Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33443201

RESUMEN

Osteoarthritis (OA), the leading cause of pain and disability worldwide, disproportionally affects individuals with obesity. The mechanisms by which obesity leads to the onset and progression of OA are unclear due to the complex interactions among the metabolic, biomechanical, and inflammatory factors that accompany increased adiposity. We used a murine preclinical model of lipodystrophy (LD) to examine the direct contribution of adipose tissue to OA. Knee joints of LD mice were protected from spontaneous or posttraumatic OA, on either a chow or high-fat diet, despite similar body weight and the presence of systemic inflammation. These findings indicate that adipose tissue itself plays a critical role in the pathophysiology of OA. Susceptibility to posttraumatic OA was reintroduced into LD mice using implantation of a small adipose tissue depot derived from wild-type animals or mouse embryonic fibroblasts that undergo spontaneous adipogenesis, implicating paracrine signaling from fat, rather than body weight, as a mediator of joint degeneration.


Asunto(s)
Tejido Adiposo/metabolismo , Lipodistrofia/metabolismo , Osteoartritis de la Rodilla/metabolismo , Tejido Adiposo/fisiopatología , Tejido Adiposo/trasplante , Adiposidad , Animales , Peso Corporal , Cartílago/patología , Citocinas/metabolismo , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades/complicaciones , Susceptibilidad a Enfermedades/metabolismo , Femenino , Fibroblastos/metabolismo , Hiperplasia/complicaciones , Inflamación/metabolismo , Lipodistrofia/diagnóstico por imagen , Lipodistrofia/genética , Lipodistrofia/fisiopatología , Locomoción , Masculino , Ratones , Fuerza Muscular , Osteoartritis de la Rodilla/complicaciones , Osteoartritis de la Rodilla/diagnóstico por imagen , Osteoartritis de la Rodilla/prevención & control , Dolor/complicaciones , Comunicación Paracrina/fisiología
2.
J Physiol ; 600(16): 3795-3817, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35844058

RESUMEN

Adipose tissue secretes numerous cytokines (termed 'adipokines') that have known or hypothesized actions on skeletal muscle. The majority of adipokines have been implicated in the pathological link between excess adipose and muscle insulin resistance, but approximately half also have documented in vitro effects on myogenesis and/or hypertrophy. This complexity suggests a potential dual role for adipokines in the regulation of muscle mass in homeostasis and the development of pathology. In this study, we used lipodystrophic 'fat-free' mice to demonstrate that adipose tissue is indeed necessary for the development of normal muscle mass and strength. Fat-free mice had significantly reduced mass (∼15%) and peak contractile tension (∼20%) of fast-twitch muscles, a slowing of contractile dynamics and decreased cross-sectional area of fast twitch fibres compared to wild-type littermates. These deficits in mass and contractile tension were fully rescued by reconstitution of ∼10% of normal adipose mass, indicating that this phenotype is the direct consequence of absent adipose. We then showed that the rescue is solely mediated by the adipokine leptin, as similar reconstitution of adipose from leptin-knockout mice fails to rescue mass or strength. Together, these data indicate that the development of muscle mass and strength in wild-type mice is dependent on adipose-secreted leptin. This finding extends our current understanding of the multiple roles of adipokines in physiology as well as disease pathophysiology to include a critical role for the adipokine leptin in muscle homeostasis. KEY POINTS: Adipose-derived cytokines (adipokines) have long been implicated in the pathogenesis of insulin resistance in obesity but likely have other under-appreciated roles in muscle physiology. Here we use a fat-free mouse to show that adipose tissue is necessary for the normal development of muscle mass and strength. Through add-back of genetically modified adipose tissue we show that leptin is the key adipokine mediating this regulation. This expands our understanding of leptin's role in adipose-muscle signalling to include development and homeostasis and adds the surprising finding that leptin is the sole mediator of the maintenance of muscle mass and strength by adipose tissue.


Asunto(s)
Resistencia a la Insulina , Leptina , Adipoquinas , Tejido Adiposo/fisiología , Animales , Citocinas , Ratones , Músculo Esquelético
3.
Proc Natl Acad Sci U S A ; 113(47): 13522-13527, 2016 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-27821779

RESUMEN

During fetal development, the uterine environment can have effects on offspring bone architecture and integrity that persist into adulthood; however, the biochemical and molecular mechanisms remain unknown. Myostatin is a negative regulator of muscle mass. Parental myostatin deficiency (Mstntm1Sjl/+) increases muscle mass in wild-type offspring, suggesting an intrauterine programming effect. Here, we hypothesized that Mstntm1Sjl/+ dams would also confer increased bone strength. In wild-type offspring, maternal myostatin deficiency altered fetal growth and calvarial collagen content of newborn mice and conferred a lasting impact on bone geometry and biomechanical integrity of offspring at 4 mo of age, the age of peak bone mass. Second, we sought to apply maternal myostatin deficiency to a mouse model with osteogenesis imperfecta (Col1a2oim), a heritable connective tissue disorder caused by abnormalities in the structure and/or synthesis of type I collagen. Femora of male Col1a2oim/+ offspring from natural mating of Mstntm1Sjl/+ dams to Col1a2oim/+sires had a 15% increase in torsional ultimate strength, a 29% increase in tensile strength, and a 24% increase in energy to failure compared with age, sex, and genotype-matched offspring from natural mating of Col1a2oim/+ dams to Col1a2oim/+ sires. Finally, increased bone biomechanical strength of Col1a2oim/+ offspring that had been transferred into Mstntm1Sjl/+ dams as blastocysts demonstrated that the effects of maternal myostatin deficiency were conferred by the postimplantation environment. Thus, targeting the gestational environment, and specifically prenatal myostatin pathways, provides a potential therapeutic window and an approach for treating osteogenesis imperfecta.


Asunto(s)
Fémur/fisiopatología , Miostatina/metabolismo , Osteogénesis Imperfecta/fisiopatología , Animales , Biomarcadores/sangre , Fenómenos Biomecánicos , Peso Corporal , Colágeno/metabolismo , Modelos Animales de Enfermedad , Implantación del Embrión , Femenino , Fémur/patología , Masculino , Ratones Endogámicos C57BL , Contracción Muscular , Miostatina/deficiencia , Osteoblastos/metabolismo , Osteogénesis Imperfecta/sangre , Osteogénesis Imperfecta/embriología , Tibia/patología , Tibia/fisiopatología
4.
Gels ; 9(2)2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36826339

RESUMEN

Biologic therapies have revolutionized treatment options for rheumatoid arthritis (RA) but their continuous administration at high doses may lead to adverse events. Thus, the development of improved drug delivery systems that can sense and respond commensurately to disease flares represents an unmet medical need. Toward this end, we generated induced pluripotent stem cells (iPSCs) that express interleukin-1 receptor antagonist (IL-1Ra, an inhibitor of IL-1) in a feedback-controlled manner driven by the macrophage chemoattractant protein-1 (Ccl2) promoter. Cells were seeded in agarose hydrogel constructs made from 3D printed molds that can be injected subcutaneously via a blunt needle, thus simplifying implantation of the constructs, and the translational potential. We demonstrated that the subcutaneously injected agarose hydrogels containing genome-edited Ccl2-IL1Ra iPSCs showed significant therapeutic efficacy in the K/BxN model of inflammatory arthritis, with nearly complete abolishment of disease severity in the front paws. These implants also exhibited improved implant longevity as compared to the previous studies using 3D woven scaffolds, which require surgical implantation. This minimally invasive cell-based drug delivery strategy may be adapted for the treatment of other autoimmune or chronic diseases, potentially accelerating translation to the clinic.

5.
Sci Rep ; 11(1): 14560, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34267289

RESUMEN

Lipodystrophic mice are protected from cartilage damage following joint injury. This protection can be reversed by the implantation of a small adipose tissue graft. The purpose of this study was to evaluate the relationship between the gut microbiota and knee cartilage damage while controlling for adiposity, high fat diet, and joint injury using lipodystrophic (LD) mice. LD and littermate control (WT) mice were fed a high fat diet, chow diet, or were rescued with fat implantation, then challenged with destabilization of the medial meniscus surgery to induce osteoarthritis (OA). 16S rRNA sequencing was conducted on feces. MaAslin2 was used to determine associations between taxonomic relative abundance and OA severity. While serum LPS levels between groups were similar, synovial fluid LPS levels were increased in both limbs of HFD WT mice compared to all groups, except for fat transplanted animals. The Bacteroidetes:Firmicutes ratio of the gut microbiota was significantly reduced in HFD and OA-rescued animals when compared to chow. Nine novel significant associations were found between gut microbiota taxa and OA severity. These findings suggest the presence of causal relationships the gut microbiome and cartilage health, independent of diet or adiposity, providing potential therapeutic targets through manipulation of the microbiome.


Asunto(s)
Cartílago/fisiopatología , Dieta Alta en Grasa/efectos adversos , Microbioma Gastrointestinal/fisiología , Osteoartritis/microbiología , Adiposidad , Animales , Bacteroidetes/genética , Femenino , Firmicutes/genética , Microbioma Gastrointestinal/genética , Lipodistrofia/microbiología , Lipopolisacáridos/sangre , Masculino , Menisco/cirugía , Ratones Transgénicos , Obesidad/microbiología , Osteoartritis/etiología , ARN Ribosómico 16S/genética , Líquido Sinovial/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA