Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Cell ; 134(5): 877-86, 2008 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-18691744

RESUMEN

Tissue culture of immortal cell strains from diseased patients is an invaluable resource for medical research but is largely limited to tumor cell lines or transformed derivatives of native tissues. Here we describe the generation of induced pluripotent stem (iPS) cells from patients with a variety of genetic diseases with either Mendelian or complex inheritance; these diseases include adenosine deaminase deficiency-related severe combined immunodeficiency (ADA-SCID), Shwachman-Bodian-Diamond syndrome (SBDS), Gaucher disease (GD) type III, Duchenne (DMD) and Becker muscular dystrophy (BMD), Parkinson disease (PD), Huntington disease (HD), juvenile-onset, type 1 diabetes mellitus (JDM), Down syndrome (DS)/trisomy 21, and the carrier state of Lesch-Nyhan syndrome. Such disease-specific stem cells offer an unprecedented opportunity to recapitulate both normal and pathologic human tissue formation in vitro, thereby enabling disease investigation and drug development.


Asunto(s)
Línea Celular , Enfermedades Genéticas Congénitas/patología , Células Madre Pluripotentes/citología , Células de la Médula Ósea/citología , Fibroblastos/citología , Humanos , Cariotipificación , Células Madre Mesenquimatosas/citología , Mutación
2.
Nature ; 525(7570): 469-78, 2015 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-26399828

RESUMEN

Stem cells self-renew and generate specialized progeny through differentiation, but vary in the range of cells and tissues they generate, a property called developmental potency. Pluripotent stem cells produce all cells of an organism, while multipotent or unipotent stem cells regenerate only specific lineages or tissues. Defining stem-cell potency relies upon functional assays and diagnostic transcriptional, epigenetic and metabolic states. Here we describe functional and molecular hallmarks of pluripotent stem cells, propose a checklist for their evaluation, and illustrate how forensic genomics can validate their provenance.


Asunto(s)
Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Animales , Diferenciación Celular , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Genómica , Humanos
3.
Nat Rev Genet ; 12(4): 266-75, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21386866

RESUMEN

Human genetic studies have revealed the molecular basis of countless monogenic diseases but have been less successful in associating phenotype to genotype in complex multigenic conditions. Pluripotent stem cells (PSCs), which can differentiate into any cell type, offer promise for defining the functional effects of genetic variation. Here, we recount the advantages and practical limitations of coupling PSCs to genome-wide analyses to probe complex genetics and discuss the ability to investigate epigenetic contributions to disease states. We also describe new ways of using mice and mouse embryonic stem cells (ESCs) in tandem with human stem cells to further define genotype-phenotype relationships.


Asunto(s)
Diferenciación Celular , Enfermedad/genética , Células Madre Embrionarias/citología , Células Madre Pluripotentes/citología , Animales , Células Madre Embrionarias/metabolismo , Epigenómica , Genoma , Genotipo , Humanos , Ratones , Fenotipo , Células Madre Pluripotentes/metabolismo
5.
Proc Natl Acad Sci U S A ; 110(2): E141-50, 2013 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-23236128

RESUMEN

During development, the hematopoietic lineage transits through hemogenic endothelium, but the signaling pathways effecting this transition are incompletely characterized. Although the Hedgehog (Hh) pathway is hypothesized to play a role in patterning blood formation, early embryonic lethality of mice lacking Hh signaling precludes such analysis. To determine a role for Hh signaling in patterning of hemogenic endothelium, we assessed the effect of altered Hh signaling in differentiating mouse ES cells, cultured mouse embryos, and developing zebrafish embryos. In differentiating mouse ES cells and mouse yolk sac cultures, addition of Indian Hh ligand increased hematopoietic progenitors, whereas chemical inhibition of Hh signaling reduced hematopoietic progenitors without affecting primitive streak mesoderm formation. In the setting of Hh inhibition, induction of either Notch signaling or overexpression of Stem cell leukemia (Scl)/T-cell acute lymphocytic leukemia protein 1 rescued hemogenic vascular-endothelial cadherin(+) cells and hematopoietic progenitor formation. Together, our results reveal that Scl overexpression is sufficient to rescue the developmental defects caused by blocking the Hh and Notch pathways, and inform our understanding of the embryonic endothelial-to-hematopoietic transition.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular/fisiología , Endotelio/fisiología , Proteínas Hedgehog/metabolismo , Células Madre Hematopoyéticas/citología , Proteínas Proto-Oncogénicas/metabolismo , Receptores Notch/metabolismo , Transducción de Señal/fisiología , Animales , Ensayo de Unidades Formadoras de Colonias , Embrión de Mamíferos , Femenino , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Perfilación de la Expresión Génica , Células Madre Hematopoyéticas/fisiología , Hibridación in Situ , Ratones , Ratones Endogámicos C57BL , Proteína 1 de la Leucemia Linfocítica T Aguda , Pez Cebra
6.
Nature ; 459(7250): 1131-5, 2009 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-19440194

RESUMEN

Biomechanical forces are emerging as critical regulators of embryogenesis, particularly in the developing cardiovascular system. After initiation of the heartbeat in vertebrates, cells lining the ventral aspect of the dorsal aorta, the placental vessels, and the umbilical and vitelline arteries initiate expression of the transcription factor Runx1 (refs 3-5), a master regulator of haematopoiesis, and give rise to haematopoietic cells. It remains unknown whether the biomechanical forces imposed on the vascular wall at this developmental stage act as a determinant of haematopoietic potential. Here, using mouse embryonic stem cells differentiated in vitro, we show that fluid shear stress increases the expression of Runx1 in CD41(+)c-Kit(+) haematopoietic progenitor cells, concomitantly augmenting their haematopoietic colony-forming potential. Moreover, we find that shear stress increases haematopoietic colony-forming potential and expression of haematopoietic markers in the para-aortic splanchnopleura/aorta-gonads-mesonephros of mouse embryos and that abrogation of nitric oxide, a mediator of shear-stress-induced signalling, compromises haematopoietic potential in vitro and in vivo. Collectively, these data reveal a critical role for biomechanical forces in haematopoietic development.


Asunto(s)
Diferenciación Celular , Hematopoyesis/fisiología , Células Madre Hematopoyéticas/citología , Estrés Mecánico , Animales , Aorta/citología , Aorta/embriología , Línea Celular , Células Cultivadas , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Células Madre Embrionarias , Factores Relajantes Endotelio-Dependientes/farmacología , Femenino , Regulación del Desarrollo de la Expresión Génica , Células Madre Hematopoyéticas/efectos de los fármacos , Ratones , Óxido Nítrico/farmacología , Embarazo
7.
Nature ; 459(7250): 1126-30, 2009 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-19458618

RESUMEN

The incidence of many cancer types is significantly reduced in individuals with Down's syndrome, and it is thought that this broad cancer protection is conferred by the increased expression of one or more of the 231 supernumerary genes on the extra copy of chromosome 21. One such gene is Down's syndrome candidate region-1 (DSCR1, also known as RCAN1), which encodes a protein that suppresses vascular endothelial growth factor (VEGF)-mediated angiogenic signalling by the calcineurin pathway. Here we show that DSCR1 is increased in Down's syndrome tissues and in a mouse model of Down's syndrome. Furthermore, we show that the modest increase in expression afforded by a single extra transgenic copy of Dscr1 is sufficient to confer significant suppression of tumour growth in mice, and that such resistance is a consequence of a deficit in tumour angiogenesis arising from suppression of the calcineurin pathway. We also provide evidence that attenuation of calcineurin activity by DSCR1, together with another chromosome 21 gene Dyrk1a, may be sufficient to markedly diminish angiogenesis. These data provide a mechanism for the reduced cancer incidence in Down's syndrome and identify the calcineurin signalling pathway, and its regulators DSCR1 and DYRK1A, as potential therapeutic targets in cancers arising in all individuals.


Asunto(s)
Síndrome de Down/genética , Inositol/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Animales , Calcineurina/metabolismo , Proteínas de Unión al Calcio , Catecoles , Células Cultivadas , Proteínas de Unión al ADN , Modelos Animales de Enfermedad , Síndrome de Down/metabolismo , Células Endoteliales/metabolismo , Dosificación de Gen/genética , Humanos , Ratones , Ratones Transgénicos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Quinasas DyrK
8.
Nature ; 451(7175): 141-6, 2008 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-18157115

RESUMEN

Pluripotency pertains to the cells of early embryos that can generate all of the tissues in the organism. Embryonic stem cells are embryo-derived cell lines that retain pluripotency and represent invaluable tools for research into the mechanisms of tissue formation. Recently, murine fibroblasts have been reprogrammed directly to pluripotency by ectopic expression of four transcription factors (Oct4, Sox2, Klf4 and Myc) to yield induced pluripotent stem (iPS) cells. Using these same factors, we have derived iPS cells from fetal, neonatal and adult human primary cells, including dermal fibroblasts isolated from a skin biopsy of a healthy research subject. Human iPS cells resemble embryonic stem cells in morphology and gene expression and in the capacity to form teratomas in immune-deficient mice. These data demonstrate that defined factors can reprogramme human cells to pluripotency, and establish a method whereby patient-specific cells might be established in culture.


Asunto(s)
Proteínas HMGB/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Factores de Transcripción/metabolismo , Adulto , Animales , Diferenciación Celular , Forma de la Célula , Células Cultivadas , Metilación de ADN , Proteínas de Unión al ADN/genética , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Feto/citología , Fibroblastos/citología , Perfilación de la Expresión Génica , Proteínas HMGB/genética , Proteínas de Homeodominio/genética , Humanos , Recién Nacido , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Ratones , Proteína Homeótica Nanog , Factor 3 de Transcripción de Unión a Octámeros/genética , Células Madre Pluripotentes/trasplante , Regiones Promotoras Genéticas/genética , Proteínas Proto-Oncogénicas c-myc/genética , Factores de Transcripción SOXB1 , Teratoma/patología , Factores de Transcripción/genética , Trasplante Heterólogo
9.
Blood ; 115(17): 3453-62, 2010 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-20089964

RESUMEN

Fanconi anemia (FA) is a genetically heterogeneous, autosomal recessive disorder characterized by pediatric bone marrow failure and congenital anomalies. The effect of FA gene deficiency on hematopoietic development in utero remains poorly described as mouse models of FA do not develop hematopoietic failure and such studies cannot be performed on patients. We have created a human-specific in vitro system to study early hematopoietic development in FA using a lentiviral RNA interference (RNAi) strategy in human embryonic stem cells (hESCs). We show that knockdown of FANCA and FANCD2 in hESCs leads to a reduction in hematopoietic fates and progenitor numbers that can be rescued by FA gene complementation. Our data indicate that hematopoiesis is impaired in FA from the earliest stages of development, suggesting that deficiencies in embryonic hematopoiesis may underlie the progression to bone marrow failure in FA. This work illustrates how hESCs can provide unique insights into human development and further our understanding of genetic disease.


Asunto(s)
Células Madre Embrionarias/metabolismo , Proteína del Grupo de Complementación A de la Anemia de Fanconi , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi , Anemia de Fanconi/metabolismo , Técnicas de Silenciamiento del Gen , Médula Ósea/metabolismo , Médula Ósea/patología , Línea Celular , Células Madre Embrionarias/patología , Anemia de Fanconi/genética , Anemia de Fanconi/patología , Hematopoyesis/genética , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/patología , Humanos , Modelos Biológicos , Interferencia de ARN
10.
J Racial Ethn Health Disparities ; 9(5): 1626-1631, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-34286478

RESUMEN

Racism impacts every aspect of medicine, including the careers and lives of Black physicians. The story of William Augustus Hinton (1883-1959), who invented the Hinton Test for syphilis before becoming the first African American full professor at Harvard University in 1949, offers an instructive perspective on the intersection of interpersonal and systemic racism, and personal determination, just over our historical horizon. Yet there are sobering and instructive lessons throughout this history. Hinton had to navigate prejudice throughout his career. Indeed, while there is much to be inspired by in the telling of Hinton's story, the forms of racism faced by Hinton and his contemporaries remain persisting features of academic medicine. This article focuses on encounters with racism that affect the course of medical careers and scientific innovation. Hinton's story holds important implications for many health professionals in the twenty-first century and provides unique insights into the history and impact of interpersonal and systemic racism alike in academic medicine.


Asunto(s)
Médicos , Racismo , Negro o Afroamericano/historia , Población Negra , Humanos , Racismo/historia
11.
Br Med Bull ; 90: 19-35, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19376801

RESUMEN

INTRODUCTION: Cellular reprogramming is the process of directing mature cells to a primitive state of gene expression. SOURCES OF DATA: Medline searches using the keywords 'pluripotency', 'induce' (and derivatives), and/or 'stem' limited to the years 2006 to the present and other selected literature known to the author. AREAS OF AGREEMENT: Since 2006, there has been a cavalcade of scientific works describing so-called 'direct reprogramming' wherein somatic cells are forced into a state of gene expression very similar to embryonic stem cells. These findings build upon prior research using nuclear transfer (cloning) and even older efforts to understand developmental processes. AREAS OF CONTROVERSY: While already of tremendous research value, it remains to be seen how (if) direct reprogramming methodologies will be refined for clinical use. AREAS TIMELY FOR DEVELOPING RESEARCH: A greater understanding of epigenetics, the process by which different patterns of gene expression are established, maintained and redirected, will continue to be enlightened by advances in cellular reprogramming.


Asunto(s)
Investigación Biomédica/tendencias , Reprogramación Celular/genética , Células Madre Embrionarias/citología , Epigénesis Genética/genética , Regulación del Desarrollo de la Expresión Génica/genética , Células Madre Pluripotentes/citología , Humanos
12.
Stem Cells ; 25(11): 2770-6, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17641248

RESUMEN

Hemogenic endothelium has been identified in embryonic dorsal aorta and in tissues generated from mouse embryonic stem cells, but to date there is no evidence for such bipotential cells in postnatal tissues or blood. Here we identify a cell population from human umbilical cord blood that gives rise to both endothelial cells and hematopoietic progenitors in vitro. Cord blood CD34+/CD133+ cells plated at high density in an endothelial basal medium formed an endothelial monolayer and a nonadherent cell population after 14-21 days. AML-1, a factor required for definitive hematopoiesis, was detected at low levels in adherent cells and at high levels in nonadherent cells. Nonadherent cells coexpressed the endothelial marker vascular endothelial (VE)-cadherin and the hematopoietic marker CD45, whereas adherent cells were composed primarily of VE-cadherin+/CD45- cells and a smaller fraction of VE-cadherin+/CD45+ cells. Both nonadherent and adherent cells produced hematopoietic colonies in methylcellulose, with the adherent cells yielding more colony-forming units (CFU)-GEMM compared with the nonadherent cells. To determine whether the adherent endothelial cells were producing hematopoietic progenitors, single cells from the adherent population were expanded in 96-well dishes for 14 days. The clonal populations expressed VE-cadherin, and a subset expressed AML-1, epsilon-globin, and gamma-globin. Three of 17 clonal cell populations gave rise to early CFU-GEMM hematopoietic progenitors and burst-forming unit-erythroid progenitors. These results provide evidence for hemogenic endothelial cells in human umbilical cord blood.


Asunto(s)
Células Endoteliales/citología , Endotelio Vascular/citología , Sangre Fetal/citología , Células Madre Hematopoyéticas/citología , Células Madre/citología , Separación Celular , Células Cultivadas , Células Endoteliales/fisiología , Endotelio Vascular/fisiología , Sangre Fetal/fisiología , Células Madre Hematopoyéticas/fisiología , Humanos , Células Madre/fisiología
13.
South Med J ; 101(1): 79-82, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18176297

RESUMEN

Recent research points to the future of regenerative medicine. In the past year, a handful of research groups have demonstrated that mature, adult cells could be "reprogrammed" to a very primitive, embryonic state via the forced expression of four genes (Oct-3/4, c-Myc, Klf4, and Sox2). These induced pluripotent cells (or iPS) share features with embryonic stem (ES) cells and generate tissues from all three embryonic germ layers (ectoderm, mesoderm, and endoderm). iPS cells are also capable of the ultimate demonstration of developmental potency, ie, when injected into an early mouse embryo, they contribute to the formation of an entire mouse including its germline. While the reprogramming of human fibroblasts into iPS cells remains to be seen, it is nevertheless difficult to overstate the value that this new research contributes to the field of regenerative medicine and its academic relative developmental biology. Herein, we attempt to bring these monumental works into greater focus and comment on how they work to shape the future of cellular therapies.


Asunto(s)
Células Madre Pluripotentes/trasplante , Linaje de la Célula , Tratamiento Basado en Trasplante de Células y Tejidos/historia , Epigénesis Genética , Predicción , Historia del Siglo XIX , Historia del Siglo XX , Humanos , Factor 4 Similar a Kruppel , Trasplante de Células Madre/tendencias
14.
Stem Cell Rev ; 2(3): 185-201, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-17625255

RESUMEN

The ability of stem cells to self-renew and to replace mature cells is fundamental to ontogeny and tissue regeneration. Stem cells of the adult organism can be categorized as mono-, bi-, or multipotent, based on the number of mature cell types to which they can give rise. In contrast, pluripotent stem cells of the early embryo have the ability to form every cell type of the adult body. Permanent lines of pluripotent stem cells have been derived from preimplantation embryos (embryonic stem cells), fetal primordial germ cells (embryonic germ cells), and malignant teratocarcinomas (embryonal carcinoma cells). Cultured pluripotent stem cells can easily be manipulated genetically, and they can be matured into adult-type stem cells and terminally differentiated cell types in vitro, thereby, providing powerful model systems for the study of mammalian embryogenesis and disease processes. In addition, human embryonic stem cell lines hold great promise for the development of novel regenerative therapies. To fully utilize the potential of these cells, we must first understand the mechanisms that control pluripotent stem cell fate and function. In recent decades, the microenvironment or niche has emerged as particularly critical for stem cell regulation. In this article, we review how pluripotent stem cell signal transduction mechanisms and transcription factor circuitries integrate information provided by the microenvironment. In addition, we consider the potential existence and location of adult pluripotent stem cell niches, based on the notion that a revealing feature indicating the presence of stem cells in a given tissue is the occurrence of tumors whose characteristics reflect the normal developmental potential of the cognate stem cells.


Asunto(s)
Células Madre Pluripotentes/citología , Animales , Células Madre Embrionarias/citología , Matriz Extracelular/metabolismo , Humanos , Sistema de Señalización de MAP Quinasas , Neoplasias de Células Germinales y Embrionarias/patología , Factores de Transcripción/metabolismo
17.
Stem Cell Reports ; 1(1): 5-17, 2013 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-24052937

RESUMEN

Cellular reprogramming was recently "crowned" with the award of the Nobel Prize to two of its groundbreaking researchers, Sir John Gurdon and Shinya Yamanaka. The recent link between reprogramming and stem cells makes this appear almost a new field of research, but its historical roots have actually spanned more than a century. Here, the Nobel Prize in Physiology or Medicine 2012 is placed in its historical context.


Asunto(s)
Reprogramación Celular , Premio Nobel , Investigación con Células Madre/historia , Animales , Historia del Siglo XX , Historia del Siglo XXI , Humanos
18.
Cell Stem Cell ; 12(6): 727-36, 2013 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-23602541

RESUMEN

Shwachman-Diamond syndrome (SDS), a rare autosomal-recessive disorder characterized by exocrine pancreatic insufficiency and hematopoietic dysfunction, is caused by mutations in the Shwachman-Bodian-Diamond syndrome (SBDS) gene. We created human pluripotent stem cell models of SDS through knockdown of SBDS in human embryonic stem cells (hESCs) and generation of induced pluripotent stem cell (iPSC) lines from two patients with SDS. SBDS-deficient hESCs and iPSCs manifest deficits in exocrine pancreatic and hematopoietic differentiation in vitro, enhanced apoptosis, and elevated protease levels in culture supernatants, which could be reversed by restoring SBDS protein expression through transgene rescue or by supplementing culture media with protease inhibitors. Protease-mediated autodigestion provides a mechanistic link between the pancreatic and hematopoietic phenotypes in SDS, highlighting the utility of hESCs and iPSCs in obtaining novel insights into human disease.


Asunto(s)
Enfermedades de la Médula Ósea/patología , Enfermedades de la Médula Ósea/fisiopatología , Insuficiencia Pancreática Exocrina/patología , Insuficiencia Pancreática Exocrina/fisiopatología , Células Madre Pluripotentes Inducidas/patología , Lipomatosis/patología , Lipomatosis/fisiopatología , Páncreas/patología , Páncreas/fisiopatología , Enfermedades de la Médula Ósea/enzimología , Diferenciación Celular , Células Cultivadas , Insuficiencia Pancreática Exocrina/enzimología , Células Madre Hematopoyéticas/enzimología , Células Madre Hematopoyéticas/patología , Humanos , Células Madre Pluripotentes Inducidas/enzimología , Lipomatosis/enzimología , Modelos Biológicos , Páncreas/enzimología , Péptido Hidrolasas/metabolismo , Inhibidores de Proteasas/farmacología , Síndrome de Shwachman-Diamond
20.
Stem Cell Rev Rep ; 8(2): 551-60, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22278132

RESUMEN

Easily accessed via venipuncture, blood has been an object of study for centuries. Direct sampling of the hematopoietic tissues in the bone marrow also presents a rather low bar for biopsy acquisition from living donors, especially when compared to other systems in the body such as the heart or brain. This relatively straight-forward ability to obtain cells from the primary anatomical locations of blood cell genesis and differentiation combines with a reliable transplantation assay and well-described surface markers to make the hematopoietic stem cell (HSC) the best understood of all tissue stem cells. HSC biology has been extensively though incompletely investigated over the years. The field continually refreshes itself as new findings require us to reevaluate our understanding of hematopoiesis. After providing a brief overview of the hematopoietic system in general, this review will touch on recent findings in three areas: (1) the niche, (2) HSC migration, and (3) challenges to the "classical" model of hematopoietic ontogeny.


Asunto(s)
Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Modelos Biológicos , Linaje de la Célula , Movimiento Celular , Terapia Genética , Humanos , Nicho de Células Madre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA