasas Dependientes de GMP Cíclico/farmacología , Ciclina G , Ciclinas/farmacología , Neuritas , Proyección Neuronal , Inhibidores de Proteínas Quinasas/farmacología , Sinapsis
19.
Exp Neurol ; 355: 114117, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35588791

RESUMEN

Recovery from spinal cord injury (SCI) and other central nervous system (CNS) trauma is hampered by limits on axonal regeneration in the CNS. Regeneration is restricted by the lack of neuron-intrinsic regenerative capacity and by the repressive microenvironment confronting damaged axons. To address this challenge, we have developed a therapeutic strategy that co-targets kinases involved in both extrinsic and intrinsic regulatory pathways. Prior work identified a kinase inhibitor (RO48) with advantageous polypharmacology (co-inhibition of targets including ROCK2 and S6K1), which promoted CNS axon growth in vitro and corticospinal tract (CST) sprouting in a mouse pyramidotomy model. We now show that RO48 promotes neurite growth from sensory neurons and a variety of CNS neurons in vitro, and promotes CST sprouting and/or regeneration in multiple mouse models of spinal cord injury. Notably, these in vivo effects of RO48 were seen in several independent experimental series performed in distinct laboratories at different times. Finally, in a cervical dorsal hemisection model, RO48 not only promoted growth of CST axons beyond the lesion, but also improved behavioral recovery in the rotarod, gridwalk, and pellet retrieval tasks. Our results provide strong evidence for RO48 as an effective compound to promote axon growth and regeneration. Further, they point to strategies for increasing robustness of interventions in pre-clinical models.


Asunto(s)
Axones , Traumatismos de la Médula Espinal , Animales , Axones/patología , Modelos Animales de Enfermedad , Ratones , Regeneración Nerviosa/fisiología , Neuronas/metabolismo , Tractos Piramidales/patología , Recuperación de la Función/fisiología , Médula Espinal/patología , Traumatismos de la Médula Espinal/patología
20.
FEBS Lett ; 596(3): 294-308, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34890048

RESUMEN

The cell fate transition from radial glial-like (RGL) cells to neurons and astrocytes is crucial for development and pathological conditions. Two chromatin repressors-the enhancer of zeste homolog 2 and suppressor of variegation 4-20 homolog-are expressed in RGL cells in the hippocampus, implicating these epigenetic regulators in hippocampal cell fate commitment. Using a double knockout mouse model, we demonstrated that loss of both chromatin repressors in the RGL population leads to deficits in hippocampal development. Single-nuclei RNA-Seq revealed differential gene expression and provided mechanistic insight into how the two chromatin repressors are critical for the maintenance of cycling cells in the dentate gyrus as well as the balance of cell trajectories between neuronal and astroglial lineages.


Asunto(s)
Proteína Potenciadora del Homólogo Zeste 2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA