Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Biochem J ; 471(2): 187-98, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26268557

RESUMEN

Inorganic phosphate is required for a range of cellular processes, such as DNA/RNA synthesis and intracellular signalling. The phosphate starvation-inducible phosphatase activity of Candida glabrata is encoded by the gene CgPMU2 (C. glabrata phosphomutase-like protein). CgPMU2 is part of a three-gene family (∼75% identical) created through gene duplication in the C. glabrata clade; only CgPmu2 is a PHO-regulated broad range acid phosphatase. We identified amino acids that confer broad range phosphatase activity on CgPmu2 by creating fusions of sections of CgPMU2 with CgPMU1, a paralogue with little broad range phosphatase activity. We used site-directed mutagenesis on various fusions to sequentially convert CgPmu1 to CgPmu2. Based on molecular modelling of the Pmu proteins on to a histidine phosphatase crystal structure, clusters of amino acids were found in two distinct regions that were able to confer phosphatase activity. Substitutions in these two regions together conferred broad phosphatase activity on CgPmu1. Interestingly, one change is a histidine adjacent to the active site histidine of CgPmu2 and it exhibits a novel ability to partially replace the conserved active site histidine in CgPmu2. Additionally, a second amino acid change was able to confer nt phosphatase activity to CgPmu1, suggesting single amino acid changes neofunctionalize CgPmu2.


Asunto(s)
Candida glabrata/enzimología , Proteínas Fúngicas/metabolismo , Familia de Multigenes/fisiología , Fosfotransferasas (Fosfomutasas)/metabolismo , Candida glabrata/genética , Proteínas Fúngicas/genética , Mutagénesis Sitio-Dirigida , Fosfotransferasas (Fosfomutasas)/genética
2.
G3 (Bethesda) ; 10(1): 321-331, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31732505

RESUMEN

Regulatory networks often converge on very similar cis sequences to drive transcriptional programs due to constraints on what transcription factors are present. To determine the role of constraint loss on cis element evolution, we examined the recent appearance of a thiamine starvation regulated promoter in Candida glabrata This species lacks the ancestral transcription factor Thi2, but still has the transcription factor Pdc2, which regulates thiamine starvation genes, allowing us to determine the effect of constraint change on a new promoter. We identified two different cis elements in C. glabrata - one present in the evolutionarily recent gene called CgPMU3, and the other element present in the other thiamine (THI) regulated genes. Reciprocal swaps of the cis elements and incorporation of the S. cerevisiae Thi2 transcription factor-binding site into these promoters demonstrate that the two elements are functionally different from one another. Thus, this loss of an imposed constraint on promoter function has generated a novel cis sequence, suggesting that loss of trans constraints can generate a non-convergent pathway with the same output.


Asunto(s)
Candida glabrata/genética , Regulación Fúngica de la Expresión Génica , Regiones Promotoras Genéticas , Tiamina/metabolismo , Candida glabrata/metabolismo , Evolución Molecular , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
PLoS One ; 11(3): e0152042, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27015653

RESUMEN

The phosphorylated form of thiamine (Vitamin B1), thiamine pyrophosphate (TPP) is essential for the metabolism of amino acids and carbohydrates in all organisms. Plants and microorganisms, such as yeast, synthesize thiamine de novo whereas animals do not. The thiamine signal transduction (THI) pathway in Saccharomyces cerevisiae is well characterized. The ~10 genes required for thiamine biosynthesis and uptake are transcriptionally upregulated during thiamine starvation by THI2, THI3, and PDC2. Candida glabrata, a human commensal and opportunistic pathogen, is closely related to S. cerevisiae but is missing half of the biosynthetic pathway, which limits its ability to make thiamine. We investigated the changes to the THI pathway in C. glabrata, confirming orthologous functions. We found that C. glabrata is unable to synthesize the pyrimidine subunit of thiamine as well as the thiamine precursor vitamin B6. In addition, THI2 (the gene encoding a transcription factor) is not present in C. glabrata, indicating a difference in the transcriptional regulation of the pathway. Although the pathway is upregulated by thiamine starvation in both species, C. glabrata appears to upregulate genes involved in thiamine uptake to a greater extent than S. cerevisiae. However, the altered regulation of the THI pathway does not alter the concentration of thiamine and its vitamers in the two species as measured by HPLC. Finally, we demonstrate potential consequences to having a partial decay of the THI biosynthetic and regulatory pathway. When the two species are co-cultured, the presence of thiamine allows C. glabrata to rapidly outcompete S. cerevisiae, while absence of thiamine allows S. cerevisiae to outcompete C. glabrata. This simplification of the THI pathway in C. glabrata suggests its environment provides thiamine and/or its precursors to cells, whereas S. cerevisiae is not as reliant on environmental sources of thiamine.


Asunto(s)
Candida glabrata/metabolismo , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Transducción de Señal , Tiamina/metabolismo , Candida glabrata/genética , Cromatografía Líquida de Alta Presión , Técnicas de Cocultivo , Biología Computacional , Farmacorresistencia Fúngica , Eliminación de Gen , Mutación , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidad de la Especie , Tiamina Pirofosfato/metabolismo , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA