Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Vet Res ; 20(1): 151, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643127

RESUMEN

BACKGROUND: Numerous previous reports have demonstrated the efficacy of Lactic acid bacteria (LAB) in promoting growth and preventing disease in animals. In this study, Enterococcus faecium ZJUIDS-R1 and Ligilactobaciiius animalis ZJUIDS-R2 were isolated from the feces of healthy rabbits, and both strains showed good probiotic properties in vitro. Two strains (108CFU/ml/kg/day) were fed to weaned rabbits for 21 days, after which specific bacterial infection was induced to investigate the effects of the strains on bacterial diarrhea in the rabbits. RESULTS: Our data showed that Enterococcus faecium ZJUIDS-R1 and Ligilactobaciiius animalis ZJUIDS-R2 interventions reduced the incidence of diarrhea and systemic inflammatory response, alleviated intestinal damage and increased antibody levels in animals. In addition, Enterococcus faecium ZJUIDS-R1 restored the flora abundance of Ruminococcaceae1. Ligilactobaciiius animalis ZJUIDS-R2 up-regulated the flora abundance of Adlercreutzia and Candidatus Saccharimonas. Both down-regulated the flora abundance of Shuttleworthia and Barnesiella to restore intestinal flora balance, thereby increasing intestinal short-chain fatty acid content. CONCLUSIONS: These findings suggest that Enterococcus faecium ZJUIDS-R1 and Ligilactobaciiius animalis ZJUIDS-R2 were able to improve intestinal immunity, produce organic acids and regulate the balance of intestinal flora to enhance disease resistance and alleviate diarrhea-related diseases in weanling rabbits.


Asunto(s)
Infecciones Bacterianas , Enterococcus faecium , Microbioma Gastrointestinal , Lactobacillales , Probióticos , Conejos , Animales , Enterococcus faecium/fisiología , Probióticos/uso terapéutico , Probióticos/farmacología , Diarrea/prevención & control , Diarrea/veterinaria , Infecciones Bacterianas/veterinaria , Inmunidad
2.
BMC Vet Res ; 16(1): 1, 2020 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-31900161

RESUMEN

BACKGROUND: Enterobacter hormaechei is commonly considered a causative pathogen for nosocomial infections and it does not usually cause diseases in animals. However, researchers have recently dissociated the pathogenic Enterobacter hormaechei from foxes and piglets. Here, the Enterobacter hormaechei was first found to be associated with respiratory disease in unweaned calves in China. CASE PRESENTATION: A 2-month-old calf was severely sick and diagnosed with respiratory infection by a rural veterinarian, and it died 5 days after treatment with penicillin G. The lung sample was then run through histopathological analysis and pathogen isolation. The sequence analysis and biochemical tests results showed the isolated bacterium strain to be Enterobacter hormaechei, and drug sensitivity tests showed resistance to all ß-lactam antimicrobials and sensitivity to quinolones. Thickened alveoli septum, inflammatory cell infiltration, and erythrocyte diapedesis around the pulmonary alveoli septum were visible in lung histopathological sections. One week later, at the same farm, another calf showed similar clinical signs, and the Enterobacter hormaechei strain was isolated from its nasal discharge; after a week of treatment with enrofloxacin, as suggested by the results of drug sensitivity tests, this calf fully recovered. CONCLUSIONS: To the best of our knowledge, this is the first case report of calves with respiratory disease that was associated with E. hormaechei, and multi-drug resistance was observed in isolates.


Asunto(s)
Enterobacter/aislamiento & purificación , Infecciones por Enterobacteriaceae/veterinaria , Infecciones del Sistema Respiratorio/veterinaria , Animales , Antibacterianos/uso terapéutico , Bovinos , Enfermedades de los Bovinos/tratamiento farmacológico , Enfermedades de los Bovinos/microbiología , China , Resistencia a Múltiples Medicamentos , Enrofloxacina/uso terapéutico , Enterobacter/efectos de los fármacos , Infecciones por Enterobacteriaceae/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana , Infecciones del Sistema Respiratorio/tratamiento farmacológico , Infecciones del Sistema Respiratorio/microbiología
3.
Arch Virol ; 164(2): 401-411, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30353281

RESUMEN

Different strains of porcine reproductive and respiratory syndrome virus (PRRSV) have emerged and circulated in different regions of mainland China since 1996, particularly after 2006. In 2012, NADC30-like PRRSV was first isolated in Henan Province. By 2016, it had spread to most provinces in China. In the present study, the whole genomes (excluding the poly(A) tails) of 13 newly emerged NADC30-like PRRSV strains were sequenced and analyzed. Furthermore, the pathogenicity of SD53-1603, one of the 13 PRRSV strains, was assessed. Phylogenetic analysis showed that these 13 newly emerged NADC30-like PRRSV strains, together with some reference strains, formed a new subgroup (subgroup 5), characterized by a predicted 131-amino-acid deletion in the nonstructural protein (NSP) 2. However, low levels of whole-genome similarity and a wide variety of recombination patterns complicated the classification of the NADC30-like PRRSV isolates. Interestingly, almost all of the recombination breakpoints found in these 13 PRRSV isolates and other NADC30-like PRRSV isolates occurred in genes encoding NSPs and/or minor structural proteins. In addition, piglets infected with the newly emerged NADC30-like strain SD53-1603 displayed clear clinical respiratory symptoms and underwent typical pathological changes. The findings may be useful for elucidating the characteristics and epidemic status of NADC30-like PRRSV in China.


Asunto(s)
Síndrome Respiratorio y de la Reproducción Porcina/virología , Virus del Síndrome Respiratorio y Reproductivo Porcino/aislamiento & purificación , Animales , China/epidemiología , Genoma Viral , Filogenia , Síndrome Respiratorio y de la Reproducción Porcina/epidemiología , Virus del Síndrome Respiratorio y Reproductivo Porcino/clasificación , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Recombinación Genética , Eliminación de Secuencia , Porcinos , Proteínas no Estructurales Virales/genética
4.
BMC Vet Res ; 15(1): 322, 2019 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-31492192

RESUMEN

BACKGROUND: Porcine circovirus type 3 (PCV3) is a newly emerging circovirus that might be associated with porcine dermatitis and nephropathy syndrome, reproductive failure, and cardiac and multisystemic inflammation. To aid the prevention and control of the infectious disease caused by PCV3, we developed a novel isothermal amplification assay using polymerase spiral reaction (PSR), which allows the visual detection of preserved strains and clinical samples. RESULTS: This assay precisely amplified the PCV3 genome with the use of a water bath at 62 °C for 50 min. The detection limit was found to be 1.13 × 102 copies/µL by gel electrophoresis or with the use of a visible dye (an indicator comprising phenol red and cresol red). No cross-reaction with other porcine infectious viruses was observed. The detection results for 23 PCV3-positive samples by PSR were in accordance with loop-mediated isothermal amplification (LAMP) assay. The detection rate of the PSR assay for PCV3 positivity of clinical samples was 68/97, which was higher than LAMP assay (67/97). CONCLUSIONS: These results indicated that the PSR assay provides an accurate and rapid method for the detection of PCV3 with high sensitivity and specificity. It is particularly suited for use in a simple laboratory setting without a thermal cycler or gel electrophoresis equipment.


Asunto(s)
Circovirus/aislamiento & purificación , Técnicas de Amplificación de Ácido Nucleico/métodos , Enfermedades de los Porcinos/virología , Animales , ADN Polimerasa Dirigida por ADN , Sensibilidad y Especificidad , Porcinos
5.
Virus Genes ; 54(4): 603-607, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29909436

RESUMEN

Natural Pestivirus H infections in cattle have been reported worldwide; however, only a few cases of Pestivirus H have been described in non-bovine ruminants such as goats. A new Pestivirus H HN1507 strain was isolated from an infected goat in 2015 and the genome sequence was determined. The full-length genome sequence was 12,556 nucleotides. Phylogenetic analysis, based on the complete genome and Npro fragments, revealed that the isolate belonged to Pestivirus H and was closely related to strains from Italy. Two unique amino acid substitutions were found in the C-terminal of the E2 protein. To the best of our knowledge, this is first report determining the complete genome of a Pestivirus H strain from goat.


Asunto(s)
Enfermedades de las Cabras/virología , Infecciones por Pestivirus/veterinaria , Pestivirus/clasificación , Pestivirus/aislamiento & purificación , Animales , China , Análisis por Conglomerados , Genoma Viral , Genotipo , Cabras , Mutación Missense , Pestivirus/genética , Infecciones por Pestivirus/virología , Filogenia , Análisis de Secuencia de ADN , Homología de Secuencia , Proteínas del Envoltorio Viral/genética , Secuenciación Completa del Genoma
6.
BMC Vet Res ; 14(1): 204, 2018 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-29940930

RESUMEN

BACKGROUND: Classical swine fever (CSF) is one of the most devastating and highly contagious viral diseases in the world. Since late 2014, outbreaks of a new sub-genotype 2.1d CSF virus (CSFV) had caused substantial economic losses in numbers of C-strain vaccinated swine farms in China. The objective of the present study was to explore the genomic characteristics and pathogenicity of the newly emerged CSFV isolates in China during 2014-2015. RESULTS: All the new 8 CSFV isolates belonged to genetic sub-genotype 2.1d. Some genomic variations or deletions were found in the UTRs and E2 of these new isolates. In addition, the pathogenicity of HLJ1 was less than Shimen, suggesting the HLJ1 of sub-genotype 2.1d may be a moderated pathogenic isolate and the C-strain vaccine can supply complete protection. CONCLUSIONS: The new CSFV isolates with unique genomic characteristics and moderate pathogenicity can be epidemic in many large-scale C-strain vaccinated swine farms. This study provides the information should be merited special attention on establishing prevention and control policies for CSF.


Asunto(s)
Virus de la Fiebre Porcina Clásica/genética , Peste Porcina Clásica/microbiología , Genoma Viral/genética , Animales , China/epidemiología , Peste Porcina Clásica/epidemiología , Peste Porcina Clásica/patología , Enfermedades Transmisibles Emergentes/epidemiología , Enfermedades Transmisibles Emergentes/veterinaria , Enfermedades Transmisibles Emergentes/virología , Filogenia , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/veterinaria , Análisis de Secuencia de ADN/veterinaria , Porcinos
7.
Virol J ; 14(1): 159, 2017 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-28830563

RESUMEN

BACKGROUND: Currently, porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most economically important viral pathogens in swine in most countries, especially China. Two PRRSV attenuated live vaccine strains (HuN4-F112 and CH-1R) are currently widely used in China. Our previous study showed that HuN4-F112, but not CH-1R, induced high anti-nucleocapsid (N) antibody and neutralizing antibody (NA) titers. Additionally, sera from HuN4-F112 inoculated pigs induced low cross neutralization of CH-1R. METHODS: In the present study, 6 chimeric viruses through exchanging 5' untranslated region (UTR) + open reading frame (ORF)1a, ORF1b, and ORF2-7 + 3'UTR between HuN4-F112 and CH-1R were constructed and rescued based on the infectious clones of rHuN4-F112 and rCH-1R. The characteristics of these viruses were investigated in vitro and vivo. RESULTS: All the three fragments, 5'UTR + ORF1a, ORF1b, and ORF2-7 + 3'UTR, could affect the replication efficiencies of rHuN4-F112 and rCH-1R in vitro. Additionally, both 5'UTR + ORF1a and ORF2-7 + 3'UTR affected the anti-N antibody and NA responses targeting rHuN4-F112 and rCH-1R in piglets. CONCLUSIONS: The 5'UTR + ORF1a region of HuN4-F112 played a key role in inducing NAs in piglets. Furthermore, we confirmed for the first time that ORF1a contains a neutralization region. This study provides important information that can be used for further study of the generation of anti-PRRSV NAs.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Sistemas de Lectura Abierta/inmunología , Síndrome Respiratorio y de la Reproducción Porcina/inmunología , Síndrome Respiratorio y de la Reproducción Porcina/prevención & control , Virus del Síndrome Respiratorio y Reproductivo Porcino/inmunología , Vacunas Atenuadas/uso terapéutico , Animales , Anticuerpos Antivirales/sangre , Secuencia de Bases , Línea Celular , China , ADN Complementario , ADN Viral , Cinética , Sistemas de Lectura Abierta/genética , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Virus del Síndrome Respiratorio y Reproductivo Porcino/crecimiento & desarrollo , Virus del Síndrome Respiratorio y Reproductivo Porcino/patogenicidad , Porcinos/inmunología , Vacunación , Vacunas Atenuadas/genética , Vacunas Atenuadas/aislamiento & purificación , Vacunas Virales/inmunología , Viremia/virología
8.
Arch Virol ; 159(11): 3021-8, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25037720

RESUMEN

The M protein, encoded by the porcine reproductive and respiratory syndrome virus (PRRSV) ORF6 gene, is considered to be one of the most conserved PRRSV proteins. In recent decades, highly specific monoclonal antibodies (Mabs) have been exploited to provide reliable diagnoses for many diseases. In this study, two different Mab clones targeting the linear epitopes on the PRRSV M protein were generated and characterized. Both Mabs showed binding activity against the native PRRSV virion and recombinant M protein when analyzed by immunofluorescence assay (IFA) and Western blot. The targeted epitope of each Mab was mapped by serial truncation of the M protein to generate overlapping fragments. Fine epitope mapping was then performed using a panel of expressed polypeptides. The polypeptide sequences of the two epitopes recognized by Mabs 1C8 and 3F7 were (3)SSLD(6) and (155)VLGGRKAVK(163), respectively, with the former being a newly identified epitope on the M protein. In both cases, these two epitopes were finely mapped for the first time. Alignments of Mab epitope sequences revealed that the two epitopes on the M protein were highly conserved between the North American-type strains. These Mabs, along with their mapped epitopes, are useful for the development of diagnostic and research tools, including immunofluorescence, ELISA and Western blot.


Asunto(s)
Mapeo Epitopo , Síndrome Respiratorio y de la Reproducción Porcina/virología , Virus del Síndrome Respiratorio y Reproductivo Porcino/inmunología , Proteínas de la Matriz Viral/química , Proteínas de la Matriz Viral/inmunología , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Antivirales/inmunología , Femenino , Ratones , Ratones Endogámicos BALB C , Datos de Secuencia Molecular , América del Norte , Virus del Síndrome Respiratorio y Reproductivo Porcino/química , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Porcinos , Proteínas de la Matriz Viral/genética
9.
Front Vet Sci ; 11: 1375948, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38751804

RESUMEN

Chaphamaparvovirus carnivoran1 (canine Chaphamaparvovirus, also known as Cachavirus [CachaV]) is a novel parvovirus first reported in dog feces collected from the United States in 2017 and China in 2019. To continuously track its infection and evolution status, 276 canine anal swabs were obtained from pet hospitals in central, northern, and eastern China between 2021 and 2023 and screened via polymerase chain reaction; subsequently, a systematic study was conducted. Of these samples, nine (3.3%) were positive for CachaV. Using polymerase chain reaction, whole genome sequences of the nine CachaV-positive strains were amplified. The NS1 amino acid sequence identity between CachaV strains from China and other countries was 96.23-99.85%, whereas the VP1 protein sequence identity was 95.83-100%. CHN230521 demonstrated the highest identity for NS1 amino acids (99.85%) and VP1 amino acids (100%) with NWT-W88 and CP-T015. According to the model prediction of CHN220916-VP1 protein, Met64Thr, Thr107Ala, and Phe131Ser mutations may cause tertiary structural changes in VP1 protein. Interestingly, each of the nine CachaV strains harbored the same site mutations in NS1 (Ser252Cys, Gly253Leu, and Gly254Thr). Although no explicit recombination events were predicted, the clustering and branching of the phylogenetic tree were complicated. Based on the evolution trees for VP1 and NS1, the nine CachaV strains identified from 2021 to 2023 were closely related to those identified in gray wolves and cats. This study may be beneficial for evaluating the prevalence of CachaVs in China, thereby understanding the evolution trend of CachaVs.

10.
Int J Biol Macromol ; 260(Pt 1): 129425, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38219937

RESUMEN

Since 2011, PRV has resurged in China and is characterized by a mutated strain with significant alterations in antigenicity and virulence. Therefore, we hypothesized that antibody detection kits based on classic PRV strains may have limitations in detecting PRV variants. For more sensitive antibody detection of PRV variants, two MABs targeting the gB and gE proteins were developed. IFA revealed that these MABs exhibited strong reactivity toward both classic and variant PRV strains. MAB-gE recognizes a novel conserved linear B-cell epitope (41PSAEVWD47), while MAB-gB recognizes a conformational B-cell epitope. The binding of both MABs was effectively inhibited in the PRV-positive pig blood samples. Accordingly, we established blocking-ELISAs to detect anti-PRV gB and gE antibodies, which achieved higher sensitivity than commercial kits. Moreover, the clinical serum samples results of our method and that of IFA were in high agreement, and our test results had a higher coincidence rate than that of a commercial kit. Assessing antibody levels by our methods at various times following immunization and challenge accurately reflected the trend of antibody-level changes and revealed the conversion to positive antibody status before the commercial kit. Our method is crucial for monitoring PRV infections, assessing immune responses, and controlling disease.


Asunto(s)
Herpesvirus Suido 1 , Seudorrabia , Porcinos , Animales , Epítopos de Linfocito B , Anticuerpos Antivirales , Anticuerpos Monoclonales
11.
Porcine Health Manag ; 10(1): 5, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38254191

RESUMEN

BACKGROUND: To investigate the prevalence and evolution of Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) at commercial fattening pig farms, a total of 1397 clinical samples were collected from a single fattening cycle at seven pig farms in five provinces of China from 2020 to 2021. RESULTS: The RT‒PCR results revealed that PRRSV was present on all seven farms, and the percentage of PRRSV-positive individuals was 17.54-53.33%. A total of 344 partial NSP2 gene sequences and 334 complete ORF5 gene sequences were obtained from the positive samples. The statistical results showed that PRRSV-2 was present on all seven commercial fattening farms, and PRRSV-1 was present on only one commercial fattening farm. A total of six PRRSV-2 subtypes were detected, and five of the seven farms had two or more PRRSV-2 subtypes. L1.8 (L1C) PRRSV was the dominant epidemic strain on five of the seven pig farms. Sequence analysis of L1.8 (L1C) PRRSV from different commercial fattening pig farms revealed that its consistency across farms varied substantially. The amino acid alignment results demonstrated that there were 131 aa discontinuous deletions in NSP2 between different L1.8 (L1C) PRRSV strains and that the GP5 mutation in L1.8 (L1C) PRRSV was mainly concentrated in the peptide signal region and T-cell epitopes. Selection pressure analysis of GP5 revealed that the use of the PRRSV MLV vaccine had no significant episodic diversifying effect on L1.8 (L1C) PRRSV. CONCLUSION: PRRSV infection is common at commercial fattening pig farms in China, and the percentage of positive individuals is high. There are multiple PRRSV subtypes of infection at commercial fattening pig farms in China. L1.8 (L1C) is the main circulating PRRSV strain on commercial fattening pig farms. L1.8 (L1C) PRRSV detected at different commercial fattening pig farms exhibited substantial differences in consistency but similar molecular characteristics. The pressure on the GP5 of L1.8 (L1C) PRRSV may not be directly related to the use of the vaccines.

12.
Emerg Infect Dis ; 19(11): 1749-55, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24188614

RESUMEN

The widely used pseudorabies virus (PRV) Bartha-K61 vaccine has played a key role in the eradication of PRV. Since late 2011, however, a disease characterized by neurologic symptoms and a high number of deaths among newborn piglets has occurred among Bartha-K61-vaccinated pigs on many farms in China. Clinical samples from pigs on 15 farms in 6 provinces were examined. The PRV gE gene was detectable by PCR in all samples, and sequence analysis of the gE gene showed that all isolates belonged to a relatively independent cluster and contained 2 amino acid insertions. A PRV (named HeN1) was isolated and caused transitional fever in pigs. In protection assays, Bartha-K61 vaccine provided 100% protection against lethal challenge with SC (a classical PRV) but only 50% protection against 4 challenges with strain HeN1. The findings suggest that Bartha-K61 vaccine does not provide effective protection against PRV HeN1 infection.


Asunto(s)
Herpesvirus Suido 1/genética , Herpesvirus Suido 1/inmunología , Vacunas contra la Seudorrabia/inmunología , Seudorrabia/inmunología , Seudorrabia/prevención & control , Enfermedades de los Porcinos , Animales , Anticuerpos Antivirales/inmunología , China , Herpesvirus Suido 1/aislamiento & purificación , Pruebas de Neutralización , Filogenia , Porcinos , Vacunación , Proteínas del Envoltorio Viral/genética
13.
Front Microbiol ; 14: 1159590, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37180243

RESUMEN

The swine pathogens porcine reproductive and respiratory syndrome virus (PRRSV) and Streptococcus suis have both been reported to cause damage to the immune organs. Inguinal lymph node (ILN) injury has been reported in PRRSV-infected pigs with secondary S. suis infection, but not much is known about the mechanism. In this study, secondary S. suis infection after highly pathogenic (HP)-PRRSV infection caused more severe clinical symptoms, mortality, and ILN lesions. Histopathological lesions were seen in ILNs with a marked decrease in lymphocyte numbers. Terminal deoxynucleotidyl transferase (TdT)-mediated de-oxyuridine triphosphate (dUTP)-biotin nick end-labeling (TUNEL) assays revealed that HP-PRRSV strain HuN4 alone induced ILN apoptosis, but dual-infection with S. suis strain BM0806 induced greater levels of apoptosis. Besides, we found that some HP-PRRSV-infected cells underwent apoptosis. Furthermore, anti-caspase-3 antibody staining confirmed that ILN apoptosis was mainly induced by a caspase-dependent pathway. Pyroptosis was also observed in HP-PRRSV-infected cells, and there was more pyroptosis in piglets infected with HP-PRRSV alone compared with those with secondary S. suis infection, and HP-PRRSV-infected cells underwent pyroptosis. Altogether, this is the first report to identify pyroptosis in ILNs and which signaling pathway is related to ILN apoptosis in single or dual-infected piglets. These results contribute to a better understanding of the pathogenic mechanisms during secondary S. suis infection.

14.
Vaccines (Basel) ; 11(8)2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37631917

RESUMEN

NADC34-like porcine reproductive and respiratory syndrome virus (PRRSV) strains were first detected in China in 2017 and became major circulating strains in 2021. Our previous study showed that the live-attenuated vaccine candidate SD-R strain could provide broad cross-protection against different NADC30-like PRRSVs (sublineage 1.8). However, the protective effect of SD-R against NADC34-like PRRSV is unclear. Here, a novel NADC34-like PRRSV, LNTZJ1341-2012, was isolated from a pig farm experiencing disease in 2020. Sequence analysis revealed that LNTZJ1341-2012 belonged to PRRSV-2 sublineage 1.5, exhibited the same Nsp2 amino-acid deletion characteristics as IA/2014/NADC34, and had not recombined with other strains. Additionally, a good challenge model was established to evaluate the protection afforded by the candidate SD-R vaccine against infection with a representative NADC34-like strain (LNTZJ1341-2012). The control piglets in the challenge experiment displayed clinical signs typical of PRRSV infection, including transient fever, high viremia, mild clinical symptoms, and histopathological changes in the lungs and submaxillary lymph nodes. In contrast, SD-R vaccination significantly reduced serum and lung tissue viral loads, and vaccinated piglets did not show any clinical symptoms or histopathological changes. Our results demonstrated that LNTZJ1341-2012 is a mildly virulent NADC34-like PRRSV and that the live-attenuated vaccine SD-R can prevent the onset of clinical signs upon challenge with the NADC34-like PRRSV LNTZJ1341-2012 strain, indicating that SD-R is a promising vaccine candidate for the swine industry.

15.
Front Microbiol ; 14: 1186322, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37323894

RESUMEN

Porcine reproductive and respiratory syndrome virus (PRRSV) has caused serious economic losses to the pig industry worldwide. During the continuous monitoring of PRRSV, a new PRRSV strain type with novel characteristics was first identified in three different regions of Shandong Province. These strains presented a novel deletion pattern (1 + 8 + 1) in the NSP2 region and belonged to a new branch in sublineage 8.7 based on the ORF5 gene phylogenetic tree. To further study the genomic characteristics of the new-branch PRRSV, we selected a sample from each of the three farms for whole-genome sequencing and sequence analysis. Based on the phylogenetic analysis of the whole genome, these strains formed a new independent branch in sublineage 8.7, which showed a close relationship with HP-PRRSV and intermediate PRRSV according to nucleotide and amino acid homology but displayed a completely different deletion pattern in NSP2. Recombinant analysis showed that these strains presented similar recombination patterns, all of which involved recombination with QYYZ in the ORF3 region. Furthermore, we found that the new-branch PRRSV retained highly consistent nucleotides at positions 117-120 (AGTA) of a quite conserved motif in the 3'-UTR; showed similar deletion patterns in the 5'-UTR, 3'-UTR and NSP2; retained characteristics consistent with intermediate PRRSV and exhibited a gradual evolution trend. The above results showed that the new-branch PRRSV strains may have the same origin and be similar to HP-PPRSV also evolved from intermediate PRRSV, but are distinct strains that evolved simultaneously with HP-PRRSV. They persist in some parts of China through rapid evolution, recombine with other strains and have the potential to become epidemic strains. The monitoring and biological characteristics of these strains should be further studied.

16.
Poult Sci ; 101(7): 101888, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35550999

RESUMEN

Since 2017, outbreaks of gosling astroviruses (GoAstV) causing the major symptoms related to gout in geese have posed a threat to China's poultry industry and caused huge economic losses. In this study, tissue samples from goslings with gout and urate deposition as the main symptoms were taken from 14 goose farms in different regions of China and screened for pathogen infection. The infection rate of GoAstV was 100%, whereas the infection rates of goose parvovirus, reovirus, Tembusu virus, and goose hemorrhagic polyomavirus were 2, 4, 0, and 0%, respectively. In total, 14 GoAstV strains were isolated and their complete genomes were sequenced. Based on the phylogenetic trees, the 14 isolated strains were classified as GoAstV (G-I) and were considered distant from strains belonging to GoAstV (G-II). The multiple sequence alignments indicated a tremendous amount of amino acid mutations in some parts of the encoding proteins of these strains; the main mutations were located in open reading frames (ORFs)-ORF1a and ORF2, such as M533V and F568S in ORF1a and A614T in ORF2. On the other hand, Further, 2 of the 14 GoAstV strains were possibly derived through inter-GoAstV-I recombination. Taken together, these findings indicate that GoAstVs are evolving in a more complex manner and have diverse transmission routes.


Asunto(s)
Infecciones por Astroviridae , Gota , Enfermedades de las Aves de Corral , Animales , Infecciones por Astroviridae/epidemiología , Infecciones por Astroviridae/veterinaria , Pollos/genética , China/epidemiología , Gansos/genética , Heterogeneidad Genética , Genoma Viral , Gota/epidemiología , Gota/genética , Gota/veterinaria , Filogenia
17.
Microbes Infect ; 24(6-7): 104983, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35513233

RESUMEN

Since 2011, the Gyrovirus galga 1 (GyVg1, previously recognized as avian gyrovirus 2) strain has extensively been detected worldwide. The virus has been identified in several species, including chickens, humans, domestic cats, and snakes, especially in China. Therefore, in this study, the presence of GyVg1 was investigated in various zoo animals to determine whether it exists in various species in Nanyang, China. A total of 63 whole blood samples (1 sample from each animal) from 24 animal species were collected from the Nanyang Zoo. Eight different GyVg1 strains were identified in eight types of animals using polymerase chain reaction, and the full genome of each strain was sequenced. The whole genome of four GyVg1 strains, namely, HN2019-H1, HN2019-T1, HN2019-SD1, and HN2019-L1 identified in hippopotamus (Hippopotamus amphibius), tiger (Panthera tigris), sika deer (Cervus nippon), and lion (Panthera leo), respectively, comprised 2375 nucleotides (nt). The whole genome of the other strains, namely, HN2019-E1, HN2019-S1, HN2019-PF1, and HN2019-P1 identified in egret (Egretta garzetta), silver pheasant (Lophura nycthemera), peafowl (Pavonini), and common pheasants (Phasianus colchicus), respectively, comprised 2376 nt. Subsequently, a phylogenetic tree was constructed based on the 8 whole-genome sequence strains and 29 reference strains. These 37 strains were grouped into two major branches, group A and group B, and the 8 strains identified in this study were placed in group A. An analysis of the amino acids encoded by three open reading frames revealed some mutation sites unique to these eight strains. The substitution occurred at site 110 of viral protein 2 of HN2019-PF1, which is located in the highly conserved phosphatase motif WX7HX3CXCX5H (95-115aa). Recombination analysis revealed that, all these viral sequences were obtained as a result of recombination among the three GyVg1 strains (JL1511 and GS1512 from chickens and 17CC0810 from cat) from China and two strains (G17 from ferret of Hungary and RS-BR-15-2S from chicken of Brazil) from other countries. These findings indicate the complex evolution of GyVg1. Nevertheless, its transmission across the hosts is worth exploring.


Asunto(s)
Ciervos , Gyrovirus , Aminoácidos/genética , Animales , Gatos , Pollos , China , Ciervos/genética , Hurones/genética , Genoma Viral , Gyrovirus/genética , Humanos , Nucleótidos , Monoéster Fosfórico Hidrolasas/genética , Filogenia , Proteínas Virales/genética
18.
Front Vet Sci ; 9: 945381, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35847645

RESUMEN

In the last decade, the emergence of QYYZ-like porcine reproductive and respiratory syndrome virus (PRRSV) has attracted increasing attention due to the high incidence of PRRSV mutation and recombination. However, the endemic status and genomic characteristics of the QYYZ-like strains are unclear. From 2018 to October 2021, 24 QYYZ-like PRRSV isolates were obtained from 787 PRRSV-positive clinical samples. Only one QYYZ-like positive sample was from a northern province, and the rest were from central and southern provinces. We selected 9 samples for whole-genome sequencing, revealing genome lengths of 15,008-15,316 nt. We retrieved all the available whole-genome sequences of QYYZ-like PRRSVs isolated in China from 2010 to 2021 (n = 28) from GenBank and analyzed them together with the new whole-genome sequences (n = 9). Phylogenetic tree analysis based on the ORF5 gene showed that all QYYZ-like PRRSV strains belonged to sublineage 3.5 but were clustered into three lineages (sublineage 1.8, sublineage 3.5, and sublineage 8.7) based on whole-genome sequences. Genomic sequence alignment showed that QYYZ-like strains, have characteristic amino acids insertions or deletions in the Nsp2 region (same as NADC30, JXA1 and QYYZ) and that thirteen strains also had additional amino acid deletions, mostly between 468 and 518 aa. Moreover, QYYZ-like strains (sublineage 3.5) have seven identical characteristic amino acid mutations in ORF5. Recombination analysis revealed that almost all QYYZ-like complete genome sequences (36/37) were products of recombination and mainly provided structural protein fragments (GP2-N) for the recombinant strains. Overall, QYYZ-like strains were mainly prevalent in central and southern China from 2018 to 2021, and these strains provided recombinant fragments in the PRRSV epidemic in China.

19.
Front Microbiol ; 13: 835040, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35237251

RESUMEN

In recent years, Seneca Valley virus (SVV) as a newly identified pathogen of porcine vesicular disease spread quickly and has posed a potential threat to the swine industry in several countries resulting in economic losses. Considering the evolution of SVV, attention should be given to controlling SVV epidemics. So far there are no commercial vaccines or drugs available to combat SVV. Therefore, development of strategies for preventing and controlling SVV infection should be taken into account. In the current study, we evaluated whether the CRISPR-Cas13d system could be used as a powerful tool against SVV infection. Besides, selected crRNAs showed different capacity against SVV infection. Our study suggests the CRISPR-Cas13d system significantly inhibited SVV replication and exhibited potent anti-SVV activity. This knowledge may provide a novel alternative strategy to control epidemics of SVV in the future.

20.
Transbound Emerg Dis ; 69(5): e3215-e3224, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35182461

RESUMEN

NADC34-like porcine reproductive and respiratory syndrome virus (PRRSV) strains were first detected in China in 2017, with epidemic potential. In this study, the phylogenetic, epidemic, and recombinant properties of NADC34-like PRRSV in China were evaluated comprehensively. From 2020 to October 2021, 82 NADC34-like PRRSV isolates were obtained from 433 PRRSV-positive clinical samples. These strains accounted for 11.5% and 28.6% of positives in 2020 and 2021, respectively, and have spread to eight provinces. We selected 15 samples for whole-genome sequencing, revealing genome lengths of 15,009-15,113 nt. Phylogenetic analysis revealed that Chinese NADC34-like strains cluster with American sublineage 1.5 strains and do not form an independent branch. Recombination analysis revealed that six of fifteen complete genome sequences were derived from recombination between NADC34-like and NADC30-like or HP-PRRSV; all of the strains recombined with local strains in China, exhibiting a complex recombination pattern. Partial Nsp2 sequence alignment showed that nine of fifteen isolates had a 100 aa continuous deletion (similar to that in IA/2014/NADC34); other isolates had a 131 aa discontinuous deletion (similar to that in NADC30). Five of them also had additional amino acid deletions, all of which are reported for the first time here. In the last 2 years, NADC34-like PRRSV has become one of the main epidemic strains in some areas of China; it has changed significantly, its homology has decreased significantly, and it has undergone complex recombination with local Chinese strains. These results are of great significance for understanding the current epidemic situation of PRRSV in China.


Asunto(s)
Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Enfermedades de los Porcinos , Aminoácidos , Animales , China/epidemiología , Variación Genética , Genoma Viral , Filogenia , Síndrome Respiratorio y de la Reproducción Porcina/epidemiología , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Recombinación Genética , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA