RESUMEN
Faithful chromosome segregation during mitosis is tightly regulated by opposing activities of Aurora B kinase and protein phosphatase-1 (PP1). PP1 function at kinetochores has been linked to SDS22, but the exact localization of SDS22 and how it affects PP1 are controversial. Here, we confirm that SDS22 is required for PP1 activity, but show that SDS22 does not normally localize to kinetochores. Instead, SDS22 is kept in solution by formation of a ternary complex with PP1 and inhibitor-3 (I3). Depletion of I3 does not affect the amount of PP1 at kinetochores but causes quantitative association of SDS22 with PP1 on KNL1 at the kinetochore. Such accumulation of SDS22 at kinetochores interferes with PP1 activity and inhibits Aurora B threonine-232 dephosphorylation, which leads to increased Aurora B activity in metaphase and persistence in anaphase accompanied with segregation defects. We propose a model in which I3 regulates an SDS22-mediated PP1 activation step in solution that precedes SDS22 dissociation and transfer of PP1 to kinetochores, and which is required for PP1 to efficiently antagonize Aurora B.
Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Cinetocoros/metabolismo , Modelos Biológicos , Proteína Fosfatasa 1/metabolismo , Huso Acromático/metabolismo , Aurora Quinasa B/genética , Aurora Quinasa B/metabolismo , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Fosforilación/fisiología , Proteína Fosfatasa 1/genética , Huso Acromático/genética , Ubiquitina-Proteína LigasasRESUMEN
The serine/threonine protein phosphatase-1 (PP1) complex is a key regulator of the cell cycle. However, the redundancy of PP1 isoforms and the lack of specific inhibitors have hampered studies on the global role of PP1 in cell cycle progression in vertebrates. Here, we show that the overexpression of nuclear inhibitor of PP1 (NIPP1; also known as PPP1R8) in HeLa cells culminated in a prometaphase arrest, associated with severe spindle-formation and chromosome-congression defects. In addition, the spindle assembly checkpoint was activated and checkpoint silencing was hampered. Eventually, most cells either died by apoptosis or formed binucleated cells. The NIPP1-induced mitotic arrest could be explained by the inhibition of PP1 that was titrated away from other mitotic PP1 interactors. Consistent with this notion, the mitotic-arrest phenotype could be rescued by the overexpression of PP1 or the inhibition of the Aurora B kinase, which acts antagonistically to PP1. Finally, we demonstrate that the overexpression of NIPP1 also hampered colony formation and tumor growth in xenograft assays in a PP1-dependent manner. Our data show that the selective inhibition of PP1 can be used to induce cancer cell death through mitotic catastrophe.
Asunto(s)
Endorribonucleasas/metabolismo , Mitosis , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/metabolismo , Neoplasias/enzimología , Fosfoproteínas Fosfatasas/metabolismo , Proteína Fosfatasa 1/antagonistas & inhibidores , Proteínas de Unión al ARN/metabolismo , Muerte Celular , Endorribonucleasas/genética , Células HeLa , Humanos , Proteínas de Neoplasias/genética , Neoplasias/genética , Fosfoproteínas Fosfatasas/genética , Proteína Fosfatasa 1/genética , Proteína Fosfatasa 1/metabolismo , Proteínas de Unión al ARN/genéticaRESUMEN
Human FBP21 (formin-binding protein 21) contains a matrin-type zinc finger and two tandem WW domains. It is a component of the spliceosomes and interacts with several established splicing factors. Here we demonstrate for the first time that FBP21 is an activator of pre-mRNA splicing in vivo and that its splicing activation function and interaction with the splicing factor SIPP1 (splicing factor that interacts with PQBP1 and PP1) are both mediated by the two tandem WW domains of group III. We determined the solution structure of the tandem WW domains of FBP21 and found that the WW domains recognize peptide ligands containing either group II (PPLP) or group III (PPR) motifs. The binding interfaces involve both the XP and XP2 grooves of the two WW domains. Significantly, the tandem WW domains of FBP21 are connected by a highly flexible region, enabling their simultaneous interaction with two proline-rich motifs of SIPP1. The strong interaction between SIPP1 and FBP21 can be explained by the conjugation of two low affinity interactions with the tandem WW domains. Our study provides a structural basis for understanding the molecular mechanism underlying the functional implication of FBP21 and the biological specificity of tandem WW domains.
Asunto(s)
Proteínas Portadoras/química , Proteínas Nucleares/química , ARN Mensajero/química , Empalme Alternativo , Secuencia de Aminoácidos , Encéfalo/metabolismo , Proteínas Portadoras/fisiología , ADN Complementario/metabolismo , Regulación de la Expresión Génica , Glutatión Transferasa/metabolismo , Humanos , Isótopos , Modelos Genéticos , Datos de Secuencia Molecular , Proteínas Nucleares/fisiología , Conformación Proteica , Empalme del ARN , Proteínas de Unión al ARN , Proteínas Recombinantes/químicaRESUMEN
PQBP1, for polyglutamine tract-binding protein-1, has been linked to progressive neurodegenerative diseases, such as spinocerebellar ataxia, that are caused by the expansion of a polyglutamine repeat in a key regulatory protein. The overexpression of PQBP1 results in the formation of nuclear inclusions, reminiscent of the protein aggregates that are detected in polyglutamine diseases. We show here that the occurrence of PQBP1-induced nuclear inclusions is dramatically increased by the co-expression of the pre-mRNA splicing factor SIPP1, a protein ligand of PQBP1. These nuclear inclusions did not co-localise with nuclear structures such as nucleoli, coiled bodies, PML bodies, speckles and stress bodies, and were not associated with (in)active chromatin or with nucleic acids. Site-directed mutagenesis showed that the facilitation in the formation of the nuclear inclusions required multiple independent interaction sites between SIPP1 and PQBP1. Moreover, the nuclear inclusions were highly dynamic and their formation did not require energy. Our data suggest that the SIPP1-PQBP1-induced nuclear inclusions are distinct from the protein aggregates that are associated with polyglutamine diseases and represent dynamic nucleoplasmic heteropolymers of SIPP1 and PQBP1.
Asunto(s)
Proteínas Portadoras/metabolismo , Cuerpos de Inclusión Intranucleares/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Proteínas Nucleares/metabolismo , Animales , Células COS , Proteínas Portadoras/biosíntesis , Línea Celular Tumoral , Chlorocebus aethiops , Proteínas de Unión al ADN/biosíntesis , Proteínas de Unión al ADN/metabolismo , Células HeLa , Humanos , Inmunohistoquímica , Cuerpos de Inclusión Intranucleares/patología , Ratones , Microscopía Confocal , Microscopía Fluorescente , Enfermedades Neurodegenerativas/patología , Proteínas Nucleares/biosíntesis , Estructura Terciaria de Proteína , Factores de Empalme de ARNAsunto(s)
Diseño de Fármacos , Osteosarcoma/tratamiento farmacológico , Péptidos/farmacología , Proteína Fosfatasa 1/metabolismo , Secuencia de Aminoácidos , Línea Celular Tumoral , Permeabilidad de la Membrana Celular , Activadores de Enzimas/farmacología , Humanos , Microscopía Confocal , Modelos Moleculares , Datos de Secuencia MolecularRESUMEN
The biotin identification (BioID) protocol uses a mutant of the biotin ligase BirA (BirA*) fused to a protein-of-interest to biotinylate proximate proteins in intact cells. Here, we show that two inactive halves of BirA* separately fused to a catalytic and regulatory subunit of protein phosphatase PP1 reconstitute a functional BirA* enzyme upon heterodimerization of the phosphatase subunits. We also demonstrate that this BirA* fragment complementation approach, termed split-BioID, can be used to screen for substrates and other protein interactors of PP1 holoenzymes. Split-BioID is a novel and versatile tool for the identification of (transient) interactors of protein dimers.
Asunto(s)
Bioensayo/métodos , Dimerización , Mapeo de Interacción de Proteínas , Biotinilación , Prueba de Complementación Genética , Células HEK293 , Humanos , Reproducibilidad de los ResultadosRESUMEN
Control of mRNA levels, a fundamental aspect in the regulation of gene expression, is achieved through a balance between mRNA synthesis and decay. E26-related gene (Erg) proteins are canonical transcription factors whose previously described functions are confined to the control of mRNA synthesis. Here, we report that ERG also regulates gene expression by affecting mRNA stability and identify the molecular mechanisms underlying this function in human cells. ERG is recruited to mRNAs via interaction with the RNA-binding protein RBPMS, and it promotes mRNA decay by binding CNOT2, a component of the CCR4-NOT deadenylation complex. Transcriptome-wide mRNA stability analysis revealed that ERG controls the degradation of a subset of mRNAs highly connected to Aurora signaling, whose decay during S phase is necessary for mitotic progression. Our data indicate that control of gene expression by mammalian transcription factors may follow a more complex scheme than previously anticipated, integrating mRNA synthesis and degradation.
Asunto(s)
Mitosis , Procesamiento Postranscripcional del ARN , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Proteínas Represoras/genética , Aurora Quinasas/genética , Aurora Quinasas/metabolismo , Línea Celular Tumoral , Fibroblastos/citología , Fibroblastos/metabolismo , Células HEK293 , Células HeLa , Humanos , Osteoblastos/citología , Osteoblastos/metabolismo , Proteína Proto-Oncogénica c-fli-1/genética , Proteína Proto-Oncogénica c-fli-1/metabolismo , Estabilidad del ARN , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Represoras/antagonistas & inhibidores , Proteínas Represoras/metabolismo , Transducción de Señal , Regulador Transcripcional ERG/antagonistas & inhibidores , Regulador Transcripcional ERG/genética , Regulador Transcripcional ERG/metabolismoRESUMEN
The ubiquitously expressed protein Ser/Thr phosphatase-1 isoforms PP1alpha, PP1beta and PP1gamma1 are dynamically targeted to distinct, but overlapping cellular compartments by associated proteins. Within the nucleus of HeLa cells, EGFP-tagged PP1gamma1 and PP1beta were predominantly targeted to the nucleoli, while PP1alpha showed a more diffuse distribution. Using PP1 chimaeras and point mutants we show here that a single N-terminal residue, i.e., Gln20 for PP1alpha, Arg19 for PP1beta and Arg20 for PP1gamma1 accounts for their distinct subnuclear distribution. Our data also suggest that the N-terminus of PP1beta and PP1gamma1 harbours an interaction site for one or more nucleolar interactors.
Asunto(s)
Nucléolo Celular/enzimología , Fosfoproteínas Fosfatasas/química , Fosfoproteínas Fosfatasas/metabolismo , Secuencia de Aminoácidos , Proteínas Fluorescentes Verdes/análisis , Proteínas Fluorescentes Verdes/genética , Células HeLa , Humanos , Isoenzimas/análisis , Isoenzimas/genética , Isoenzimas/metabolismo , Datos de Secuencia Molecular , Fosfoproteínas Fosfatasas/genética , Mutación Puntual , Conformación Proteica , Proteína Fosfatasa 1 , Transporte de Proteínas/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismoRESUMEN
RepoMan is a scaffold for signalling by mitotic phosphatases at the chromosomes. During (pro)metaphase, RepoMan-associated protein phosphatases PP1 and PP2A-B56 regulate the chromosome targeting of Aurora-B kinase and RepoMan, respectively. Here we show that this task division is critically dependent on the phosphorylation of RepoMan by protein kinase Cyclin-dependent kinase 1 (Cdk1), which reduces the binding of PP1 but facilitates the recruitment of PP2A-B56. The inactivation of Cdk1 in early anaphase reverses this phosphatase switch, resulting in the accumulation of PP1-RepoMan to a level that is sufficient to catalyse its own chromosome targeting in a PP2A-independent and irreversible manner. Bulk-targeted PP1-RepoMan also inactivates Aurora B and initiates nuclear-envelope reassembly through dephosphorylation-mediated recruitment of Importin ß. Bypassing the Cdk1 regulation of PP1-RepoMan causes the premature dephosphorylation of its mitotic-exit substrates in prometaphase. Hence, the regulation of RepoMan-associated phosphatases by Cdk1 is essential for the timely dephosphorylation of their mitotic substrates.
Asunto(s)
Aurora Quinasa B/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , Quinasas Ciclina-Dependientes/genética , Mitosis/genética , Proteínas Nucleares/metabolismo , Proteína Fosfatasa 1/metabolismo , Proteína Fosfatasa 2/metabolismo , beta Carioferinas/metabolismo , Anafase , Proteína Quinasa CDC2 , Línea Celular Tumoral , Cromosomas/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Técnica del Anticuerpo Fluorescente , Células HEK293 , Células HeLa , Humanos , Microscopía Confocal , Membrana Nuclear/metabolismo , Monoéster Fosfórico Hidrolasas , PrometafaseRESUMEN
The deletion of the protein phosphatase-1 (PP1) regulator known as Nuclear Inhibitor of PP1 (NIPP1) is embryonic lethal during gastrulation, hinting at a key role of PP1-NIPP1 in lineage specification. Consistent with this notion we show here that a mild, stable overexpression of NIPP1 in HeLa cells caused a massive induction of genes of the mesenchymal lineage, in particular smooth/cardiac-muscle and matrix markers. This reprogramming was associated with the formation of actin-based stress fibers and retracting filopodia, and a reduced proliferation potential. The NIPP1-induced mesenchymal transition required functional substrate and PP1-binding domains, suggesting that it involves the selective dephosphorylation of substrates of PP1-NIPP1.
Asunto(s)
Endorribonucleasas/metabolismo , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Genes Relacionados con las Neoplasias , Proteínas de Neoplasias/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas de Unión al ARN/metabolismo , Activación Transcripcional , Sitios de Unión , Biomarcadores/metabolismo , Proliferación Celular , Transdiferenciación Celular , Endorribonucleasas/química , Endorribonucleasas/genética , Células HeLa , Humanos , Ligandos , Mutación , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Fosfoproteínas Fosfatasas/química , Fosfoproteínas Fosfatasas/genética , Fosforilación , Dominios y Motivos de Interacción de Proteínas , Estabilidad Proteica , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismoRESUMEN
Aurora B is the catalytic subunit of the chromosomal passenger complex (CPC), which coordinates mitotic processes through phosphorylation of key regulatory proteins. In prometaphase, the CPC is enriched at the centromeres to regulate the spindle checkpoint and kinetochore-microtubule interactions. Centromeric CPC binds to histone H3 that is phosphorylated at T3 (H3T3ph) by Aurora B-stimulated Haspin. PP1/Repo-Man acts antagonistically to Haspin and dephosphorylates H3T3ph at the chromosome arms but is somehow prevented from causing a net dephosphorylation of centromeric H3T3ph during prometaphase. Here, we show that Aurora B phosphorylates Repo-Man at S893, preventing its recruitment by histones. We also identify PP2A as a mitotic interactor of Repo-Man that dephosphorylates S893 and thereby promotes the targeting of Repo-Man to chromosomes and the dephosphorylation of H3T3ph by PP1. Thus, Repo-Man-associated PP1 and PP2A collaborate to oppose the chromosomal targeting of Aurora B. We propose that the reciprocal feedback regulation of Haspin and Repo-Man by Aurora B generates a robust bistable response that culminates in the centromeric targeting of the CPC during prometaphase.
Asunto(s)
Aurora Quinasa B/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Secuencia de Aminoácidos , Animales , Aurora Quinasa B/antagonistas & inhibidores , Benzamidas/farmacología , Línea Celular Tumoral , Centrómero/metabolismo , Cromosomas/metabolismo , Humanos , Indoles/farmacología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Cinetocoros/metabolismo , Lactamas/farmacología , Ratones , Mitosis , Datos de Secuencia Molecular , Fosforilación , Inhibidores de Proteasoma/farmacología , Unión Proteica , Proteínas Serina-Treonina Quinasas/metabolismo , Quinazolinas/farmacología , Huso Acromático , Sulfonamidas/farmacologíaRESUMEN
Ser/Thr protein phosphatase 1 (PP1) is a single-domain hub protein with nearly 200 validated interactors in vertebrates. PP1-interacting proteins (PIPs) are ubiquitously expressed but show an exceptional diversity in brain, testis and white blood cells. The binding of PIPs is mainly mediated by short motifs that dock to surface grooves of PP1. Although PIPs often contain variants of the same PP1 binding motifs, they differ in the number and combination of docking sites. This molecular-lego strategy for binding to PP1 creates holoenzymes with unique properties. The PP1 binding code can be described as specific, universal, degenerate, nonexclusive and dynamic. PIPs control associated PP1 by interference with substrate recruitment or access to the active site. In addition, some PIPs have a subcellular targeting domain that promotes dephosphorylation by increasing the local concentration of PP1. The diversity of the PP1 interactome and the properties of the PP1 binding code account for the exquisite specificity of PP1 in vivo.
Asunto(s)
Proteínas Portadoras/metabolismo , Mapeo de Interacción de Proteínas/métodos , Proteína Fosfatasa 1/metabolismo , Proteómica/métodos , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Proteínas Portadoras/química , Proteínas Portadoras/clasificación , Humanos , Modelos Moleculares , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteína Fosfatasa 1/químicaRESUMEN
The spindle checkpoint is a mitotic surveillance mechanism that delays anaphase until all sister chromatids are correctly attached to microtubules from opposite poles. Recent studies reveal that protein kinase Aurora B is a key regulator of spindle checkpoint activation whereas protein phosphatase PP1 antagonizes Aurora B and induces checkpoint silencing. Chromosome biorientation stretches the kinetochores and spatially separates centromeric Aurora B from its kinetochore substrates, comprising several PP1-interacting proteins (PIPs). The ensuing dephosphorylation of these PIPs creates docking sites for the bulk recruitment of PP1 to the kinetochores. We propose that this tension-induced targeting of PP1 triggers checkpoint silencing by the dephosphorylation of kinetochore and checkpoint components, including Aurora B substrates. In addition, PP1 also directly inactivates a kinetochore-associated pool of Aurora B and silences checkpoint signaling by opposing the centromeric targeting of Aurora B.
Asunto(s)
Puntos de Control del Ciclo Celular , Proteína Fosfatasa 1/metabolismo , Transducción de Señal , Anafase , Animales , Aurora Quinasa B , Aurora Quinasas , Cromátides/metabolismo , Segregación Cromosómica , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Humanos , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Fosforilación , Proteína Fosfatasa 1/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Huso Acromático/genética , Huso Acromático/metabolismo , Levaduras/citología , Levaduras/enzimología , Levaduras/metabolismoRESUMEN
The transient mitotic histone H3 phosphorylation by various protein kinases regulates chromosome condensation and segregation, but the counteracting phosphatases have been poorly characterized [1-8]. We show here that PP1γ is the major histone H3 phosphatase acting on the mitotically phosphorylated (ph) residues H3T3ph, H3S10ph, H3T11ph, and H3S28ph. In addition, we identify Repo-Man, a chromosome-bound interactor of PP1γ [9], as a selective regulator of H3T3ph and H3T11ph dephosphorylation. Repo-Man promotes H3T11ph dephosphorylation by an indirect mechanism but directly and specifically targets H3T3ph for dephosphorylation by associated PP1γ. The PP1γ/Repo-Man complex opposes the protein kinase Haspin-mediated spreading of H3T3ph to the chromosome arms until metaphase and catalyzes the net dephosphorylation of H3T3ph at the end of mitosis. Consistent with these findings, Repo-Man modulates in a PP1-dependent manner the H3T3ph-regulated chromosomal targeting of Aurora kinase B and its substrate MCAK. Our study defines a novel mechanism by which PP1 counteracts Aurora B.
Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , Segregación Cromosómica/fisiología , Histonas/metabolismo , Mitosis/fisiología , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Neuropéptido Y/metabolismo , Aurora Quinasa B , Aurora Quinasas , Proteínas Portadoras/genética , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Técnicas de Silenciamiento del Gen , Humanos , Procesamiento de Imagen Asistido por Computador , Immunoblotting , Cinesinas/metabolismo , Microscopía Fluorescente , Proteínas Nucleares/genética , Fosforilación , Receptores de Neuropéptido Y/genéticaRESUMEN
Drosophila neuroblasts and mouse radial glial cells can divide asymmetrically to self-renew while producing differentiating daughter cells that contribute to brain growth. Intense research activity in the past few years has started to unveil some of the processes that govern asymmetric division in these two cell types. Here we discuss the case of centrosome asymmetry and the contribution of spindle orientation and non-spindle-related centrosome functions. Although still fragmentary, the emerging picture suggests that both notable parallelisms and striking differences apply.
Asunto(s)
Polaridad Celular/genética , Neuroglía/citología , Neuronas/citología , Células Madre/citología , Animales , Diferenciación Celular/genética , División Celular , Centrosoma/fisiología , Centrosoma/ultraestructura , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Ratones , Neuroglía/metabolismo , Neuronas/metabolismo , Huso Acromático , Células Madre/metabolismoRESUMEN
While the importance of protein kinases for the spatial and temporal control of mitotic events has long been recognized, mitotic phosphatases have only recently come into the limelight. It is now well established that protein phosphatases counteract mitotic kinases, so contributing to the generation of switch-like responses at mitotic stage transitions. In addition, the timely dephosphorylation of mitotic phosphoproteins by tightly regulated phosphatases is required for the assembly and stability of the mitotic spindle, the initiation of anaphase, and exit from mitosis. Mitotic phosphatases also emerge as effectors of the DNA damage and spindle assembly checkpoints. These new findings show that protein phosphatases regulate every step of mitosis and provide novel insights into the dynamic and versatile nature of mitotic phosphoregulation.
Asunto(s)
Mitosis , Fosfoproteínas Fosfatasas/metabolismo , Animales , Proteína Quinasa CDC2/metabolismo , Centrosoma/enzimología , Intercambio de Cromátides Hermanas , Huso Acromático/enzimologíaRESUMEN
The ubiquitous protein Ser/Thr phosphatase-1 (PP1) interacts with dozens of regulatory proteins that are structurally unrelated. However, most of them share a short, degenerate "RVxF"-type docking motif. Using a broad in silico screening based on a stringent definition of the RVxF motif, in combination with a multistep biochemical validation procedure, we have identified 78 novel mammalian PP1 interactors. A global analysis of the validated RVxF-based PP1 interactome not only provided insights into the conserved features of the RVxF motif but also led to the discovery of additional common PP1 binding elements, described as the "SILK" and "MyPhoNE" motifs. In addition to the doubling of the known mammalian PP1 interactome, our data contribute to the design of PP1 interaction networks. Notably, an interaction network linking PP1 interactors discloses a pleiotropic role of PP1 in cell polarity.
Asunto(s)
Mapeo de Interacción de Proteínas/métodos , Proteína Fosfatasa 1/química , Proteína Fosfatasa 1/metabolismo , Animales , Línea Celular , Polaridad Celular , Biología Computacional/métodos , Humanos , Ratones , Dominios y Motivos de Interacción de Proteínas , RatasRESUMEN
Protein Ser/Thr phosphatase-1 (PP1) associates with a host of proteins to form substrate-specific holoenzymes. Sds22 and Inhibitor-3 (I3) are two independently described ancient interactors of PP1. We show here by various approaches that Sds22 and I3 form a heterotrimeric complex with PP1, both in cell lysates and after purification. The stability of the complex depended on functional PP1 interaction sites in Sds22 and I3, indicating that PP1 is sandwiched between Sds22 and I3. Intriguingly, I3 could not be replaced in this complex by another PP1 interactor with the same PP1 binding motif. In vitro, Sds22 and I3 were potent inhibitors of PP1, but with only some substrates. The inhibition by Sds22 could be reproduced with synthetic Sds22 fragments comprising leucine-rich repeats (LRR) 2 and 5. Sds22 and LRR5 also slowly converted PP1 into a conformation that was inactive with all tested substrates. Cell lysates that were prepared under conditions that prevented the Sds22-induced inactivation of PP1 contained a catalytically inactive complex of Sds22, PP1, and I3, indicating that this complex exists in vivo. Therefore, our studies show that a pool of PP1 is complexly controlled by both Sds22 and I3.
Asunto(s)
Inhibidores Enzimáticos/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Animales , Células COS , Catálisis , Núcleo Celular/metabolismo , Chlorocebus aethiops , Citoplasma/metabolismo , Eliminación de Gen , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Inmunoprecipitación , Péptidos y Proteínas de Señalización Intracelular/genética , Cinética , Fosfoproteínas Fosfatasas/antagonistas & inhibidores , Fosfoproteínas Fosfatasas/genética , Unión Proteica , Conformación Proteica , Proteína Fosfatasa 1 , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Transfección , Tripsina/metabolismo , Técnicas del Sistema de Dos Híbridos , Ubiquitina-Proteína LigasasRESUMEN
SIPP1 (splicing factor that interacts with PQBP1 and PP1) is a widely expressed protein of 70 kDa that has been implicated in pre-mRNA splicing. It interacts with protein Ser/Thr phosphatase-1 (PP1) and with the polyglutamine-tract-binding protein 1 (PQBP1), which contributes to the pathogenesis of X-linked mental retardation and neurodegenerative diseases caused by polyglutamine tract expansions. We show here that SIPP1 is a nucleocytoplasmic shuttling protein. Under basal circumstances SIPP1 was largely nuclear, but it accumulated in the cytoplasm following UV- or X-radiation. Nuclear import was mediated by two nuclear localization signals. In addition, SIPP1 could be piggy-back transported to the nucleus with its ligand PQBP1. In the nucleus SIPP1 and PQBP1 formed inclusion bodies similar to those detected in polyglutamine diseases. SIPP1 did not function as a nuclear targeting subunit of PP1 but re-localized nuclear PP1 to storage sites for splicing factors. The C-terminal residues of SIPP1, which do not conform to a classic nuclear export signal, were required for its nuclear export via the CMR-1 pathway. Finally, SIPP1 activated pre-mRNA splicing in intact cells, and the extent of splicing activation correlated with the nuclear concentration of SIPP1. We conclude that SIPP1 is a positive regulator of pre-mRNA splicing that is regulated by nucleocytoplasmic shuttling. These findings also have potential implications for a better understanding of the pathogenesis of X-linked mental retardation and polyglutamine-linked neurodegenerative disorders.
Asunto(s)
Núcleo Celular/metabolismo , Citoplasma/metabolismo , Proteínas/fisiología , Transporte Activo de Núcleo Celular , Empalme Alternativo , Secuencia de Aminoácidos , Animales , Proteínas Portadoras/metabolismo , Línea Celular , Citosol/metabolismo , Proteínas de Unión al ADN , Femenino , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Inmunohistoquímica , Ligandos , Luciferasas/metabolismo , Ratones , Microscopía Confocal , Microscopía Fluorescente , Datos de Secuencia Molecular , Células 3T3 NIH , Enfermedades Neurodegenerativas/metabolismo , Proteínas Nucleares/metabolismo , Péptidos/química , Unión Proteica , Estructura Terciaria de Proteína , Proteínas/química , Empalme del ARN , Factores de Empalme de ARN , ARN Mensajero/metabolismo , Proteínas Recombinantes de Fusión/química , Factores de Tiempo , Rayos Ultravioleta , beta-Galactosidasa/químicaRESUMEN
Transcription of human immunodeficiency virus (HIV)-1 genes is activated by HIV-1 Tat protein, which induces phosphorylation of the C-terminal domain of RNA polymerase-II by CDK9/cyclin T1. We previously showed that Tat-induced HIV-1 transcription is regulated by protein phosphatase-1 (PP1). In the present study we demonstrate that Tat interacts with PP1 and that disruption of this interaction prevents induction of HIV-1 transcription. We show that PP1 interacts with Tat in part through the binding of Val36 and Phe38 of Tat to PP1 and that Tat is involved in the nuclear and subnuclear targeting of PP1. The PP1 binding mutant Tat-V36A/F38A displayed a decreased affinity for PP1 and was a poor activator of HIV-1 transcription. Surprisingly, Tat-Q35R mutant that had a higher affinity for PP1 was also a poor activator of HIV-1 transcription, because strong PP1 binding competed out binding of Tat to CDK9/cyclin T1. Our results suggest that Tat might function as a nuclear regulator of PP1 and that interaction of Tat with PP1 is critical for activation of HIV-1 transcription by Tat.