RESUMEN
Meningioma-1 (MN1) overexpression in AML is associated with poor prognosis, and forced expression of MN1 induces leukemia in mice. We sought to determine how MN1 causes AML. We found that overexpression of MN1 can be induced by translocations that result in hijacking of a downstream enhancer. Structure predictions revealed that the entire MN1 coding frame is disordered. We identified the myeloid progenitor-specific BAF complex as the key interaction partner of MN1. MN1 over-stabilizes BAF on enhancer chromatin, a function directly linked to the presence of a long polyQ-stretch within MN1. BAF over-stabilization at binding sites of transcription factors regulating a hematopoietic stem/progenitor program prevents the developmentally appropriate decommissioning of these enhancers and results in impaired myeloid differentiation and leukemia. Beyond AML, our data detail how the overexpression of a polyQ protein, in the absence of any coding sequence mutation, can be sufficient to cause malignant transformation.
Asunto(s)
Carcinogénesis/genética , ADN Helicasas/genética , Proteínas Intrínsecamente Desordenadas/genética , Leucemia Mieloide Aguda/genética , Proteínas Nucleares/genética , Transactivadores/genética , Factores de Transcripción/genética , Proteínas Supresoras de Tumor/genética , Animales , Secuencia de Bases , Carcinogénesis/metabolismo , Carcinogénesis/patología , Línea Celular Tumoral , Cromatina/genética , Cromatina/metabolismo , Cromatina/patología , ADN Helicasas/metabolismo , Elementos de Facilitación Genéticos , Femenino , Regulación Leucémica de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Proteínas Intrínsecamente Desordenadas/metabolismo , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/mortalidad , Leucemia Mieloide Aguda/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Nucleares/metabolismo , Péptidos/genética , Péptidos/metabolismo , Mapeo de Interacción de Proteínas , Estabilidad Proteica , Transporte de Proteínas , Transducción de Señal , Análisis de Supervivencia , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/metabolismoRESUMEN
Stem cells of all types are characterized by a stable, heritable state permissive of multiple developmental pathways. The past five years have seen remarkable advances in understanding these heritable states and the ways that they are initiated or terminated. Transcription factors that bind directly to DNA and have sufficiency roles have been most easy to investigate and, perhaps for this reason, are most solidly implicated in pluripotency. In addition, large complexes of ATP-dependent chromatin-remodeling and histone-modification enzymes that have specialized functions have also been implicated by genetic studies in initiating and/or maintaining pluripotency or multipotency. Several of these ATP-dependent remodeling complexes play non-redundant roles, and the esBAF complex facilitates reprogramming of induced pluripotent stem cells. The recent finding that virtually all histone modifications can be rapidly reversed and are often highly dynamic has raised new questions about how histone modifications come to play a role in the steady state of pluripotency. Another surprise from genetic studies has been the frequency with which the global effects of mutations in chromatin regulators can be largely reversed by a single target gene. These genetic studies help define the arena for future mechanistic studies that might be helpful to harness pluripotency for therapeutic goals.
Asunto(s)
Ensamble y Desensamble de Cromatina , Células Madre Pluripotentes/citología , Animales , Células Madre Embrionarias/citología , HumanosRESUMEN
In mammals, combinatorial assembly of alternative families of subunits confers functional specificity to adenosine triphosphate (ATP)-dependent SWI/SNF-like Brg/Brm-associated factor (BAF) chromatin remodeling complexes by creating distinct polymorphic surfaces for interaction with regulatory elements and DNA-binding factors. Although redundant in terms of biochemical activity, the core ATPase subunits, BRG/SMARCA4 and BRM/SMARCA2, are functionally distinct and may contribute to complex specificity. Here we show using quantitative proteomics that BAF complexes expressed in leukemia are specifically assembled around the BRG ATPase. Moreover, using a mouse model of acute myeloid leukemia, we demonstrate that BRG is essential for leukemia maintenance, as leukemic cells lacking BRG rapidly undergo cell-cycle arrest and apoptosis. Most importantly, we show that BRG is dispensable for the maintenance of immunophenotypic long-term repopulating hematopoietic stem cells, suggesting that adroit targeting of BRG in leukemia may have potent and specific therapeutic effects.
Asunto(s)
Ensamble y Desensamble de Cromatina , ADN Helicasas/metabolismo , ADN Helicasas/fisiología , Células Madre Hematopoyéticas/patología , Leucemia Mieloide Aguda/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/fisiología , Factores de Transcripción/metabolismo , Factores de Transcripción/fisiología , Animales , Southern Blotting , Cromatografía Liquida , ADN Helicasas/genética , Modelos Animales de Enfermedad , Citometría de Flujo , Células Madre Hematopoyéticas/metabolismo , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Nucleares/genética , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Espectrometría de Masas en Tándem , Factores de Transcripción/genéticaRESUMEN
ATP-dependent SWI/SNF-like BAF chromatin remodeling complexes are emerging as key regulators of embryonic and adult stem cell function. Particularly intriguing are the findings that specialized assemblies of BAF complexes are required for establishing and maintaining pluripotent and multipotent states in cells. However, little is known on the importance of these complexes in normal and leukemic hemopoiesis. Here we provide the first evidence that the actin-related protein BAF53a, a subunit of BAF complexes preferentially expressed in long-term repopulating stem cells, is essential for adult hemopoiesis. Conditional deletion of BAF53a resulted in multilineage BM failure, aplastic anemia, and rapid lethality. These severe hemopoietic defects originate from a proliferative impairment of BM HSCs and progenitors and decreased progenitor survival. Using hemopoietic chimeras, we show that the impaired function of BAF53a-deficient HSCs is cell-autonomous and independent of the BM microenvironment. Altogether, our studies highlight an unsuspected role for BAF chromatin remodeling complexes in the maintenance of HSC and progenitor cell properties.
Asunto(s)
Actinas/genética , Proteínas Cromosómicas no Histona/genética , Proteínas de Unión al ADN/genética , Células Madre Hematopoyéticas/metabolismo , Sistema Hematopoyético/metabolismo , Transcriptoma , Actinas/metabolismo , Anemia Aplásica/genética , Anemia Aplásica/metabolismo , Animales , Apoptosis/genética , Apoptosis/fisiología , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/fisiología , Proteínas de Ciclo Celular/genética , Proliferación Celular , Supervivencia Celular/genética , Supervivencia Celular/fisiología , Células Cultivadas , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/metabolismo , Femenino , Feto , Citometría de Flujo , Regulación del Desarrollo de la Expresión Génica , Células Madre Hematopoyéticas/fisiología , Sistema Hematopoyético/crecimiento & desarrollo , Hígado , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Embarazo , Reacción en Cadena de la Polimerasa de Transcriptasa InversaRESUMEN
Lymphocyte development from murine hematopoietic stem cells (HSCs) entails a loss of self-renewal capacity and a progressive restriction of developmental potential. Previous research from our laboratory suggests that specialized assemblies of ATP-dependent SWI/SNF chromatin-remodeling complexes play lineage-specific roles during murine hematopoiesis. Here, we demonstrate that the Smarcd1 subunit is essential for specification of lymphoid cell fate from multipotent progenitors. Acute deletion of Smarcd1 in murine adult hematopoiesis leads to lymphopenia, characterized by a near-complete absence of early lymphoid progenitors and mature B and T cells, while the myeloid and erythroid lineages remain unaffected. Mechanistically, we demonstrate that Smarcd1 is essential for the coordinated activation of a lymphoid gene signature in murine multipotent progenitors. This is achieved by interacting with the E2a transcription factor at proximal promoters and by regulating the activity of distal enhancers. Globally, these findings identify Smarcd1 as an essential chromatin remodeler that governs lymphoid cell fate.
RESUMEN
The primed epiblast acts as a transitional stage between the relatively homogeneous naïve epiblast and the gastrulating embryo. Its formation entails coordinated changes in regulatory circuits driven by transcription factors and epigenetic modifications. Using a multi-omic approach in human embryonic stem cell models across the spectrum of peri-implantation development, we demonstrate that the transcription factors ZIC2 and ZIC3 have overlapping but essential roles in opening primed-specific enhancers. Together, they are essential to facilitate progression to and maintain primed pluripotency. ZIC2/3 accomplish this by recruiting SWI/SNF to chromatin and loss of ZIC2/3 or degradation of SWI/SNF both prevent enhancer activation. Loss of ZIC2/3 also results in transcriptome changes consistent with perturbed Polycomb activity and a shift towards the expression of genes linked to differentiation towards the mesendoderm. Additionally, we find an intriguing dependency on the transcriptional machinery for sustained recruitment of ZIC2/3 over a subset of primed-hESC specific enhancers. Taken together, ZIC2 and ZIC3 regulate highly dynamic lineage-specific enhancers and collectively act as key regulators of human primed pluripotency.
Asunto(s)
Proteínas Cromosómicas no Histona , Proteínas de Homeodominio , Células Madre Embrionarias Humanas , Proteínas Nucleares , Células Madre Pluripotentes , Factores de Transcripción , Estratos Germinativos/citología , Estratos Germinativos/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Homeodominio/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Cromatina/metabolismo , ADN Helicasas/metabolismo , Elementos de Facilitación Genéticos , Plasticidad de la Célula , Ensamble y Desensamble de Cromatina , Transcripción Genética , Desarrollo EmbrionarioRESUMEN
The ability of hemopoietic stem cells to self-renew and differentiate into downstream lineages is dependent on specialized chromatin environments that establish and maintain stage-specific patterns of gene expression. However, the epigenetic factors responsible for mediating these regulatory events remain poorly defined. Here we provide evidence that BAF45a/PHF10, a subunit of SWI/SNF-like chromatin remodeling complexes, is essential for adult hemopoietic stem cell maintenance and myeloid lineage development. Deletion of BAF45a in the mouse is embryonic lethal. Acute deletion of BAF45a in the adult hemopoietic system causes a dose-dependent decrease in the frequency of long-term repopulating hemopoietic stem cells and committed myeloid progenitors without affecting their rate of proliferation. BAF45a-deficient hemopoietic stem cells and myeloid progenitors are selectively lost from mixed bone marrow chimeras, indicating their impaired function even in an intact microenvironment. Together, these studies suggest that the BAF45a subunit of SWI/SNF-like chromatin remodeling complexes plays nonredundant and specialized roles within the developing hemopoietic tissue.
Asunto(s)
Autorrenovación de las Células , Proteínas Cromosómicas no Histona/metabolismo , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Proteínas de Homeodominio/metabolismo , Animales , Biomarcadores , Diferenciación Celular/genética , Autorrenovación de las Células/genética , Ensamble y Desensamble de Cromatina , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/genética , Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Orden Génico , Genes Letales , Sitios Genéticos , Trasplante de Células Madre Hematopoyéticas , Proteínas de Homeodominio/genética , Ratones , Ratones Noqueados , Complejos Multiproteicos/metabolismo , Células Mieloides/citología , Células Mieloides/metabolismo , Fenotipo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Subunidades de Proteína , Activación Transcripcional , Dedos de ZincRESUMEN
Recent studies suggest that individual subunits of chromatin-remodeling complexes produce biologically specific meaning in different cell types through combinatorial assembly. Here we show that granulocyte development requires SMARCD2, a subunit of ATP-dependent SWI/SNF (BAF) chromatin-remodeling complexes. Smarcd2-deficient mice fail to generate functionally mature neutrophils and eosinophils, a phenotype reminiscent of neutrophil-specific granule deficiency (SGD) in humans, for which loss-of-function mutations in CEBPE (encoding CEBPÉ) have been reported. SMARCD2-containing SWI/SNF complexes are necessary for CEBPÉ transcription factor recruitment to the promoter of neutrophilic secondary granule genes and for granulocyte differentiation. The homologous SMARCD1 protein (63% identical at the amino acid level) cannot replace the role of SMARCD2 in granulocyte development. We find that SMARCD2 functional specificity is conferred by its divergent coiled-coil 1 and SWIB domains. Strikingly, both CEBPE and SMARCD2 loss-of-function mutations identified in patients with SGD abolish the interaction with SWI/SNF and thereby secondary granule gene expression, thus providing a molecular basis for this disease.