RESUMEN
BACKGROUND: The interpretation of large datasets, such as The Cancer Genome Atlas (TCGA), for scientific and research purposes, remains challenging despite their public availability. In this study, we focused on identifying gene expression profiles most relevant to patient prognosis and aimed to develop a method and database to address this issue. To achieve this, we introduced Luo's Optimization Categorization Curve (LOCC), an innovative tool for visualizing and scoring continuous variables against dichotomous outcomes. To demonstrate the efficacy of LOCC using real-world data, we analyzed gene expression profiles and patient data from TCGA hepatocellular carcinoma samples. RESULTS: To showcase LOCC, we demonstrate an optimal cutoff for E2F1 expression in hepatocellular carcinoma, which was subsequently validated in an independent cohort. Compared to ROC curves and their AUC, LOCC offered a superior description of the predictive value of E2F1 expression across various cancer types. The LOCC score, comprised of factors representing significance, range, and impact of the biomarker, facilitated the ranking of all gene expression profiles in hepatocellular carcinoma, aiding in the evaluation and understanding of previously published prognostic gene signatures. We also demonstrate that LOCC does not have the same assumptions required of Cox proportional hazards modeling for accurate analysis. Repeated sampling demonstrated that LOCC scores outperformed ROC's AUC in discriminating predictors from non-predictors. Additionally, gene set enrichment analysis revealed significant associations between certain genes and prognosis, such as E2F target genes and G2M checkpoint with poor prognosis, and bile acid metabolism and oxidative phosphorylation with good prognosis. CONCLUSION: In summary, we present LOCC as a novel visualization tool for the analysis of gene expression in cancer, particularly for understanding and selecting cutoffs. Our findings suggest that LOCC scores, which effectively rank genes based on their prognostic potential, represent a more suitable approach than ROC curves and Cox proportional hazard for prognostic modeling and understanding in cancer gene expression analysis. LOCC holds promise as an invaluable tool for advancing precision medicine and furthering biomarker research. Further research regarding multivariable integration and validation will help LOCC reach its full potential and establish its utility across diverse cancer types and clinical settings.
Asunto(s)
Biomarcadores de Tumor , Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Humanos , Pronóstico , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Perfilación de la Expresión Génica/métodos , Factor de Transcripción E2F1/metabolismo , Factor de Transcripción E2F1/genética , Curva ROCRESUMEN
BACKGROUND: This study sought to evaluate the current services and delivery models of adolescent and young adult oncology (AYAO)-specific programs at NCI-designated Cancer Centers (NCI-CCs). PATIENTS AND METHODS: NCI, academic, and community cancer centers were electronically sent surveys from October to December 2020 and administered via REDCap. RESULTS: Survey responses were received from 50 of 64 (78%) NCI-CCs, primarily completed by pediatric oncologists (53%), adult oncologists (11%), and social workers (11%). Half (51%) reported an existing AYAO program, with most (66%) started within the past 5 years. Although most programs combined medical and pediatric oncology (59%), 24% were embedded within pediatrics alone. Most programs saw patients aged 15 (55%) to 39 years (66%) mainly via outpatient clinic consultation (93%). Most centers reported access to a range of medical oncology and supportive services, but dedicated services specifically for adolescent and young adults (AYAs) were available at a much lower extent, such as social work (98% vs 58%) and psychology (95% vs 54%). Although fertility preservation was offered by all programs (100%), only two-thirds of NCI centers (64%) reported providing sexual health services to AYAs. Most NCI-CCs (98%) were affiliated with a research consortium, and a lesser extent (73%) reported collaboration between adult and pediatric researchers. Nearly two-thirds (60%) reported that AYA oncology care was important/very important to their respective institution and reported providing good/excellent care to AYAs with cancer (59%), but to a lesser extent reported good/excellent research (36%), sexual health (23%), and education of staff (21%). CONCLUSIONS: Results of this first-ever national survey to assess AYAO programs showed that only half of NCI-CCs report having a dedicated AYAO program, and that areas of improvement include staff education, research, and sexual health services for patients.
Asunto(s)
Neoplasias , Humanos , Adulto Joven , Adolescente , Niño , Neoplasias/epidemiología , Neoplasias/terapia , Neoplasias/psicología , Atención a la Salud , Oncología Médica , Encuestas y Cuestionarios , Instituciones OncológicasRESUMEN
Vascular endothelial growth factor (VEGF) has important effects on hematopoietic and immune cells. A link between VEGF expression, tumor progression, and metastasis has been established in various solid tumors; however, the impact of VEGF expression by hematopoietic neoplasias remains unclear. Here, we investigated the role of VEGF in plasma cell neoplasia. Overexpression of VEGF in MOPC 315 tumor cells (MOPCSVm) had no effect on their growth in vitro. However, constitutive ectopic expression of VEGF dramatically reduced tumorigenicity of MOPC 315 when implanted subcutaneously into BALB/c mice. Mice implanted with MOPCSVm effectively rejected tumor grafts and showed strong cytotoxic T lymphocyte (CTL) activity against parental MOPC 315 cells. MOPCSVm implants were not rejected in nude mice, suggesting the process is T-cell-dependent. Adoptive transfer of splenocytes from recipients inoculated with MOPCSVm cells conferred immunity to naïve BALB/c mice, and mice surviving inoculation with MOPCSVm rejected the parental MOPC 315 tumor cells following a second inoculation. Immunohistochemical analysis showed that MOPCSVm induced a massive infiltration of CD3+ cells and MHC class II+ cells in vivo. In addition, exogenous VEGF induced the expression of CCR3 in T cells in vitro. Together, these data are the first to demonstrate that overexpression of VEGF in plasmacytoma inhibits tumor growth and enhances T-cell-mediated antitumor immune response.
Asunto(s)
Plasmacitoma , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Plasmacitoma/genética , Plasmacitoma/patología , Linfocitos T Citotóxicos , Factor A de Crecimiento Endotelial Vascular/genéticaRESUMEN
Successful hematopoietic progenitor cell (HPC) transplant therapy is improved by mobilizing HPCs from the bone marrow niche in donors. Notch receptor-ligand interactions are known to retain HPCs in the bone marrow, and neutralizing antibodies against Notch ligands, Jagged-1 or Delta-like ligand (DLL4), or NOTCH2 receptor potentiates HPC mobilization. Notch-ligand interactions are dependent on posttranslational modification of Notch receptors with O-fucose and are modulated by Fringe-mediated extension of O-fucose moieties. We previously reported that O-fucosylglycans on Notch are required for Notch receptor-ligand engagement controlling hematopoietic stem cell quiescence and retention in the marrow niche. Here, we generated recombinant fragments of NOTCH1 or NOTCH2 extracellular domain carrying the core ligand-binding regions (EGF11-13) either as unmodified forms or as O-fucosylglycan-modified forms. We found that the addition of O-fucose monosaccharide or the Fringe-extended forms of O-fucose to EGF11-13 showed substantial increases in binding to DLL4. Furthermore, the O-fucose and Fringe-extended NOTCH1 EGF11-13 protein displayed much stronger binding to DLL4 than the NOTCH2 counterpart. When assessed in an in vitro 3D osteoblastic niche model, we showed that the Fringe-extended NOTCH1 EGF11-13 fragment effectively released lodged HPC cells with a higher potency than the NOTCH2 blocking antibody. We concluded that O-fucose and Fringe-modified NOTCH1 EGF11-13 protein can be utilized as effective decoys for stem cell niche localized ligands to potentiate HPC egress and improve HPC collection for hematopoietic cell therapy.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Unión al Calcio/metabolismo , Fucosa/metabolismo , Células Madre Hematopoyéticas/metabolismo , Receptor Notch1/metabolismo , Receptor Notch2/metabolismo , Animales , Células CHO , Cricetulus , Células HEK293 , Humanos , Receptor Notch1/genética , Receptor Notch2/genéticaRESUMEN
Molecular intermediates in T-cell activation pathways are crucial targets for the therapy and prevention of graft-versus-host disease (GVHD) following allogeneic hematopoietic cell transplantation (allo-HCT). We recently identified an essential role for cyclin-dependent kinase 5 (Cdk5) in T-cell activation and effector function, but the contribution of Cdk5 activity to the development of GVHD has not been explored. Using an established, preclinical, murine, GVHD model, we reveal that Cdk5 activity is increased in key target organs early after allo-HCT. We then generated chimeric mice (Cdk5+/+C or Cdk5-/-C) using hematopoietic progenitors from either embryonic day 16.5 Cdk5+/+ or Cdk5-/- embryos to enable analyses of the role of Cdk5 in GVHD, as germ line Cdk5 gene deletion is embryonically lethal. The immunophenotype of adult Cdk5-/-C mice is identical to control Cdk5+/+C mice. However, transplantation of donor Cdk5-/-C bone marrow and T cells dramatically reduced the severity of systemic and target organ GVHD. This phenotype is attributed to decreased T-cell migration to secondary lymphoid organs (SLOs), reduced in vivo proliferation within these organs, and fewer cytokine-producing donor T cells during GVHD development. Moreover, these defects in Cdk5-/- T-cell function are associated with altered CCR7 signaling following ligation by CCL19, a receptor:ligand interaction critical for T-cell migration into SLOs. Although Cdk5 activity in donor T cells contributed to graft-versus-tumor effects, pharmacologic inhibition of Cdk5 preserved leukemia-free survival. Collectively, our data implicate Cdk5 in allogeneic T-cell responses after HCT and as an important new target for therapeutic intervention.
Asunto(s)
Quinasa 5 Dependiente de la Ciclina/inmunología , Enfermedad Injerto contra Huésped/inmunología , Trasplante de Células Madre Hematopoyéticas , Activación de Linfocitos/inmunología , Linfocitos T/inmunología , Aloinjertos , Animales , Western Blotting , Quimiotaxis de Leucocito/inmunología , Modelos Animales de Enfermedad , Femenino , Leucemia/inmunología , Leucemia/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Trasplante HomólogoRESUMEN
Celastrol is an anti-inflammatory natural triterpenoid, isolated from the herb Tripterygium wilfordii or thunder god vine. Here, we define mechanisms mediating anti-inflammatory activity of celastrol and demonstrate efficacy of a dietary celastrol supplement for chemoprevention of inflammation-driven carcinogenesis in mice. Dietary celastrol (31.25 ppm in rodent diet from 8 weeks to 25 weeks of age) is well tolerated and protects against LPS-induced acute inflammation in C57BL/6 mice, potently suppressing LPS-induction of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2, Interleukin (IL)-6 and IL-1ß. To test whether dietary celastrol suppresses inflammation-driven colorectal cancer (CRC), we employed a unique model of spontaneous, inflammation-driven CRC in mice harboring a germ line deletion of the p27Kip1 gene and a T cell-specific deletion of Smad4 gene (Smad4co/co;Lck-crep27Kip1-/-or DKO), which develop severe intestinal inflammation and carcinogenesis as early as 3 months of age. Exposure of DKO mice to daily dietary celastrol (12.5 ppm in diet) from 6 weeks of age significantly suppressed development of colitis-associated CRC (CAC). Celastrol chemoprevention of CAC in this new model of intestinal neoplasia was associated with significant suppression of iNOS at 4 months of age, and iNOS, COX-2 and NFκB at 6 months of age, with significant reduction in inflammatory cytokines, IL-6 and IL-1ß. Chemoprevetion of CAC by dietary celastrol was further confirmed in the model of azoxymethane (AOM) plus dextran sodium sulfate (DSS)-induced carcinogenesis in C57BL/6 mice. These data suggest the potential for celastrol as a safe and effective dietary supplement in the chemoprevention of CAC in humans.
Asunto(s)
Antiinflamatorios/farmacología , Carcinogénesis/efectos de los fármacos , Neoplasias Colorrectales/patología , Suplementos Dietéticos , Triterpenos/farmacología , Animales , Carcinógenos/toxicidad , Colitis/complicaciones , Neoplasias Colorrectales/etiología , Masculino , Ratones , Ratones Endogámicos C57BL , Triterpenos PentacíclicosRESUMEN
Aplastic anemia (AA) is a rare disease characterized by immune-mediated suppression of bone marrow (BM) function resulting in progressive pancytopenia. Stem cell transplant and immunosuppressive therapies remain the major treatment choices for AA patients with limited benefit and undesired side effects. Here, we report for the first time the therapeutic utility of Nrf2-induced metabolically reprogrammed tolerogenic dendritic cells (TolDCs) in the suppression of AA in mice. CDDO-DFPA-induced Nrf2 activation resulted in a TolDC phenotype as evidenced by induction of IL-4, IL-10, and TGF-ß and suppression of TNFα, IFN-γ, and IL-12 levels in Nrf2+/+ but not Nrf2-/- DCs. Cellular metabolism holds the key to determining DC immunogenic or tolerogenic cell fate. Although immature and LPS-induced (mature) Nrf2+/+ and Nrf2-/- DCs exhibited similar patterns of oxidative phosphorylation (OXPHOS) and glycolysis, only Nrf2+/+ DCs partially restored OXPHOS and reduced glycolysis during CDDO-DFPA-induced Nrf2 activation. These results were further confirmed by altered glucose uptake and lactate production. We observed significantly enhanced HO-1 and reduced iNOS/NO production in Nrf2+/+ compared to Nrf2-/- DCs, suggesting Nrf2-dependent TolDC induction is linked to suppression of the inhibitory effect of NO on OXPHOS. Furthermore, Nrf2-/- DCs demonstrated higher antigen-specific T cell proliferation. Lastly, TolDC administration improved hematopoiesis and survival in AA murine model, with decreased Th17 and increased Treg cells. Concomitantly, immunohistochemical analysis of AA patient BM biopsies displayed higher DCs, T cells, and iNOS expression accompanied with lower Nrf2 and HO-1 expression when compared to normal subjects. These results provide new insight into the therapeutic utility of metabolically reprogrammed TolDCs by CDDO-DFPA induced Nrf2 signaling in the treatment of AA.
Asunto(s)
Anemia Aplásica/terapia , Reprogramación Celular/inmunología , Células Dendríticas/inmunología , Tolerancia Inmunológica/efectos de los fármacos , Factor 2 Relacionado con NF-E2/inmunología , Ácido Oleanólico/análogos & derivados , Adolescente , Anemia Aplásica/genética , Anemia Aplásica/inmunología , Anemia Aplásica/patología , Animales , Niño , Preescolar , Citocinas/genética , Citocinas/inmunología , Células Dendríticas/citología , Células Dendríticas/efectos de los fármacos , Células Dendríticas/trasplante , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Glucólisis/efectos de los fármacos , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/inmunología , Humanos , Activación de Linfocitos/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 2 Relacionado con NF-E2/deficiencia , Factor 2 Relacionado con NF-E2/genética , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/inmunología , Ácido Oleanólico/síntesis química , Ácido Oleanólico/farmacología , Fosforilación Oxidativa/efectos de los fármacos , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/patología , Células Th17/efectos de los fármacos , Células Th17/inmunología , Células Th17/patología , Adulto JovenRESUMEN
Hepatic stellate cells (HSCs) inhibit T cells, a process that could help the liver to maintain its immunoprivileged status. HSCs secrete latent TGF-ß1, but the detailed mechanisms by which latent TGF-ß1 is activated and whether it plays any role in HSC-mediated T cell suppression remain unclear. Glycoprotein A repetitions predominant (GARP) is a surface marker of activated regulatory T cells. GARP binds latent TGF-ß1 for its activation, which is critical for regulatory T cells to suppress effector T cells; however, it is still unclear whether GARP is present on HSCs and whether it has any impact on HSC function. In this study, we found that TGF-ß1(+/-) HSCs, which produce reduced levels of TGF-ß1, showed decreased potency in inhibiting T cells. We also found that pharmaceutical or genetic inhibition of the TGF-ß1 signaling pathway reduced the T cell-inhibiting activity of HSCs. Additionally, using isolated primary HSCs, we demonstrated that GARP was constitutively expressed on HSCs. Blocking GARP function or knocking down GARP expression significantly impaired the potency of HSCs to suppress the proliferation of and IFN-γ production from activated T cells, suggesting that GARP is important for HSCs to inhibit T cells. These results demonstrate the unexpected presence of GARP on HSCs and its significance in regard to the ability of HSCs to activate latent TGF-ß1 and thereby inhibit T cells. Our study reveals a new mechanism for HSC-mediated immune regulation and potentially for other conditions, such as liver fibrosis, that involve HSC-secreted TGF-ß1.
Asunto(s)
Células Estrelladas Hepáticas/inmunología , Proteínas de la Membrana/metabolismo , Linfocitos T Reguladores/inmunología , Factor de Crecimiento Transformador beta1/metabolismo , Animales , Diferenciación Celular/inmunología , Proliferación Celular , Células Cultivadas , Activación Enzimática , Humanos , Inflamación/inmunología , Interferón gamma/biosíntesis , Hígado/inmunología , Cirrosis Hepática/inmunología , Cirrosis Hepática/patología , Activación de Linfocitos/inmunología , Proteínas de la Membrana/biosíntesis , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Unión Proteica/inmunología , Interferencia de ARN , ARN Interferente Pequeño , Transducción de Señal/inmunologíaRESUMEN
BACKGROUND: Amyloid-ß precursor protein (APP) is a highly conserved single transmembrane protein that has been linked to Alzheimer disease. Recently, the increased expression of APP in multiple types of cancers has been reported where it has significant correlation with the cancer cell proliferation. However, the function of APP in the pathogenesis of breast cancer has not previously been determined. In this study, we studied the pathological role of APP in breast cancer and revealed its potential mechanism. METHODS: The expression level of APP in multiple breast cancer cell lines was measured by Western blot analysis and the breast cancer tissue microarray was utilized to analyze the expression pattern of APP in human patient specimens. To interrogate the functional role of APP in cell growth and apoptosis, the effect of APP knockdown in MDA-MB-231 cells were analyzed. Specifically, multiple signal transduction pathways and functional alterations linked to cell survival and motility were examined in in vivo animal model as well as in vitro cell culture with the manipulation of APP expression. RESULTS: We found that the expression of APP is increased in mouse and human breast cancer cell lines, especially in the cell line possessing higher metastatic potential. Moreover, the analysis of human breast cancer tissues revealed a significant correlation between the level of APP and tumor development. Knockdown of APP (APP-kd) in breast cancer cells caused the retardation of cell growth in vitro and in vivo, with both the induction of p27(kip1) and caspase-3-mediated apoptosis. APP-kd cells also had higher sensitivity to treatment of chemotherapeutic agents, TRAIL and 5-FU. Such anti-tumorigenic effects shown in the APP-kd cells partially came from reduced pro-survival AKT activation in response to IGF-1, leading to activation of key signaling regulators for cell growth, survival, and pro-apoptotic events such as GSK3-ß and FOXO1. Notably, knock-down of APP in metastatic breast cancer cells limited cell migration and invasion ability upon stimulation of IGF-1. CONCLUSION: The present data strongly suggest that the increase of APP expression is causally linked to tumorigenicity as well as invasion of aggressive breast cancer and, therefore, the targeting of APP may be an effective therapy for breast cancer.
Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Movimiento Celular , Precursor de Proteína beta-Amiloide/genética , Animales , Apoptosis/genética , Neoplasias de la Mama/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular , Supervivencia Celular/genética , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Modelos Animales de Enfermedad , Femenino , Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Factor I del Crecimiento Similar a la Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/farmacología , Ratones , Estadificación de Neoplasias , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
Aims: The nuclear factor erythroid 2-related factor 2-Kelch-like ECH-associated protein 1 (NRF2-KEAP1) pathway plays an important role in the cellular response to oxidative stress but may also contribute to metabolic changes and drug resistance in cancer. However, despite its pervasiveness and important role, most of nuclear factor erythroid 2-related factor 2 (NRF2) target genes are defined in context-specific experiments and analysis, making it difficult to translate from one situation to another. Our study investigates whether a core NRF2 gene signature can be derived and used to represent NRF2 activation in various contexts, allowing better reproducibility and understanding of NRF2. Results: We define a core set of 14 upregulated NRF2 target genes from 7 RNA-sequencing datasets that we generated and analyzed. This NRF2 gene signature was validated using analyses of published datasets and gene sets. An NRF2 activity score based on expression of these core target genes correlates with resistance to drugs such as PX-12 and necrosulfonamide but not to paclitaxel or bardoxolone methyl. We validated these findings in our Kelch-like ECH-associated protein 1 (KEAP1) knockout cancer cell lines. Finally, our NRF2 score is prognostic for cancer survival and validated in additional independent cohorts for lung adenocarcinoma and also novel cancer types not associated with NRF2-KEAP1 mutations such as clear cell renal carcinoma, hepatocellular carcinoma, and acute myeloid leukemia. Innovation and Conclusions: These analyses define a core NRF2 gene signature that is robust, versatile, and useful for evaluating NRF2 activity and for predicting drug resistance and cancer prognosis. Using this gene signature, we uncovered novel selective drug resistance and cancer prognosis associated with NRF2 activation.
RESUMEN
BACKGROUND: Multinucleation is a hallmark of osteoclast formation and has a unique ability to resorb bone matrix. During osteoclast differentiation, the cytoskeleton reorganization results in the generation of actin belts and eventual bone resorption. Tetraspanins are involved in adhesion, migration and fusion in various cells. However, its function in osteoclast is still unclear. In this study, we identified Tm4sf19, a member of the tetraspanin family, as a regulator of osteoclast function. MATERIALS AND METHODS: We investigate the effect of Tm4sf19 deficiency on osteoclast differentiation using bone marrow-derived macrophages obtained from wild type (WT), Tm4sf19 knockout (KO) and Tm4sf19 LELΔ mice lacking the large extracellular loop (LEL). We analyzed bone mass of young and aged WT, KO and LELΔ mice by µCT analysis. The effects of Tm4sf19 LEL-Fc fusion protein were accessed in osteoclast differentiation and osteoporosis animal model. RESULTS: We found that deficiency of Tm4sf19 inhibited osteoclast function and LEL of Tm4sf19 was responsible for its function in osteoclasts in vitro. KO and LELΔ mice exhibited higher trabecular bone mass compared to WT mice. We found that Tm4sf19 interacts with integrin αvß3 through LEL, and that this binding is important for cytoskeletal rearrangements in osteoclast by regulating signaling downstream of integrin αvß3. Treatment with LEL-Fc fusion protein inhibited osteoclast function in vitro and administration of LEL-Fc prevented bone loss in an osteoporosis mouse model in vivo. CONCLUSION: We suggest that Tm4sf19 regulates osteoclast function and that LEL-Fc may be a promising drug to target bone destructive diseases caused by osteoclast hyper-differentiation.
Asunto(s)
Enfermedades Óseas , Resorción Ósea , Osteoporosis , Tetraspaninas , Animales , Ratones , Resorción Ósea/genética , Resorción Ósea/metabolismo , Diferenciación Celular , Integrina alfaVbeta3/metabolismo , Osteoclastos , Osteoporosis/genética , Osteoporosis/metabolismo , Tetraspaninas/genética , Tetraspaninas/metabolismoRESUMEN
Objective: There is a need for new methods to select and analyze cutoffs employed to define genes that are most prognostic significant and impactful. We designed LOCC (Luo's Optimization Categorization Curve), a novel tool to visualize and score continuous variables for a dichotomous outcome. Methods: To demonstrate LOCC with real world data, we analyzed TCGA hepatocellular carcinoma gene expression and patient data using LOCC. We compared LOCC visualization to receiver operating characteristic (ROC) curve for prognostic modeling to showcase its utility in understanding predictors in various TCGA datasets. Results: Analysis of E2F1 expression in hepatocellular carcinoma using LOCC demonstrated appropriate cutoff selection and validation. In addition, we compared LOCC visualization and scoring to ROC curves and c-statistics, demonstrating that LOCC better described predictors. Analysis of a previously published gene signature showed large differences in LOCC scoring, and removing the lowest scoring genes did not affect prognostic modeling of the gene signature demonstrating LOCC scoring could distinguish which predictors were most critical. Conclusion: Overall, LOCC is a novel visualization tool for understanding and selecting cutoffs, particularly for gene expression analysis in cancer. The LOCC score can be used to rank genes for prognostic potential and is more suitable than ROC curves for prognostic modeling.
RESUMEN
The NRF2-KEAP1 pathway plays an important role in the cellular response to oxidative stress but may also contribute to metabolic changes and drug resistance in cancer. We investigated the activation of NRF2 in human cancers and fibroblast cells through KEAP1 inhibition and cancer associated KEAP1/NRF2 mutations. We define a core set of 14 upregulated NRF2 target genes from seven RNA-Sequencing databases that we generated and analyzed, which we validated this gene set through analyses of published databases and gene sets. An NRF2 activity score based on expression of these core target genes correlates with resistance to drugs such as PX-12 and necrosulfonamide but not to paclitaxel or bardoxolone methyl. We validated these findings and also found NRF2 activation led to radioresistance in cancer cell lines. Finally, our NRF2 score is prognostic for cancer survival and validated in additional independent cohorts for novel cancers types not associated with NRF2-KEAP1 mutations. These analyses define a core NRF2 gene set that is robust, versatile, and useful as a NRF2 biomarker and for predicting drug resistance and cancer prognosis.
RESUMEN
Synthetic oleanane triterpenoids (SOTs) are small molecules with broad anticancer properties. A recently developed SOT, 1-[2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl]-4(-pyridin-2-yl)-1H-imidazole (CDDO-2P-Im or '2P-Im'), exhibits enhanced activity and improved pharmacokinetics over CDDO-Im, a previous generation SOT. However, the mechanisms leading to these properties are not defined. Here, we show the synergy of 2P-Im and the proteasome inhibitor ixazomib in human multiple myeloma (MM) cells and 2P-Im activity in a murine model of plasmacytoma. RNA sequencing and quantitative reverse transcription PCR revealed the upregulation of the unfolded protein response (UPR) in MM cells upon 2P-lm treatment, implicating the activation of the UPR as a key step in 2P-Im-induced apoptosis. Supporting this hypothesis, the deletion of genes encoding either protein kinase R-like endoplasmic reticulum kinase (PERK) or DNA damage-inducible transcript 3 protein (DDIT3; also known as CHOP) impaired the MM response to 2P-Im, as did treatment with ISRIB, integrated stress response inhibitor, which inhibits UPR signaling downstream of PERK. Finally, both drug affinity responsive target stability and thermal shift assays demonstrated direct binding of 2P-Im to endoplasmic reticulum chaperone BiP (GRP78/BiP), a stress-inducible key signaling molecule of the UPR. These data reveal GRP78/BiP as a novel target of SOTs, and specifically of 2P-Im, and suggest the potential broader utility of this class of small molecules as modulators of the UPR.
Asunto(s)
Mieloma Múltiple , Humanos , Ratones , Animales , Mieloma Múltiple/tratamiento farmacológico , Chaperón BiP del Retículo Endoplásmico , Línea Celular Tumoral , Apoptosis , Imidazoles/farmacología , Respuesta de Proteína DesplegadaRESUMEN
In naive animals, gammadelta T cells are innate sources of IL-17, a potent proinflammatory cytokine mediating bacterial clearance as well as autoimmunity. However, mechanisms underlying the generation of these cells in vivo remain unclear. In this study, we show that TGF-beta1 plays a key role in the generation of IL-17(+) gammadelta T cells and that it mainly occurs in the thymus particularly during the postnatal period. Interestingly, IL-17(+) gammadelta TCR(+) thymocytes were mainly CD44(high)CD25(low) cells, which seem to derive from double-negative 4 gammadelta TCR(+) cells that acquired CD44 and IL-17 expression. Our findings identify a novel developmental pathway during which IL-17-competent gammadelta T cells arise in the thymus by a TGF-beta1-dependent mechanism.
Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Diferenciación Celular/inmunología , Interleucina-17/biosíntesis , Receptores de Antígenos de Linfocitos T gamma-delta/biosíntesis , Timo/inmunología , Timo/metabolismo , Factor de Crecimiento Transformador beta1/fisiología , Animales , Animales Recién Nacidos , Diferenciación Celular/genética , Interleucina-17/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Factores de Crecimiento Transformadores beta/biosíntesis , Receptores de Factores de Crecimiento Transformadores beta/genética , Timo/citología , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismoRESUMEN
Bryonolic acid (BA) (1) is a naturally occurring triterpenoid with pleiotropic properties. This study characterizes the mechanisms mediating the anti-inflammatory and antioxidant activities of BA and validates the utility of BA as a tool to explore the relationships between triterpenoid structure and activity. BA reduces the inflammatory mediator NO by suppressing the expression of the inflammatory enzyme inducible nitric oxide synthase (iNOS) in LPS-activated RAW 264.7 macrophage cells. In addition, BA robustly induces the antioxidant protein heme oxygenase-1 (HO-1) in vitro and in vivo in an Nrf2-dependent manner. Further analyses of Nrf2 target genes reveal selectivity for the timing and level of gene induction by BA in treated macrophages with distinct patterns for Nrf2-regulated antioxidant genes. Additionally, the distinct expression profile of BA on Nrf2 target genes relative to oleanolic acid suggests the importance of the triterpenoid scaffold in dictating the pleiotropic effects exerted by these molecules.
Asunto(s)
Antioxidantes/farmacología , Hemo-Oxigenasa 1/efectos de los fármacos , Macrófagos/fisiología , Triterpenos/farmacología , Animales , Antiinflamatorios/farmacología , Relación Dosis-Respuesta a Droga , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Factor 1 Relacionado con NF-E2/efectos de los fármacos , Óxido Nítrico/biosíntesis , Óxido Nítrico Sintasa de Tipo II/análisis , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Ácido Oleanólico/química , Ácido Oleanólico/farmacología , Triterpenos/químicaRESUMEN
SMAD4 (MAD homologue 4 (Drosophila)), also known as DPC4 (deleted in pancreatic cancer), is a tumour suppressor gene that encodes a central mediator of transforming growth factor-beta signalling. Germline mutations in SMAD4 are found in over 50% of patients with familial juvenile polyposis, an autosomal dominant disorder characterized by predisposition to hamartomatous polyps and gastrointestinal cancer. Dense inflammatory cell infiltrates underlay grossly normal appearing, non-polypoid colonic and gastric mucosa of patients with familial juvenile polyposis. This prominent stromal component suggests that loss of SMAD4-dependent signalling in cells within the epithelial microenvironment has an important role in the evolution of intestinal tumorigenesis in this syndrome. Here we show that selective loss of Smad4-dependent signalling in T cells leads to spontaneous epithelial cancers throughout the gastrointestinal tract in mice, whereas epithelial-specific deletion of the Smad4 gene does not. Tumours arising within the colon, rectum, duodenum, stomach and oral cavity are stroma-rich with dense plasma cell infiltrates. Smad4(-/-) T cells produce abundant T(H)2-type cytokines including interleukin (IL)-5, IL-6 and IL-13, known mediators of plasma cell and stromal expansion. The results support the concept that cancer, as an outcome, reflects the loss of the normal communication between the cellular constituents of a given organ, and indicate that Smad4-deficient T cells ultimately send the wrong message to their stromal and epithelial neighbours.
Asunto(s)
Neoplasias Gastrointestinales/inmunología , Transducción de Señal , Proteína Smad4/metabolismo , Linfocitos T/metabolismo , Poliposis Adenomatosa del Colon/etiología , Poliposis Adenomatosa del Colon/genética , Poliposis Adenomatosa del Colon/patología , Animales , Comunicación Celular , Citocinas/biosíntesis , Modelos Animales de Enfermedad , Neoplasias Gastrointestinales/metabolismo , Neoplasias Gastrointestinales/patología , Eliminación de Gen , Marcación de Gen , Ratones , Ratones Endogámicos C57BL , Neoplasias Glandulares y Epiteliales/inmunología , Neoplasias Glandulares y Epiteliales/metabolismo , Neoplasias Glandulares y Epiteliales/patología , Proteína Smad4/genéticaRESUMEN
Immune cells and the cytokines they produce are important mediators of the transition from colitis to colon cancer, but the mechanisms mediating this disease progression are poorly understood. Interferon gamma (IFN-γ) is known to contribute to the pathogenesis of colitis through immune modulatory mechanisms, and through direct effects on endothelial and epithelial homeostasis. Here we explore whether IFN-γ influences tumor progression by expanding the effector memory T cells (TEM) population and restricting the expression of tumor suppressors in a preclinical model of spontaneous colitis-associated colorectal cancer (CAC). We show that IFN-γ expression is significantly increased both in the T cells and the colonic mucosal epithelia of mice with a T cell-restricted deletion of the TGF-ß intermediate, SMAD4 (Smad4TKO). The increase of IFN-γ expression correlates with the onset of spontaneous CAC in Smad4TKO mice by 6 months of age. This phenotype is greatly ameliorated by the introduction of a germline deletion of IFN-γ in Smad4TKO mice (Smad4TKO/IFN-γKO, DKO). DKO mice had a significantly reduced incidence and progression of CAC, and a decrease in the number of mucosal CD4+ TEM cells, when compared to those of Smad4TKO mice. Similarly, the colon epithelia of DKO mice exhibited a non-oncogenic signature with a decrease in the expression of iNOS and p-STAT1, and a restoration of the tumor suppressor gene, 15-hydroxyprostaglandin dehydrogenase (15-PGDH). In vitro, treatment of human colon cancer cells with IFN-γ decreased the expression of 15-PGDH. Our data suggest that Smad4-deficient T cells promote CAC through mechanisms that include an IFN-γ-dependent suppression of the tumor suppressor 15-PGDH.
Asunto(s)
Neoplasias Asociadas a Colitis , Neoplasias del Colon , Hidroxiprostaglandina Deshidrogenasas/metabolismo , Interferón gamma/metabolismo , Proteína Smad4/metabolismo , Animales , Colitis , Neoplasias Asociadas a Colitis/metabolismo , Neoplasias Asociadas a Colitis/patología , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Humanos , Interferón gamma/genética , Ratones , Proteína Smad4/genética , Linfocitos T/metabolismoRESUMEN
Transforming growth factor (TGF)-beta1 is a major pluripotential cytokine with a pronounced immunosuppressive effect and its deficiency results in lethal autoimmunity in mice. However, mechanisms of its immunosuppressive action are not completely understood. Here, we report that TGF-beta1 supports the maintenance of Foxp3 expression, regulatory function, and homeostasis in peripheral CD4(+)CD25(+) regulatory T (T reg) cells, but is not required for their thymic development. We found that in 8-10-d-old TGF-beta1-deficient mice, peripheral, but not thymic, T reg cells are significantly reduced in numbers. Moreover, our experiments suggest that a defect in TGF-beta-mediated signaling in T reg cells is associated with a decrease in Foxp3 expression and suppressor activity. Thus, our results establish an essential link between TGF-beta1 signaling in peripheral T reg cells and T reg cell maintenance in vivo.
Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Proteínas de Unión al ADN/metabolismo , Tolerancia Inmunológica/inmunología , Transducción de Señal/inmunología , Timo/inmunología , Factor de Crecimiento Transformador beta/inmunología , Animales , Western Blotting , Linfocitos T CD4-Positivos/metabolismo , Células Cultivadas , Factores de Transcripción Forkhead , Terapia de Inmunosupresión , Ratones , Ratones Endogámicos , Receptores de Interleucina-2/metabolismo , Factor de Crecimiento Transformador beta/metabolismoRESUMEN
Inflammatory bowel disease (IBD), which includes Crohn's disease and ulcerative colitis, is an inflammatory autoimmune disease characterized by T-cell infiltration to the colon. Mesenchymal stem cells (MSCs) have the potential to rescue IBD owing to their immunosuppressive capabilities and clinical studies have shown positive influence on intestinal graft versus host disease. We demonstrate here a new method to coat MSCs with antibodies against addressins to enhance their delivery to the colon and thereby increase the therapeutic effectiveness. Bioluminescence imaging (BLI) demonstrated that vascular cell adhesion molecule antibody (Ab)-coated MSCs (Ab(VCAM-1)- MSCs) had the highest delivery efficiency to inflamed mesenteric lymph node (MLN) and colon compared to untreated MSCs, Ab(isotype)-MSCs, and Ab(MAdCAM)-MSCs. Therapeutically, when mice with IBD were injected with addressin Ab-coated MSCs, they showed dramatically improved survival rates, higher IBD therapeutic scores, and significantly improved body weight gain compared to mice injected with MSCs only, isotype Ab, free Ab plus MSCs, or vehicle-only controls. These data demonstrate that anti-addressin Ab coating on MSC increased cell delivery to inflamed colon and increased the efficacy of MSC treatment of IBD. This is the first study showing an increased therapeutic efficacy when stem cells are first coated with antibodies specifically target them to inflamed sites.