Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Nat Immunol ; 23(8): 1208-1221, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35879451

RESUMEN

T cell antigen-receptor (TCR) signaling controls the development, activation and survival of T cells by involving several layers and numerous mechanisms of gene regulation. N6-methyladenosine (m6A) is the most prevalent messenger RNA modification affecting splicing, translation and stability of transcripts. In the present study, we describe the Wtap protein as essential for m6A methyltransferase complex function and reveal its crucial role in TCR signaling in mouse T cells. Wtap and m6A methyltransferase functions were required for the differentiation of thymocytes, control of activation-induced death of peripheral T cells and prevention of colitis by enabling gut RORγt+ regulatory T cell function. Transcriptome and epitranscriptomic analyses reveal that m6A modification destabilizes Orai1 and Ripk1 mRNAs. Lack of post-transcriptional repression of the encoded proteins correlated with increased store-operated calcium entry activity and diminished survival of T cells with conditional genetic inactivation of Wtap. These findings uncover how m6A modification impacts on TCR signal transduction and determines activation and survival of T cells.


Asunto(s)
Proteínas de Ciclo Celular , Metiltransferasas , Adenosina/análogos & derivados , Animales , Proteínas de Ciclo Celular/metabolismo , Metilación , Metiltransferasas/genética , Ratones , Factores de Empalme de ARN/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal
2.
Nat Immunol ; 21(4): 388-399, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32205878

RESUMEN

Understanding the mechanisms that modulate helper T lymphocyte functions is crucial to decipher normal and pathogenic immune responses in humans. To identify molecular determinants influencing the pathogenicity of T cells, we separated ex vivo-isolated primary human memory T lymphocytes on the basis of their ability to produce high levels of inflammatory cytokines. We found that the inflammatory, cytokine-producing phenotype of memory T lymphocytes was defined by a specific core gene signature and was mechanistically regulated by the constitutive activation of the NF-κB pathway and by the expression of the transcriptional repressor BHLHE40. BHLHE40 attenuated the expression of anti-inflammatory factors, including miR-146a, a negative regulator of NF-κB activation and ZC3H12D, an RNase of the Regnase-1 family able to degrade inflammatory transcripts. Our data reveal a molecular network regulating the proinflammatory phenotype of human memory T lymphocytes, with the potential to contribute to disease.


Asunto(s)
Regulación de la Expresión Génica/inmunología , Memoria Inmunológica/inmunología , Inflamación/inmunología , Línea Celular , Línea Celular Tumoral , Citocinas/inmunología , Células HEK293 , Humanos , Células Jurkat , Activación de Linfocitos/inmunología , FN-kappa B/inmunología , Fenotipo , Linfocitos T/inmunología
3.
Immunol Rev ; 304(1): 51-61, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34523134

RESUMEN

RNA-binding proteins (RBPs) regulate all aspects of the life of mRNA transcripts. They are critically important in regulating immune responses, most notably by restraining excessive inflammation that can potentially lead to tissue damage. RBPs are also crucial for pathogen sensing, for instance for the recognition of viral nucleic acids. Concordant with these central regulatory roles, the dysregulated activity of many RBPs can give rise to disease. The expression and function of RBPs are therefore highly controlled by an elaborate network of transcriptional, post-transcriptional and post-translational mechanisms, including the ability of different RBPs to cross-regulate each other's expression. With an emphasis on macrophages and mast cells, we review current knowledge on the role of selected RBPs that have been shown to directly impact the expression of inflammatory transcripts. By focusing specifically on proteins of the Regnase and ZFP36 family, as well as on factors involved in N6 -methyladenosine (m6 A) deposition and recognition, we discuss mechanism of action, regulatory feedback, and impact of these selected proteins on immune responses. Finally, we include examples of the role of m6 A and RBPs in the recognition of viral RNAs. Overall, we provide a general overview of the impact of selected RBPs on the myeloid compartment, followed by a discussion of outstanding questions and challenges for the future.


Asunto(s)
Inmunidad , Proteínas de Unión al ARN , Metilación , Células Mieloides/metabolismo , ARN , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
4.
Eur J Immunol ; 49(4): 611-625, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30698829

RESUMEN

In mammals, the 5'-methylcytosine (5mC) modification in the genomic DNA contributes to the dynamic control of gene expression. 5mC erasure is required for the activation of developmental programs and occurs either by passive dilution through DNA replication, or by enzymatic oxidation of the methyl mark to 5-hydroxymethylcytosine (5hmC), which can persist as such or undergo further oxidation and enzymatic removal. The relative contribution of each mechanism to epigenetic control in dynamic biological systems still remains a compelling question. To explore this critical issue, we used primary human T lymphocytes, in which two cellular states can be clearly identified, namely quiescent naïve T cells, which are slowly or rarely proliferating, and rapidly proliferating activated T cells. We found that active mechanisms of methylation removal were selectively at work in naïve T cells, while memory T lymphocytes entirely relied on passive, replication-dependent dilution, suggesting that proliferative capacity influences the choice of the preferential demethylation mechanism. Active processes of demethylation appear to be critical in quiescent naïve T lymphocytes for the maintenance of regulatory regions poised for rapid responses to physiological stimuli.


Asunto(s)
5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Diferenciación Celular/inmunología , Activación de Linfocitos/inmunología , Linfocitos T/inmunología , Linfocitos T/metabolismo , Biomarcadores , Diferenciación Celular/genética , Metilación de ADN , Humanos , Inmunofenotipificación , Activación de Linfocitos/genética , Receptores de Antígenos de Linfocitos T/metabolismo
5.
Proc Natl Acad Sci U S A ; 114(8): E1490-E1499, 2017 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-28167789

RESUMEN

DNA methylation and specifically the DNA methyltransferase enzyme DNMT3A are involved in the pathogenesis of a variety of hematological diseases and in regulating the function of immune cells. Although altered DNA methylation patterns and mutations in DNMT3A correlate with mast cell proliferative disorders in humans, the role of DNA methylation in mast cell biology is not understood. By using mast cells lacking Dnmt3a, we found that this enzyme is involved in restraining mast cell responses to acute and chronic stimuli, both in vitro and in vivo. The exacerbated mast cell responses observed in the absence of Dnmt3a were recapitulated or enhanced by treatment with the demethylating agent 5-aza-2'-deoxycytidine as well as by down-modulation of Dnmt1 expression, further supporting the role of DNA methylation in regulating mast cell activation. Mechanistically, these effects were in part mediated by the dysregulated expression of the scaffold protein IQGAP2, which is characterized by the ability to regulate a wide variety of biological processes. Altogether, our data demonstrate that DNMT3A and DNA methylation are key modulators of mast cell responsiveness to acute and chronic stimulation.


Asunto(s)
Proliferación Celular/fisiología , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN/fisiología , Dermatitis por Contacto/inmunología , Epigénesis Genética/fisiología , Mastocitos/fisiología , Anafilaxis Cutánea Pasiva/inmunología , Proteínas Activadoras de ras GTPasa/metabolismo , Animales , Azacitidina/análogos & derivados , Azacitidina/farmacología , Degranulación de la Célula/genética , Proliferación Celular/efectos de los fármacos , Células Cultivadas , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , ADN (Citosina-5-)-Metiltransferasas/genética , Metilación de ADN/efectos de los fármacos , ADN Metiltransferasa 3A , Decitabina , Dermatitis por Contacto/etiología , Modelos Animales de Enfermedad , Regulación hacia Abajo , Ensayo de Inmunoadsorción Enzimática , Femenino , Técnica del Anticuerpo Fluorescente , Inmunoglobulina E/inmunología , Interleucina-3/metabolismo , Mastocitos/efectos de los fármacos , Mastocitosis Sistémica/inmunología , Ratones , Ratones Noqueados , Mutación , Oxazolona/toxicidad , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Proteínas Activadoras de ras GTPasa/genética
6.
J Immunol ; 193(5): 2196-206, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-25063866

RESUMEN

We identified two mast cell subsets characterized by the differential expression of surface CD25 (IL-2Rα) and by different abilities to produce cytokines and to proliferate, both in vitro and in vivo. CD25 can be expressed on the surface of immune cells in the absence of the other chains of the IL-2R, which are indispensable for IL-2 signaling. We show that functional differences between the two mast cell populations were dependent on CD25 itself, which directly modulated proliferation and cytokine responses. These effects were completely independent from IL-2 or the expression of the other chains of the high-affinity IL-2R, indicating an autonomous and previously unappreciated role for CD25 in regulating cell functions. Cells genetically ablated for CD25 completely recapitulated the CD25-negative phenotype and never acquired the properties characteristic of CD25-positive mast cells. Finally, adoptive transfer experiments in the mouse demonstrated a different impact of these populations in models of anaphylaxis and contact sensitivity. Our findings indicate a general role for CD25 in contexts where IL-2 signaling is not involved, and may have important implications for all mast cell-related diseases, as well as in all cell types expressing CD25 independently of its IL-2-related functions.


Asunto(s)
Regulación de la Expresión Génica/inmunología , Subunidad alfa del Receptor de Interleucina-2/inmunología , Interleucina-2/inmunología , Mastocitos/inmunología , Transducción de Señal/inmunología , Células 3T3 , Animales , Regulación de la Expresión Génica/genética , Interleucina-2/genética , Subunidad alfa del Receptor de Interleucina-2/genética , Mastocitos/citología , Ratones , Ratones Noqueados , Transducción de Señal/genética
7.
Eur J Haematol ; 95(6): 566-75, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25688802

RESUMEN

OBJECTIVE: As disruption of epigenetic control is a frequent event in solid tumors and leukemia, we investigated changes in DNA methylation (5mC) and hydroxymethylation (5hmC) in patients with systemic mastocytosis (SM), a rare myeloproliferative disease with a wide spectrum of severity, characterized by the accumulation of mast cells in various organs. METHODS: We measured overall genomic levels of 5hmC and 5mC in patients with SM by dot blot, as well as by quantitative immunofluorescence in samples of cutaneous mastocytosis. RESULTS: Overall 5hmC levels were reduced in all patients with SM, but to a greater extent in the presence of higher D816V mutational load in the KIT oncogene, which affects prognosis and therapeutic options in these patients. Loss of 5hmC was likely due to systemic effects of SM as it did not correlate with overall mast cell burden in these patients, nor it was due to inactivating mutations of TET2 or reduced TET2 expression. CONCLUSIONS: The correlation between SM diagnosis and significantly low 5hmC levels suggests that reduction of 5hmC represents a systemic effect of SM that may be useful for patient stratification and that measurements of 5hmC levels may serve as a better prognostic marker than TET2 mutations.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Mastocitosis Sistémica/genética , Biopsia , Médula Ósea/patología , Línea Celular , Proteínas de Unión al ADN/genética , Dioxigenasas , Femenino , Humanos , Inmunofenotipificación , Masculino , Mastocitos/metabolismo , Mastocitos/patología , Mastocitosis Sistémica/diagnóstico , Mutación , Proteínas Proto-Oncogénicas/genética
8.
Life Sci Alliance ; 7(8)2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38830770

RESUMEN

Post-transcriptional regulation of immune-related transcripts by RNA-binding proteins (RBPs) impacts immune cell responses, including mast cell functionality. Despite their importance in immune regulation, the functional role of most RBPs remains to be understood. By manipulating the expression of specific RBPs in murine mast cells, coupled with mass spectrometry and transcriptomic analyses, we found that the Regnase family of proteins acts as a potent regulator of mast cell physiology. Specifically, Regnase-1 is required to maintain basic cell proliferation and survival, whereas both Regnase-1 and -3 cooperatively regulate the expression of inflammatory transcripts upon activation, with Tnf being a primary target in both human and mouse cells. Furthermore, Regnase-3 directly interacts with Regnase-1 in mast cells and is necessary to restrain Regnase-1 expression through the destabilization of its transcript. Overall, our study identifies protein interactors of endogenously expressed Regnase factors, characterizes the regulatory interplay between Regnase family members in mast cells, and establishes their role in the control of mast cell homeostasis and inflammatory responses.


Asunto(s)
Supervivencia Celular , Citocinas , Mastocitos , Mastocitos/metabolismo , Animales , Ratones , Humanos , Citocinas/metabolismo , Supervivencia Celular/genética , Ribonucleasa Pancreática/metabolismo , Ribonucleasa Pancreática/genética , Ribonucleasas/metabolismo , Ribonucleasas/genética , Regulación de la Expresión Génica , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Ratones Endogámicos C57BL , Proliferación Celular , Inflamación/metabolismo , Factores de Transcripción
9.
Nat Commun ; 14(1): 3862, 2023 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-37386028

RESUMEN

Mast cells are central players in allergy and asthma, and their dysregulated responses lead to reduced quality of life and life-threatening conditions such as anaphylaxis. The RNA modification N6-methyladenosine (m6A) has a prominent impact on immune cell functions, but its role in mast cells remains unexplored. Here, by optimizing tools to genetically manipulate primary mast cells, we reveal that the m6A mRNA methyltransferase complex modulates mast cell proliferation and survival. Depletion of the catalytic component Mettl3 exacerbates effector functions in response to IgE and antigen complexes, both in vitro and in vivo. Mechanistically, deletion of Mettl3 or Mettl14, another component of the methyltransferase complex, lead to the enhanced expression of inflammatory cytokines. By focusing on one of the most affected mRNAs, namely the one encoding the cytokine IL-13, we find that it is methylated in activated mast cells, and that Mettl3 affects its transcript stability in an enzymatic activity-dependent manner, requiring consensus m6A sites in the Il13 3'-untranslated region. Overall, we reveal that the m6A machinery is essential in mast cells to sustain growth and to restrain inflammatory responses.


Asunto(s)
Citocinas , Mastocitos , Citocinas/genética , ARN Mensajero/genética , Calidad de Vida , Interleucina-13/genética , Estabilidad del ARN/genética , Metiltransferasas/genética
10.
Cancer Immunol Res ; 10(12): 1525-1541, 2022 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-36206577

RESUMEN

During melanoma metastasis, tumor cells originating in the skin migrate via lymphatic vessels to the sentinel lymph node (sLN). This process facilitates tumor cell spread across the body. Here, we characterized the innate inflammatory response to melanoma in the metastatic microenvironment of the sLN. We found that macrophages located in the subcapsular sinus (SS) produced protumoral IL1α after recognition of tumoral antigens. Moreover, we confirmed that the elimination of LN macrophages or the administration of an IL1α-specific blocking antibody reduced metastatic spread. To understand the mechanism of action of IL1α in the context of the sLN microenvironment, we applied single-cell RNA sequencing to microdissected metastases obtained from animals treated with the IL1α-specific blocking antibody. Among the different pathways affected, we identified STAT3 as one of the main targets of IL1α signaling in metastatic tumor cells. Moreover, we found that the antitumoral effect of the anti-IL1α was not mediated by lymphocytes because Il1r1 knockout mice did not show significant differences in metastasis growth. Finally, we found a synergistic antimetastatic effect of the combination of IL1α blockade and STAT3 inhibition with stattic, highlighting a new immunotherapy approach to preventing melanoma metastasis.


Asunto(s)
Vasos Linfáticos , Melanoma , Ganglio Linfático Centinela , Neoplasias Cutáneas , Animales , Ratones , Biopsia del Ganglio Linfático Centinela , Ganglio Linfático Centinela/patología , Metástasis Linfática/patología , Melanoma/patología , Macrófagos/metabolismo , Vasos Linfáticos/metabolismo , Vasos Linfáticos/patología , Ganglios Linfáticos/patología , Neoplasias Cutáneas/patología , Microambiente Tumoral
11.
PLoS One ; 16(2): e0247232, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33600503

RESUMEN

The appropriate regulation of T lymphocyte functions is key to achieve protective immune responses, while at the same time limiting the risks of tissue damage and chronic inflammation. Deciphering the mechanisms underpinning T cell responses in humans may therefore be beneficial for a range of infectious and chronic diseases. Recently, the development of methods based on CRISPR-Cas9 gene-editing has greatly expanded the available tool-box for the mechanistic studies of primary human T cell responses. While the deletion of a surface protein has become a relatively straightforward task, as long as an antibody for detection is available, the identification and selection of cells lacking an intracellular protein, a non-coding RNA or a protein for which no antibody is available, remain more problematic. Here, we discuss the options currently available to scientists interested in performing gene-editing in primary human T lymphocytes and we describe the optimization of a workflow for the screening and analysis of lymphocytes following gene-editing with CRISPR-Cas9 based on T cell cloning and T7 endonuclease I cleavage assay.


Asunto(s)
Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Proteínas de la Membrana/genética , Factores de Transcripción/genética , Proteínas de Ciclo Celular/deficiencia , Proteínas de Ciclo Celular/genética , Células Cultivadas , Endorribonucleasas/deficiencia , Endorribonucleasas/genética , Humanos , Proteínas de la Membrana/deficiencia , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo , Receptores de Antígenos de Linfocitos T alfa-beta/deficiencia , Receptores de Antígenos de Linfocitos T alfa-beta/genética , Proteínas de Dominio T Box/deficiencia , Proteínas de Dominio T Box/genética , Linfocitos T/citología , Linfocitos T/metabolismo , Factores de Transcripción/deficiencia
12.
F1000Res ; 6: 2064, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29225792

RESUMEN

Mast cells are tissue-resident, innate immune cells present in most tissues of the body and are important effector and immunomodulatory cells. Differentiated mast cells typically are characterized by the surface expression of the receptors KIT and FcεRI, the latter especially being important for stimulation through IgE antibodies, although these cells have the ability to respond to a wide variety of environmental signals, to which they can variably react by releasing pre-stored or de novo-synthesized mediators or both. Since mast cells terminate their differentiation in their tissue of residence in response to specific microenvironmental cues, each tissue may comprise unique mast cell subtypes, and responses are tailored to the danger signals that are likely to be encountered in each anatomical location. From a transcriptional point of view, these cells therefore must be endowed with epigenetic and transcriptional programs that allow them to maintain a stable identity and at the same time allow sufficient plasticity to adapt to different environmental challenges. In this commentary, we highlight some of the recent findings that advanced our understanding of the transcriptional and epigenetic programs regulating mast cell functions.

13.
Cell Rep ; 15(7): 1566-1579, 2016 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-27160912

RESUMEN

Dioxygenases of the TET family impact genome functions by converting 5-methylcytosine (5mC) in DNA to 5-hydroxymethylcytosine (5hmC). Here, we identified TET2 as a crucial regulator of mast cell differentiation and proliferation. In the absence of TET2, mast cells showed disrupted gene expression and altered genome-wide 5hmC deposition, especially at enhancers and in the proximity of downregulated genes. Impaired differentiation of Tet2-ablated cells could be relieved or further exacerbated by modulating the activity of other TET family members, and mechanistically it could be linked to the dysregulated expression of C/EBP family transcription factors. Conversely, the marked increase in proliferation induced by the loss of TET2 could be rescued exclusively by re-expression of wild-type or catalytically inactive TET2. Our data indicate that, in the absence of TET2, mast cell differentiation is under the control of compensatory mechanisms mediated by other TET family members, while proliferation is strictly dependent on TET2 expression.


Asunto(s)
Biocatálisis , Diferenciación Celular , Proteínas de Unión al ADN/metabolismo , Mastocitos/citología , Mastocitos/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Ácido Ascórbico/farmacología , Biocatálisis/efectos de los fármacos , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Citocinas/metabolismo , Proteínas de Unión al ADN/deficiencia , Dioxigenasas , Eliminación de Gen , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Genoma , Células HEK293 , Humanos , Masculino , Mastocitos/efectos de los fármacos , Proteínas Proto-Oncogénicas/deficiencia , Análisis de Secuencia de ARN , Transcripción Genética
14.
Swiss Med Wkly ; 145: w14191, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26496689

RESUMEN

The risk of developing autoimmune diseases depends on both genetic and environmental factors, with epigenetic mechanisms of regulation potentially translating environmental cues into stable modifications in gene expression. Such stable memory of a functional state has been deciphered into a number of molecular mechanisms that collectively define the epigenetic status of a cell. In recent years, it has become increasingly clear that epigenetic modifications are highly dynamic and are able to adapt to the changing environment, with important impact on the onset and development of a number of diseases. Here, we describe some of the epigenetic mechanisms of regulation of cellular functional states in T lymphocytes, with a particular focus on DNA methylation. We will also discuss current knowledge on the role of epigenetics in autoimmunity and consider open questions in the field.


Asunto(s)
Epigénesis Genética , Linfocitos T/fisiología , Adaptación Fisiológica/genética , Autoinmunidad/genética , Metilación de ADN , Interacción Gen-Ambiente , Humanos
15.
Nat Commun ; 6: 6431, 2015 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-25775432

RESUMEN

T helper (TH) cell polarization during priming is modulated by a number of signals, but whether polarization to a given phenotype also influences recall responses of memory TH cells is relatively unknown. Here we show that miR-181a is selectively induced in both human and mouse naive T cells differentiating into the TH17, but not TH1 or TH2 subset. In human memory TH17 cells, miR-181a regulates responses to cognate antigens through modulation of ERK phosphorylation. By enhancing the signalling cascade from the T-cell receptor, such molecular network reduces the threshold of TH17 cell activation. Moreover, at a late time point, the same network induces a self-regulatory mechanism dependent on ID3, a negative regulator of transcription factors that control RORC expression, thus modulating TH17 activity. Our results demonstrate that the phenotype acquired by TH cells during priming contributes to their threshold of activation to secondary antigenic stimulations, thus influencing memory responses.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Memoria Inmunológica , MicroARNs/metabolismo , Células Th17/citología , Animales , Antígenos/química , Candida albicans/metabolismo , Diferenciación Celular , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , MicroARNs/genética , Fenotipo , Fosforilación , Interferencia de ARN , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA