Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nucleic Acids Res ; 37(4): 1248-59, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19136467

RESUMEN

Having a well-known history of genome duplication, rice is a good model for studying structural and functional evolution of paleo duplications. Improved sequence alignment criteria were used to characterize 10 major chromosome-to-chromosome duplication relationships associated with 1440 paralogous pairs, covering 47.8% of the rice genome, with 12.6% of genes that are conserved within sister blocks. Using a micro-array experiment, a genome-wide expression map has been produced, in which 2382 genes show significant differences of expression in root, leaf and grain. By integrating both structural (1440 paralogous pairs) and functional information (2382 differentially expressed genes), we identified 115 paralogous gene pairs for which at least one copy is differentially expressed in one of the three tissues. A vast majority of the 115 paralogous gene pairs have been neofunctionalized or subfunctionalized as 88%, 89% and 96% of duplicates, respectively, expressed in grain, leaf and root show distinct expression patterns. On the basis of a Gene Ontology analysis, we have identified and characterized the gene families that have been structurally and functionally preferentially retained in the duplication showing that the vast majority (>85%) of duplicated have been either lost or have been subfunctionalized or neofunctionalized during 50-70 million years of evolution.


Asunto(s)
Evolución Molecular , Duplicación de Gen , Genes de Plantas , Genoma de Planta , Oryza/genética , Poliploidía , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genómica , Análisis de Secuencia por Matrices de Oligonucleótidos , Oryza/metabolismo , Alineación de Secuencia
2.
Plant J ; 59(2): 316-28, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19302419

RESUMEN

The proteins kinases SNF1/AMPK/SnRK1 are a subfamily of serine/threonine kinases that act as metabolite sensors to constantly adapt metabolism to the supply of, and demand for, energy. In the yeast Saccharomyces cerevisiae, the SNF1 complex is a central component of the regulatory response to glucose starvation. AMP activated protein kinase (AMPK) the mammalian homologue of SNF1, plays a central role in the regulation of energy homeostasis at the cellular as well as the whole-body levels. In Arabidopsis thaliana, SnRK1.1 and SnRK1.2 have recently been described as central integrators of a transcription network for stress and energy signalling. In this study, biochemical analysis established SnRK1.1 as the major SnRK1 isoform both in isolated cells and leaves. In order to elucidate the function of SnRK1.1 in Arabidopsis thaliana, transgenic plants over-expressing SnRK1.1 were produced. Genetic, biochemical, physiological and molecular analyses of these plants revealed that SnRK1.1 is implicated in sugar and ABA signalling pathways. Modifications of the starch and soluble sugar content were observed in the 35S:SnRK1.1 transgenic lines. Our studies also revealed modifications of the activity of essential enzymes such as nitrate reductase or ADP-glucose pyrophosphorylase, and of the expression of several sugar-regulated genes, confirming the central role of the protein kinase SnRK1 in the regulation of metabolism.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Metabolismo de los Hidratos de Carbono , Proteínas Serina-Treonina Quinasas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal
3.
Plant Biotechnol J ; 6(9): 855-69, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19548342

RESUMEN

The maize endosperm transcriptome was investigated through cDNA libraries developed at three characteristic stages: (i) lag phase [10 days after pollination (DAP)]; (ii) beginning of storage (14 DAP); and (iii) maximum starch accumulation rate (21 DAP). Expressed sequence tags for 711, 757 and 384 relevant clones, respectively, were obtained and checked manually. The proportion of sequences with no clear function decreased from 35% to 20%, and a large increase in storage protein sequences (i.e. 5% to 38%) was observed from stages (i) to (iii). The remaining major categories included metabolism (11%-13%), transcription-RNA processing-protein synthesis (13%-20%), protein destination (5%-9%), cellular communication (3%-9%) and cell rescue-defence (4%). Good agreement was generally found between category rank in the 10-DAP transcriptome and the recently reported 14-DAP proteome, except that kinases and proteins for RNA processing were not detected in the latter. In the metabolism category, the respiratory pathway transcripts represented the largest proportion (25%-37%), and showed a shift in favour of glycolysis at 21 DAP. At this stage, amino acid metabolism increased to 17%, whereas starch metabolism surprisingly decreased to 7%. A second experiment focused on carbohydrate metabolism by comparing gene expression at three levels (transcripts, proteins and enzyme activities) in relation to substrate or product from 10 to 40 DAP. Here, two distinct patterns were observed: invertases and hexoses were predominant at the beginning, whereas enzyme patterns in the starch pathway, at the three levels, anticipated and paralleled starch accumulation, suggesting that, in most cases, transcriptional control is responsible for the regulation of starch biosynthesis.


Asunto(s)
Perfilación de la Expresión Génica , Proteoma , Almidón/genética , Zea mays/genética , Metabolismo de los Hidratos de Carbono , ADN Complementario/genética , ADN de Plantas/genética , Etiquetas de Secuencia Expresada , Genotipo , Glicósido Hidrolasas/genética , ARN de Planta/genética , Almidón/biosíntesis , Almidón/metabolismo , Transcripción Genética , Zea mays/crecimiento & desarrollo , Zea mays/metabolismo
4.
Plant J ; 36(2): 177-88, 2003 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-14535883

RESUMEN

RNA transcript levels of Arabidopsis plants, infected by the rhizobacterium Pseudomonas thivervalensis (strain MLG45), and axenic control plants were compared using cDNA microarrays representing approximately 14 300 genes. The analysis revealed an increase of defence-related transcripts in the shoots of bacterized plants relative to control (axenic) plants. These modifications of transcript levels were confirmed by physiological experiments. Plants infected with P. thivervalensis were more resistant to subsequent infections by the virulent pathogen P. syringae pv. tomato (strain DC3000) than control plants. In addition, photosynthesis rates were repressed consistently with the reduced growth of plants colonized by P. thivervalensis. These results highlight the value of molecular phenotyping to predict physiological changes.


Asunto(s)
Arabidopsis/genética , Inmunidad Innata/fisiología , Transcripción Genética , Arabidopsis/crecimiento & desarrollo , Secuencia de Bases , Biomasa , Dióxido de Carbono/análisis , Cartilla de ADN , Análisis de Secuencia por Matrices de Oligonucleótidos , Phytophthora/patogenicidad , Enfermedades de las Plantas/microbiología , Reacción en Cadena de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA