Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Dev Psychopathol ; 35(3): 1000-1010, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-34521484

RESUMEN

Cognitive theories of depression contend that biased cognitive information processing plays a causal role in the development of depression. Extensive research shows that deeper processing of negative and/or shallower processing of positive self-descriptors (i.e., negative and positive self-schemas) predicts current and future depression in adults and children. However, the neural correlates of the development of self-referent encoding are poorly understood. We examined children's self-referential processing using the self-referent encoding task (SRET) collected from 74 children at ages 6, 9, and 12; around age 10, these children also contributed structural magnetic resonance imaging data. From age 6 to age 12, both positive and negative self-referential processing showed mean-level growth, with positive self-schemas increasing relatively faster than negative ones. Further, voxel-based morphometry showed that slower growth in positive self-schemas was associated with lower regional gray matter volume (GMV) in ventrolateral prefrontal cortex (vlPFC). Our results suggest that smaller regional GMV within vlPFC, a critical region for regulatory control in affective processing and emotion development, may have implications for the development of depressogenic self-referential processing in mid-to-late childhood.


Asunto(s)
Corteza Cerebral , Sustancia Gris , Adulto , Humanos , Niño , Sustancia Gris/diagnóstico por imagen , Emociones , Corteza Prefrontal/diagnóstico por imagen , Corteza Prefrontal/patología , Imagen por Resonancia Magnética
2.
Neuroimage ; 185: 102-110, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30315909

RESUMEN

In accordance with the concept of topographic organization of neuroanatomical structures, there is an increased interest in estimating and delineating continuous changes in the functional connectivity patterns across neighboring voxels within a region of interest using resting-state fMRI data. Fundamental to this functional connectivity gradient analysis is the assumption that the functional organization is stable and uniform across the region of interest. To evaluate this assumption, we developed a statistical model testing procedure to arbitrate between overlapping, shifted, or different topographic connectivity gradients across subdivisions of a structure. We tested the procedure using the striatum, a subcortical structure consisting of the caudate nucleus and putamen, in which an extensive literature, primarily from rodents and non-human primates, suggest to have a shared topographic organization of a single diagonal gradient. We found, across multiple resting state fMRI data samples of different spatial resolutions in humans, and one macaque resting state fMRI data sample, that the models with different functional connectivity gradients across the caudate and putamen was the preferred model. The model selection procedure was validated in control conditions of checkerboard subdivisions, demonstrating the expected overlapping gradient. More specifically, while we replicated the diagonal organization of the functional connectivity gradients in both the caudate and putamen, our analysis also revealed a medial-lateral organization within the caudate. Not surprisingly, performing the same analysis assuming a unitary gradient obfuscates the medial-lateral organization of the caudate, producing only a diagonal gradient. These findings demonstrate the importance of testing basic assumptions and evaluating interpretations across species. The significance of differential topographic gradients across the putamen and caudate and the medial-lateral gradient of the caudate in humans should be tested in future studies.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/fisiología , Modelos Neurológicos , Red Nerviosa/fisiología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Niño , Preescolar , Conjuntos de Datos como Asunto , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Macaca , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Adulto Joven
3.
Neuroimage ; 134: 466-474, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27126003

RESUMEN

Response inhibition and salience detection are among the most studied psychological constructs of cognitive control. Despite a growing body of work, how inhibition and salience processing interact and engage regional brain activations remains unclear. Here, we examined this issue in a stop signal task (SST), where a prepotent response needs to be inhibited to allow an alternative, less dominant response. Sixteen adult individuals performed two versions of the SST each with 25% (SST25) and 75% (SST75) of stop trials. We posited that greater regional activations to the infrequent trial type in each condition (i.e., to stop as compared to go trials in SST25 and to go as compared to stop trials in SST75) support salience detection. Further, successful inhibition in stop trials requires attention to the stop signal to trigger motor inhibition, and the stop signal reaction time (SSRT) has been used to index the efficiency of motor response inhibition. Therefore, greater regional activations to stop as compared to go success trials in association with the stop signal reaction time (SSRT) serve to expedite response inhibition. In support of an interactive role, the dorsal anterior cingulate cortex (dACC) increases activation to salience detection in both SST25 and SST75, but only mediates response inhibition in SST75. Thus, infrequency response in the dACC supports motor inhibition only when stopping has become a routine. In contrast, although the evidence is less robust, the pre-supplementary motor area (pre-SMA) increases activity to the infrequent stimulus and supports inhibition in both SST25 and SST75. These findings clarify a unique role of the dACC and add to the literature that distinguishes dACC and pre-SMA functions in cognitive control.


Asunto(s)
Función Ejecutiva/fisiología , Giro del Cíngulo/fisiología , Inhibición Psicológica , Desempeño Psicomotor , Adulto , Atención , Mapeo Encefálico , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Glicoproteínas de Membrana , Tiempo de Reacción , Receptores de Interleucina-1 , Adulto Joven
4.
Hum Brain Mapp ; 37(2): 648-62, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26566885

RESUMEN

Parkinson's disease is a neurodegenerative disorder characterized by changes to dopaminergic function in the striatum and a range of cognitive and motor deficits. Neuroimaging studies have repeatedly shown differences in activation and functional connectivity patterns of the striatum between symptomatic individuals with Parkinson's disease and healthy controls. However, the presence and severity of cognitive and motor symptoms seem to differ dramatically among individuals with Parkinson's disease at the early-stages. To investigate the neural basis of such heterogeneity, we examined the resting state functional connectivity patterns of caudate and putamen subdivisions in relation to cognitive and motor impairments among 62 early-stage individuals with Parkinson's disease (21 females, 23 drug naive, ages 39-77 years, average UPDRS motor scores off medication = 18.56, average H&Y stage = 1.66). We also explored how changes in striatal connectivity relate to changes in symptomatology over a year. There are two main findings. First, higher motor deficit rating was associated with weaker coupling between anterior putamen and midbrain including substantia nigra. Intriguingly, steeper declines in functional connectivity between these regions were associated with greater declines in motor function over the course of 1 year. Second, decline in cognitive function, particularly in the memory and visuospatial domains, was associated with stronger coupling between the dorsal caudate and the rostral anterior cingulate cortex. These findings remained significant after controlling for age, medication, gender, and education. In sum, our findings suggest that cognitive decline and motor deficit are each associated with a differentiable pattern of functional connectivity of striatal subregions. Hum Brain Mapp 37:648-662, 2016. © 2015 Wiley Periodicals, Inc.


Asunto(s)
Cuerpo Estriado/fisiopatología , Enfermedad de Parkinson/fisiopatología , Adulto , Anciano , Mapeo Encefálico , Trastornos del Conocimiento/etiología , Trastornos del Conocimiento/fisiopatología , Femenino , Estudios de Seguimiento , Humanos , Estudios Longitudinales , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Actividad Motora/fisiología , Vías Nerviosas/fisiopatología , Enfermedad de Parkinson/psicología , Análisis de Regresión , Descanso , Índice de Severidad de la Enfermedad
5.
J Neurosci ; 34(17): 5998-6002, 2014 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-24760858

RESUMEN

Human working memory (WM) is inherently limited, so we must filter out irrelevant information in our environment or our mind while retaining limited important relevant contents. Previous work suggests that neural oscillations in the alpha band (8-14 Hz) play an important role in inhibiting incoming distracting information during attention and selective encoding tasks. However, whether alpha power is involved in inhibiting no-longer-relevant content or in representing relevant WM content is still debated. To clarify this issue, we manipulated the amount of relevant/irrelevant information using a task requiring spatial WM updating while measuring neural oscillatory activity via EEG and localized current sources across the scalp using a surface Laplacian transform. An initial memory set of two, four, or six spatial locations was to be memorized over a delay until an updating cue was presented indicating that only one or three locations remained relevant for a subsequent recognition test. Alpha amplitude varied with memory maintenance and updating demands among a cluster of left frontocentral electrodes. Greater postcue alpha power was associated with the high relevant load conditions (six and four dots cued to reduce to three relevant) relative to the lower load conditions (four and two dots reduced to one). Across subjects, this difference in alpha power was correlated with condition differences in performance accuracy. In contrast, no significant effects of irrelevant load were observed. These findings demonstrate that, during WM updating, alpha power reflects maintenance of relevant memory contents rather than suppression of no-longer-relevant memory traces.


Asunto(s)
Ritmo alfa/fisiología , Corteza Cerebral/fisiología , Memoria a Corto Plazo/fisiología , Atención/fisiología , Mapeo Encefálico , Electroencefalografía , Femenino , Humanos , Masculino , Tiempo de Reacción/fisiología , Adulto Joven
6.
Neuroimage ; 107: 311-322, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25514518

RESUMEN

The basal ganglia nuclei are critical for a variety of cognitive and motor functions. Much work has shown age-related structural changes of the basal ganglia. Yet less is known about how the functional interactions of these regions with the cerebral cortex and the cerebellum change throughout the lifespan. Here, we took advantage of a convenient sample and examined resting state functional magnetic resonance imaging data from 250 adults 18 to 49 years of age, focusing specifically on the caudate nucleus, pallidum, putamen, and ventral tegmental area/substantia nigra (VTA/SN). There are a few main findings to report. First, with age, caudate head connectivity increased with a large region of ventromedial prefrontal/medial orbitofrontal cortex. Second, across all subjects, pallidum and putamen showed negative connectivity with default mode network (DMN) regions such as the ventromedial prefrontal cortex and posterior cingulate cortex, in support of anti-correlation of the "task-positive" network (TPN) and DMN. This negative connectivity was reduced with age. Furthermore, pallidum, posterior putamen and VTA/SN connectivity to other TPN regions, such as somatomotor cortex, decreased with age. These results highlight a distinct effect of age on cerebral functional connectivity of the dorsal striatum and VTA/SN from young to middle adulthood and may help research investigating the etiologies or monitoring outcomes of neuropsychiatric conditions that implicate dopaminergic dysfunction.


Asunto(s)
Envejecimiento/fisiología , Ganglios Basales/crecimiento & desarrollo , Ganglios Basales/fisiología , Red Nerviosa/fisiología , Vías Nerviosas/fisiología , Adolescente , Adulto , Femenino , Movimientos de la Cabeza/fisiología , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Neostriado/fisiología , Tegmento Mesencefálico/fisiología , Adulto Joven
7.
Hum Brain Mapp ; 35(5): 2119-36, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-23798325

RESUMEN

A network of brain regions involving the ventral inferior frontal gyrus/anterior insula (vIFG/AI), presupplementary motor area (pre-SMA) and basal ganglia has been implicated in stopping impulsive, unwanted responses. However, whether this network plays an equal role in response inhibition under different sensorimotor contexts has not been tested systematically. Here, we conducted an fMRI experiment using the stop signal task, a sensorimotor task requiring occasional withholding of the planned response upon the presentation of a stop signal. We manipulated both the sensory modality of the stop signal (visual versus auditory) and the motor response modality (hand versus eye). Results showed that the vIFG/AI and the preSMA along with the right middle frontal gyrus were commonly activated in response inhibition across the various sensorimotor conditions. Our findings provide direct evidence for a common role of these frontal areas, but not striatal areas in response inhibition independent of the sensorimotor contexts. Nevertheless, these three frontal regions exhibited different activation patterns during successful and unsuccessful stopping. Together with the existing evidence, we suggest that the vIFG/AI is involved in the early stages of stopping such as triggering the stop process while the preSMA may play a role in regulating other cortical and subcortical regions involved in stopping.


Asunto(s)
Inhibición Psicológica , Corteza Motora/fisiología , Corteza Prefrontal/fisiología , Estimulación Acústica , Adulto , Toma de Decisiones/fisiología , Femenino , Lateralidad Funcional , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Pruebas Neuropsicológicas , Estimulación Luminosa , Tiempo de Reacción/fisiología , Adulto Joven
8.
Neuroimage ; 73: 8-15, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23380167

RESUMEN

While previous results from univariate analysis showed that the activity level of the parahippocampal gyrus (PHG) but not the fusiform gyrus (FG) reflects selective maintenance of the cued picture category, present results from multi-voxel pattern analysis (MVPA) showed that the spatial response patterns of both regions can be used to differentiate the selected picture category in working memory. The ventral temporal and occipital areas including the PHG and FG have been shown to be specialized in perceiving and processing different kinds of visual information, though their role in the representation of visual working memory remains unclear. To test whether the PHG and FG show spatial response patterns that reflect selective maintenance of task-relevant visual working memory in comparison with other posterior association regions, we reanalyzed data from a previous fMRI study of visual working memory with a cue inserted during the delay period of a delayed recognition task. Classification of FG and PHG activation patterns for the selected category (face or scene) during the cue phase was well above chance using classifiers trained with fMRI data from the cue or probe phase. Classification of activity in other temporal and occipital regions for the cued picture category during the cue phase was relatively less consistent even though classification of their activity during the probe recognition was comparable with the FG and PHG. In sum, these findings suggest that the FG and PHG carry information relevant to the cued visual category, and their spatial activation patterns during selective maintenance seem to match those during visual recognition.


Asunto(s)
Memoria a Corto Plazo/fisiología , Lóbulo Occipital/fisiología , Patrones de Reconocimiento Fisiológico/fisiología , Lóbulo Temporal/fisiología , Corteza Cerebral/fisiología , Señales (Psicología) , Cara , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Giro Parahipocampal/fisiología , Estimulación Luminosa , Reproducibilidad de los Resultados , Máquina de Vectores de Soporte , Percepción Visual/fisiología
9.
Front Syst Neurosci ; 16: 966433, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36211593

RESUMEN

The striatum is postulated to play a central role in gating cortical processing during goal-oriented behavior. While many human neuroimaging studies have treated the striatum as an undivided whole or several homogeneous compartments, some recent studies showed that its circuitry is topographically organized and has more complex relations with the cortical networks than previously assumed. Here, we took a gradient functional connectivity mapping approach that utilizes the entire anatomical space of the caudate nucleus to examine the organization of its functional relationship with the rest of the brain and how its topographic mapping changes with age. We defined the topography of the caudate functional connectivity using three publicly available resting-state fMRI datasets. We replicated and extended previous findings. First, we found two stable gradients of caudate connectivity patterns along its medial-lateral (M-L) and anterior-posterior (A-P) axes, supporting findings from previous tract-tracing studies of non-human primates that there are at least two main organizational principles within the caudate nucleus. Second, unlike previous emphasis of the A-P topology, we showed that the differential connectivity patterns along the M-L gradient of caudate are more clearly organized with the large-scale neural networks; such that brain networks associated with internal vs. external orienting behavior are respectively more closely linked to the medial vs. lateral extent of the caudate. Third, the caudate's M-L organization showed greater age-related reduction in integrity, which was further associated with age-related changes in behavioral measures of executive functions. In sum, our analysis confirmed a sometimes overlooked M-L functional connectivity gradient within the caudate nucleus, with its lateral longitudinal zone more closely linked to the frontoparietal cortical circuits and age-related changes in cognitive control. These findings provide a more precise mapping of the human caudate functional connectivity, both in terms of the gradient organization with cortical networks and age-related changes in such organization.

10.
NPJ Parkinsons Dis ; 8(1): 108, 2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-36038586

RESUMEN

Previous diffusion tensor imaging (DTI) studies of Parkinson's disease (PD) show reduced microstructural integrity of the corpus callosum (CC) relative to controls, although the characteristics of such callosal degradation remain poorly understood. Here, we utilized a longitudinal approach to identify microstructural decline in the entire volume of the CC and its functional subdivisions over 2 years and related the callosal changes to motor symptoms in early-stage PD. The study sample included 61 PD subjects (N = 61, aged 45-82, 38 M & 23 F, H&Y ≤ 2) from the Parkinson's Progressive Markers Initiative database (PPMI). Whole-brain voxel-wise results revealed significant fractional anisotropy (FA) and mean diffusivity (MD) changes in the CC, especially in the genu and splenium. Using individually drawn CC regions of interest (ROI), our analysis further revealed that almost all subdivisions of the CC show significant decline in FA to certain extents over the two-year timeframe. Additionally, FA seemed lower in the right hemisphere of the CC at both time-points, and callosal FA decline was associated with FA and MD decline in widespread cortical and subcortical areas. Notably, multiple regression analysis revealed that across-subject akinetic-rigid severity was negatively associated with callosal FA at baseline and 24 months follow-up, and the effect was strongest in the anterior portion of the CC. These results suggest that callosal microstructure alterations in the anterior CC may serve as a viable biomarker for akinetic-rigid symptomology and disease progression, even in early PD.

11.
J Am Acad Child Adolesc Psychiatry ; 61(9): 1182-1188, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36038199

RESUMEN

Temperament involves stable behavioral and emotional tendencies that differ between individuals, which can be first observed in infancy or early childhood and relate to behavior in many contexts and over many years.1 One of the most rigorously characterized temperament classifications relates to the tendency of individuals to avoid the unfamiliar and to withdraw from unfamiliar people, objects, and unexpected events. This temperament is referred to as behavioral inhibition or inhibited temperament (IT).2 IT is a moderately heritable trait1 that can be measured in multiple species.3 In humans, levels of IT can be quantified from the first year of life through direct behavioral observations or reports by caregivers or teachers. Similar approaches as well as self-report questionnaires on current and/or retrospective levels of IT1 can be used later in life.


Asunto(s)
Ansiedad , Temperamento , Ansiedad/psicología , Trastornos de Ansiedad , Encéfalo/fisiología , Preescolar , Humanos , Estudios Retrospectivos , Temperamento/fisiología
12.
Neuroimage ; 57(3): 1281-91, 2011 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-21596144

RESUMEN

Most parts of the prefrontal and posterior parietal cortices show sustained activity during short-term maintenance of visual information and their activity increases with increasing memory set size. To investigate the interplay of feature selectivity, memory load and inter-item interaction (or interference) on sustained activity, we compared and contrasted fMRI signal during the retention of two items from the same or different visual feature categories (e.g., two line orientations versus a line and a color) relative to the retention of single items. Data from 16 young adults revealed three types of activation patterns in the prefrontal and posterior parietal cortices. First, among the prefrontal and posterior parietal areas that showed preferential responses to line orientations, some exhibited linear increases in sustained activity whereas others exhibited nonlinear increases in correspondence to the number of lines in the memory set. Second, the right lateral prefrontal and ventral posterior parietal areas, albeit not showing differential sustained activity relative to lines or colors, were disproportionately more active during holding two lines in comparison to holding a line and a color. Third, the left posterior intraparietal sulcus showed a weak effect of memory set size regardless of the items' visual features. These observations suggest that rather than number of items, a combination of factors such as visual feature and memory-set homogeneity may have the greater influence on prefrontal and parietal activity during multiple-item working memory. This is consistent with the view that working memory capacity is influenced by the level of interaction or interference between visual stimuli, which is stronger between items from the same feature category.


Asunto(s)
Mapeo Encefálico , Memoria a Corto Plazo/fisiología , Lóbulo Parietal/fisiología , Corteza Prefrontal/fisiología , Adulto , Femenino , Humanos , Interpretación de Imagen Asistida por Computador , Imagen por Resonancia Magnética , Masculino , Tiempo de Reacción/fisiología , Adulto Joven
13.
Sci Rep ; 11(1): 14449, 2021 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-34262103

RESUMEN

Visuospatial working memory (VSWM) involves cortical regions along the dorsal visual pathway, which are topographically organized with respect to the visual space. However, it remains unclear how such functional organization may constrain VSWM behavior across space and time. Here, we systematically mapped VSWM performance across the 2-dimensional (2D) space in various retention intervals in human subjects using the memory-guided and visually guided saccade tasks in two experiments. Relative to visually guided saccades, memory-guided saccades showed significant increases in unsystematic errors, or response variability, with increasing target eccentricity (3°-13° of visual angle). Unsystematic errors also increased with increasing delay (1.5-3 s, Experiment 1; 0.5-5 s, Experiment 2), while there was little or no interaction between delay and eccentricity. Continuous bump attractor modeling suggested neurophysiological and functional organization factors in the increasing unsystematic errors in VSWM across space and time. These findings indicate that: (1) VSWM representation may be limited by the functional topology of the visual pathway for the 2D space; (2) Unsystematic errors may reflect accumulated noise from memory maintenance while systematic errors may originate from non-mnemonic processes such as noisy sensorimotor transformation; (3) There may be independent mechanisms supporting the spatial and temporal processing of VSWM.


Asunto(s)
Memoria a Corto Plazo , Percepción Espacial
14.
Brain Connect ; 11(8): 599-612, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33813858

RESUMEN

Background: Neuroimaging studies suggest that aged brains show altered connectivity within and across functional networks. Similar changes in functional network integrity are also linked to the accumulation of pathological proteins in the brain, such as amyloid-beta plaques and neurofibrillary tau tangles seen in Alzheimer's disease. However, less is known about the specific impacts of amyloid and tau on functional network connectivity in cognitively normal older adults who harbor these proteins. Methods: We briefly summarize recent neuroimaging studies of aging and then thoroughly review positron emission tomography and functional magnetic resonance imaging studies measuring the relationship between amyloid-tau pathology and functional connectivity in cognitively normal older individuals. Results: The literature overall suggests that amyloid-positive older individuals show minor cognitive dysfunction and aberrant default mode network connectivity compared with amyloid-negative individuals. Tau, however, is more closely associated with network hypoconnectivity and poorer cognition. Those with substantial amyloid and tau experience even greater cognitive decline compared with those with primarily amyloid or tau, suggesting a potential interaction. Multimodal neuroimaging studies suggest that older adults with pathological protein deposits show amyloid-related hyperconnectivity and tau-related hypoconnectivity in multiple functional networks, including the default mode and frontoparietal networks. Discussion: We propose an updated model considering the effects of amyloid and tau on functional connectivity in older individuals. Large, longitudinal neuroimaging studies with multiple levels of analysis are required to obtain a deeper understanding of the dynamic relationship between pathological protein accumulation and functional connectivity changes, as amyloid- and tau-induced connectivity alterations may have critical and time-varying effects on neurodegeneration and cognitive decline. Impact statement Amyloid and tau accumulation have been linked with altered functional connectivity in cognitively normal older adults. This review synthesized recent functional imaging literatures in a discussion of how amyloid and tau can interactively affect functional connectivity in nonlinear ways, which can explain previous conflicting findings. Changes in connectivity strength may depend on the accumulation of both amyloid and tau, and their integrative effects seem to have critical consequences on cognition. Elucidating the effects of these pathological proteins on brain functioning is paramount to understand the etiology of Alzheimer's disease and the aging process overall.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Anciano , Enfermedad de Alzheimer/diagnóstico por imagen , Péptidos beta-Amiloides/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Humanos , Imagen por Resonancia Magnética , Tomografía de Emisión de Positrones , Proteínas tau/metabolismo
15.
Front Neurol ; 12: 788632, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35087470

RESUMEN

Background: Visual hallucinations (VHs) in Parkinson's disease (PD) are the cardinal symptoms which declare the onset of PD psychosis (PDP). The anthropomorphic and zoomorphic VHs of PD resemble those of Charles Bonnet syndrome and temporal lobe epilepsy. In both of these disorders electroencephalography (EEG) abnormalities have been described. We therefore sought to examine whether VHs in PD were associated with similar EEG abnormalities. Methods: This retrospective observational study searched the medical records of 300 PD patients and filtered for those containing clinical 20-min scalp EEGs. Remaining records were separated into two groups: patients with reported VHs and those without. The prevalence of epileptiform discharges in the EEGs of both groups was identified. Results: Epileptiform discharges were present in 5 of 13 (38.5%) PD patients with VHs; all localized to the temporal lobe. No epileptiform discharges were observed in the EEGs of the 31 PD patients without VHs. Conclusion: The significantly high incidence of temporal lobe epileptiform discharges in PD patients with VHs as compared to those without VHs lends to the possibility of an association visual cortex epileptogenic focus. Accordingly, for treatment-refractory patients, antiepileptic drugs might be considered, as in the case of Charles Bonnet syndrome, temporal lobe epilepsy and migraine with visual aura. Future prospective studies involving larger samples and multi-center cohorts are required to validate these observational findings.

16.
J Cogn Neurosci ; 22(2): 292-306, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19400681

RESUMEN

In this fMRI study, we investigated prefrontal cortex (PFC) and visual association regions during selective information processing. We recorded behavioral responses and neural activity during a delayed recognition task with a cue presented during the delay period. A specific cue ("Face" or "Scene") was used to indicate which one of the two initially viewed pictures of a face and a scene would be tested at the end of a trial, whereas a nonspecific cue ("Both") was used as control. As expected, the specific cues facilitated behavioral performance (faster response times) compared to the nonspecific cue. A postexperiment memory test showed that the items cued to remember were better recognized than those not cued. The fMRI results showed largely overlapped activations across the three cue conditions in dorsolateral and ventrolateral PFC, dorsomedial PFC, posterior parietal cortex, ventral occipito-temporal cortex, dorsal striatum, and pulvinar nucleus. Among those regions, dorsomedial PFC and inferior occipital gyrus remained active during the entire postcue delay period. Differential activity was mainly found in the association cortices. In particular, the parahippocampal area and posterior superior parietal lobe showed significantly enhanced activity during the postcue period of the scene condition relative to the Face and Both conditions. No regions showed differentially greater responses to the face cue. Our findings suggest that a better representation of visual information in working memory may depend on enhancing the more specialized visual association areas or their interaction with PFC.


Asunto(s)
Mapeo Encefálico , Toma de Decisiones/fisiología , Memoria a Corto Plazo/fisiología , Reconocimiento Visual de Modelos/fisiología , Corteza Prefrontal/fisiología , Adolescente , Adulto , Análisis de Varianza , Atención , Aprendizaje Discriminativo , Cara , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Masculino , Pruebas Neuropsicológicas , Oxígeno/sangre , Estimulación Luminosa , Corteza Prefrontal/irrigación sanguínea , Tiempo de Reacción/fisiología , Factores de Tiempo , Vías Visuales/fisiología , Adulto Joven
17.
eNeuro ; 7(1)2020.
Artículo en Inglés | MEDLINE | ID: mdl-31988218

RESUMEN

The organization of region-to-region functional connectivity has major implications for understanding information transfer and transformation between brain regions. We extended connective field mapping methodology to 3-D anatomic space to derive estimates of corticocortical functional organization. Using multiple publicly available human (both male and female) resting-state fMRI data samples for model testing and replication analysis, we have three main findings. First, we found that the functional connectivity between early visual regions maintained a topographic relationship along the anterior-posterior dimension, which corroborates previous research. Higher order visual regions showed a pattern of connectivity that supports convergence and biased sampling, which has implications for their receptive field properties. Second, we demonstrated that topographic organization is a fundamental aspect of functional connectivity across the entire cortex, with higher topographic connectivity between regions within a functional network than across networks. The principle gradient of topographic connectivity across the cortex resembled whole-brain gradients found in previous work. Last but not least, we showed that the organization of higher order regions such as the lateral prefrontal cortex demonstrate functional gradients of topographic connectivity and convergence. These organizational features of the lateral prefrontal cortex predict task-based activation patterns, particularly visual specialization and higher order rules. In sum, these findings suggest that topographic input is a fundamental motif of functional connectivity between cortical regions for information processing and transfer, with maintenance of topography potentially important for preserving the integrity of information from one region to another.


Asunto(s)
Mapeo Encefálico , Procesamiento de Imagen Asistido por Computador , Encéfalo , Corteza Cerebral , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino
18.
NPJ Parkinsons Dis ; 6: 19, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32885038

RESUMEN

The akinetic/rigid (AR) motor subtype of Parkinson's Disease is associated with increased rates of motor and cognitive decline. Cross-sectional studies examining the neural correlates of AR have found abnormalities in both subcortical and cortical networks involved in motor planning and execution relative to controls. To better understand how these cross-sectional findings are implicated in the unique decline associated with the AR subtype, we examined whether baseline AR symptoms are associated with longitudinal decline of these networks, in contrast to other motor symptoms such as tremor. Using whole brain multiple regression analyses we found that worse AR symptoms at baseline were associated with greater gray matter loss over four years in superior parietal and paracentral lobules and motor cortex. These regions also showed altered connectivity patterns with posterior parietal, premotor, pre-supplementary motor area and dorsolateral prefrontal regions in association with AR symptoms across subjects. Thus, AR symptoms are related to gray matter decline and aberrant functional connectivity in a network of frontal-parietal regions critical for motor planning and execution. These structural and functional abnormalities may therefore be implicated in the more aggressive course of decline associated with the AR relative to tremor-dominant subtype.

19.
Dev Cogn Neurosci ; 45: 100862, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32920279

RESUMEN

Late childhood and early adolescence is characterized by substantial brain maturation which contributes to both adult-like and age-dependent resting-state network connectivity patterns. However, it remains unclear whether these functional network characteristics in children are subject to differential modulation by distinct cognitive demands as previously found in adults. We conducted network analyses on fMRI data from 60 children (aged 9-12) during resting and during three distinct tasks involving decision making, visual perception, and spatial working memory. Graph measures of network architecture, functional integration, and flexibility were calculated for each of the four states. During resting state, the children's network architecture was similar to that in young adults (N = 60, aged 20-23) but the degree of similarity was age- and network-dependent. During the task states, the children's whole-brain network exhibited enhanced integration in response to increased cognitive demand. Additionally, the frontoparietal network showed flexibility in connectivity patterns across states while networks implicated in motor and visual processing remained relatively stable. Exploratory analyses suggest different relationships between behavioral performance and connectivity profiles for the working memory and perceptual tasks. Together, our findings demonstrate state- and age-dependent features in functional network connectivity during late childhood, potentially providing markers for brain and cognitive development.


Asunto(s)
Encéfalo/fisiología , Cognición/fisiología , Imagen por Resonancia Magnética/métodos , Vías Nerviosas/fisiología , Factores de Edad , Niño , Femenino , Humanos , Masculino
20.
Cogn Affect Behav Neurosci ; 9(3): 249-59, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19679761

RESUMEN

Neuroimaging studies have shown the involvement of prefrontal and posterior parietal cortexes in regulating information processing. We conducted behavioral and fMRI experiments to investigate the relationship between memory selection and proactive interference (PI), using a delayed recognition task with a selection cue presented during the delay indicating which two of the four studied digits were relevant to the present test. PI was indexed by the response time differences between rejecting probes matching and not matching the no longer relevant digits. By varying the delay intervals, we found that the effect of PI did not diminish, even for cases in which the postcue interval was extended to 9 sec, but was stronger when the precue interval was lengthened to 5 sec. By examining the correlation between PI index and neural correlates of memory selection, we found that stronger PI is predicted by lower selection-related activity in the left inferior parietal lobe, the precuneus, and the dorsal middle frontal gyrus. Our results suggest that activity in the prefrontal-parietal network may contribute to one's ability to focus on the task-relevant information and may proactively reduce PI in working memory.


Asunto(s)
Encéfalo/fisiología , Memoria a Corto Plazo/fisiología , Reconocimiento en Psicología , Adulto , Análisis de Varianza , Mapeo Encefálico , Señales (Psicología) , Femenino , Humanos , Modelos Lineales , Imagen por Resonancia Magnética , Masculino , Pruebas Neuropsicológicas , Tiempo de Reacción , Factores de Tiempo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA