Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
PLoS Biol ; 19(4): e3001144, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33872299

RESUMEN

Delineating human cardiac pathologies and their basic molecular mechanisms relies on research conducted in model organisms. Yet translating findings from preclinical models to humans present a significant challenge, in part due to differences in cardiac protein expression between humans and model organisms. Proteins immediately determine cellular function, yet their large-scale investigation in hearts has lagged behind those of genes and transcripts. Here, we set out to bridge this knowledge gap: By analyzing protein profiles in humans and commonly used model organisms across cardiac chambers, we determine their commonalities and regional differences. We analyzed cardiac tissue from each chamber of human, pig, horse, rat, mouse, and zebrafish in biological replicates. Using mass spectrometry-based proteomics workflows, we measured and evaluated the abundance of approximately 7,000 proteins in each species. The resulting knowledgebase of cardiac protein signatures is accessible through an online database: atlas.cardiacproteomics.com. Our combined analysis allows for quantitative evaluation of protein abundances across cardiac chambers, as well as comparisons of cardiac protein profiles across model organisms. Up to a quarter of proteins with differential abundances between atria and ventricles showed opposite chamber-specific enrichment between species; these included numerous proteins implicated in cardiac disease. The generated proteomics resource facilitates translational prospects of cardiac studies from model organisms to humans by comparisons of disease-linked protein networks across species.


Asunto(s)
Miocardio/metabolismo , Proteoma/metabolismo , Animales , Corazón/fisiología , Ventrículos Cardíacos/química , Ventrículos Cardíacos/metabolismo , Caballos , Humanos , Ratones , Modelos Animales , Miocardio/química , Especificidad de Órganos , Procesamiento Proteico-Postraduccional , Proteoma/análisis , Proteómica/métodos , Ratas , Especificidad de la Especie , Porcinos , Pez Cebra
2.
Proc Natl Acad Sci U S A ; 118(31)2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34330837

RESUMEN

Ca2+/calmodulin-dependent protein kinase II alpha subunit (CaMKIIα) is a key neuronal signaling protein and an emerging drug target. The central hub domain regulates the activity of CaMKIIα by organizing the holoenzyme complex into functional oligomers, yet pharmacological modulation of the hub domain has never been demonstrated. Here, using a combination of photoaffinity labeling and chemical proteomics, we show that compounds related to the natural substance γ-hydroxybutyrate (GHB) bind selectively to CaMKIIα. By means of a 2.2-Å x-ray crystal structure of ligand-bound CaMKIIα hub, we reveal the molecular details of the binding site deep within the hub. Furthermore, we show that binding of GHB and related analogs to this site promotes concentration-dependent increases in hub thermal stability believed to alter holoenzyme functionality. Selectively under states of pathological CaMKIIα activation, hub ligands provide a significant and sustained neuroprotection, which is both time and dose dependent. This is demonstrated in neurons exposed to excitotoxicity and in a mouse model of cerebral ischemia with the selective GHB analog, HOCPCA (3-hydroxycyclopent-1-enecarboxylic acid). Together, our results indicate a hitherto unknown mechanism for neuroprotection by a highly specific and unforeseen interaction between the CaMKIIα hub domain and small molecule brain-penetrant GHB analogs. This establishes GHB analogs as powerful tools for investigating CaMKII neuropharmacology in general and as potential therapeutic compounds for cerebral ischemia in particular.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Oxibato de Sodio/metabolismo , Sitios de Unión , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Ácidos Carboxílicos/farmacología , Cristalografía por Rayos X , Ciclopentanos/farmacología , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Células HEK293 , Humanos , Neuroprotección , Unión Proteica , Dominios Proteicos , Transducción de Señal
3.
Immunology ; 162(2): 208-219, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33010039

RESUMEN

Immunogenicity risk assessment is a critical element in protein drug development. Currently, the risk assessment is most often performed using MHC-associated peptide proteomics (MAPPs) and/or T-cell activation assays. However, this is a highly costly procedure that encompasses limited sensitivity imposed by sample sizes, the MHC repertoire of the tested donor cohort and the experimental procedures applied. Recent work has suggested that these techniques could be complemented by accurate, high-throughput and cost-effective prediction of in silico models. However, this work covered a very limited set of therapeutic proteins and eluted ligand (EL) data. Here, we resolved these limitations by showcasing, in a broader setting, the versatility of in silico models for assessment of protein drug immunogenicity. A method for prediction of MHC class II antigen presentation was developed on the hereto largest available mass spectrometry (MS) HLA-DR EL data set. Using independent test sets, the performance of the method for prediction of HLA-DR antigen presentation hotspots was benchmarked. In particular, the method was showcased on a set of protein sequences including four therapeutic proteins and demonstrated to accurately predict the experimental MS hotspot regions at a significantly lower false-positive rate compared with other methods. This gain in performance was particularly pronounced when compared to the NetMHCIIpan-3.2 method trained on binding affinity data. These results suggest that in silico methods trained on MS HLA EL data can effectively and accurately be used to complement MAPPs assays for the risk assessment of protein drugs.


Asunto(s)
Presentación de Antígeno/inmunología , Antígenos HLA-DR/inmunología , Proteínas/inmunología , Epítopos de Linfocito T/inmunología , Antígenos de Histocompatibilidad Clase II/inmunología , Humanos , Ligandos , Activación de Linfocitos/inmunología , Unión Proteica/inmunología , Proteómica/métodos , Medición de Riesgo
4.
J Mol Cell Cardiol ; 143: 63-70, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32325152

RESUMEN

Our heart is comprised of many different cell types that all contribute to cardiac function. An important step in deciphering the molecular complexity of our heart is to decipher the molecular composition of the various cardiac cell types. Here we set out to delineate a comprehensive protein expression profile of the two most prevalent cell types in the heart: cardiomyocytes and cardiac fibroblasts. To this end, we isolated cardiomyocytes and fibroblasts from rat hearts and combined state-of-the-art flow cytometry with high-resolution mass spectrometry to investigate their proteome profiles right after isolation. We measured and quantified 5240 proteins in cardiomyocytes and 6328 proteins in cardiac fibroblasts. In addition to providing a global protein profile for these cardiac cell types, we also present specific findings, such as unique expression of ion channels and transcription factors for each cell type. For instance, we show that the sodium channel Scn7a and the cation channel Trpm7 are expressed in fibroblasts but not in cardiomyocytes, which underscores the importance of investigating the endogenous cell host prior to functional studies. Our dataset represents a valuable resource on protein expression profiles in these two primary cardiac cells types.


Asunto(s)
Fibroblastos/metabolismo , Miocitos Cardíacos/metabolismo , Proteoma , Proteómica , Animales , Biomarcadores , Células Cultivadas , Cromatografía Liquida , Perfilación de la Expresión Génica , Proteómica/métodos , Ratas , Espectrometría de Masas en Tándem , Transcriptoma
5.
Anal Chem ; 91(11): 7336-7345, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-31045344

RESUMEN

Hydrogen-deuterium exchange mass spectrometry (HDX-MS) is an established, powerful tool for investigating protein-ligand interactions, protein folding, and protein dynamics. However, HDX-MS is still an emergent tool for quality control of biopharmaceuticals and for establishing dynamic similarity between a biosimilar and an innovator therapeutic. Because industry will conduct quality control and similarity measurements over a product lifetime and in multiple locations, an understanding of HDX-MS reproducibility is critical. To determine the reproducibility of continuous-labeling, bottom-up HDX-MS measurements, the present interlaboratory comparison project evaluated deuterium uptake data from the Fab fragment of NISTmAb reference material (PDB: 5K8A ) from 15 laboratories. Laboratories reported ∼89 800 centroid measurements for 430 proteolytic peptide sequences of the Fab fragment (∼78 900 centroids), giving ∼100% coverage, and ∼10 900 centroid measurements for 77 peptide sequences of the Fc fragment. Nearly half of peptide sequences are unique to the reporting laboratory, and only two sequences are reported by all laboratories. The majority of the laboratories (87%) exhibited centroid mass laboratory repeatability precisions of ⟨ sLab⟩ ≤ (0.15 ± 0.01) Da (1σx̅). All laboratories achieved ⟨sLab⟩ ≤ 0.4 Da. For immersions of protein at THDX = (3.6 to 25) °C and for D2O exchange times of tHDX = (30 s to 4 h) the reproducibility of back-exchange corrected, deuterium uptake measurements for the 15 laboratories is σreproducibility15 Laboratories( tHDX) = (9.0 ± 0.9) % (1σ). A nine laboratory cohort that immersed samples at THDX = 25 °C exhibited reproducibility of σreproducibility25C cohort( tHDX) = (6.5 ± 0.6) % for back-exchange corrected, deuterium uptake measurements.


Asunto(s)
Anticuerpos Monoclonales/química , Espectrometría de Masas de Intercambio de Hidrógeno-Deuterio , Fragmentos Fab de Inmunoglobulinas/análisis
6.
Chembiochem ; 18(11): 1016-1021, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28346764

RESUMEN

Protein-based pharmaceuticals represent the fastest growing group of drugs in development in the pharmaceutical industry. One of the major challenges in the discovery, development, and distribution of biopharmaceuticals is the assessment of changes in their higher-order structure due to chemical modification. Here, we investigated the interactions of three different biochemical probes (Fab s) generated to detect conformational changes in a therapeutic IgG1 antibody (mAbX) by local hydrogen-deuterium exchange mass spectrometry (HDX-MS). We show that two of the probes target the Fc part of the antibody, whereas the third probe binds to the hinge region. Through HDX-ETD, we could distinguish specific binding patterns of the Fc -binding probes on mAbX at the amino-acid level. Preliminary surface plasmon resonance (SPR) experiments showed that these domain-selective Fab probes are sensitive to conformational changes in distinct regions of a full-length therapeutic antibody upon oxidation.


Asunto(s)
Anticuerpos Monoclonales/química , Fragmentos Fc de Inmunoglobulinas/química , Inmunoglobulina G , Sondas Moleculares , Anticuerpos Monoclonales/uso terapéutico , Medición de Intercambio de Deuterio , Diseño de Fármacos , Humanos , Espectrometría de Masas/métodos , Conformación Proteica
7.
Anal Chem ; 86(23): 11734-41, 2014 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-25325890

RESUMEN

Phage display (PD) is frequently used to discover peptides capable of binding to biological protein targets. The structural characterization of peptide-protein complexes is often challenging due to their low binding affinities and high structural flexibility. Here, we investigate the use of hydrogen/deuterium exchange mass spectrometry (HDX-MS) to characterize interactions of low affinity peptides with their cognate protein targets. The HDX-MS workflow was optimized to accurately detect low-affinity peptide-protein interactions by use of ion mobility, electron transfer dissociation, nonbinding control peptides, and statistical analysis of replicate data. We show that HDX-MS can identify regions in the two epigenetic regulator proteins KDM4C and KDM1A that are perturbed through weak interactions with PD-identified peptides. Two peptides cause reduced HDX on opposite sides of the active site of KDM4C, indicating distinct binding modes. In contrast, the perturbation site of another PD-selected peptide inhibiting the function of KDM1A maps to a GST-tag. Our results demonstrate that HDX-MS can validate and map weak peptide-protein interactions and pave the way for understanding and optimizing the binding of peptide scaffolds identified through PD and similar ligand discovery approaches.


Asunto(s)
Medición de Intercambio de Deuterio , Histona Demetilasas/química , Histona Demetilasas con Dominio de Jumonji/química , Péptidos/química , Sitios de Unión , Humanos , Ligandos , Espectrometría de Masas , Modelos Moleculares , Estructura Molecular
9.
Biopolymers ; 98(1): 1-10, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-21509746

RESUMEN

Bioconjugates containing the GnRH-III hormone decapeptide as a targeting moiety are able to deliver chemotherapeutic agents specifically to cancer cells expressing GnRH receptors, thereby increasing their local efficacy while limiting the peripheral toxicity. However, the number of GnRH receptors on cancer cells is limited and they desensitize under continuous hormone treatment. A possible approach to increase the receptor mediated tumor targeting and consequently the cytostatic effect of the bioconjugates would be the attachment of more than one chemotherapeutic agent to one GnRH-III molecule. Here we report on the design, synthesis and biochemical characterization of multifunctional bioconjugates containing GnRH-III as a targeting moiety and daunorubicin as a chemotherapeutic agent. Two different drug design approaches were pursued. The first one was based on the bifunctional [(4)Lys]-GnRH-III (Glp-His-Trp-Lys-His-Asp-Trp-Lys-Pro-Gly-NH(2)) containing two lysine residues in positions 4 and 8, whose ε-amino groups were used for the coupling of daunorubicin. In the second drug design, the native GnRH-III (Glp-His-Trp-Ser-His-Asp-Trp-Lys-Pro-Gly-NH(2)) was used as a scaffold; an additional lysine residue was coupled to the ϵ-amino group of (8) Lys in order to generate two free amino groups available for conjugation of daunorubicin. The in vitro stability/degradation of all synthesized compounds was investigated in human serum, as well as in the presence of rat liver lysosomal homogenate. Their cellular uptake was determined on human breast cancer cells and the cytostatic effect was evaluated on human breast, colon and prostate cancer cell lines. Compared with a monofunctional compound, both drug design approaches resulted in multifunctional bioconjugates with increased cytostatic effect.


Asunto(s)
Antineoplásicos , Daunorrubicina , Secuencia de Aminoácidos , Animales , Antineoplásicos/farmacología , Daunorrubicina/química , Humanos , Neoplasias
10.
Bioorg Med Chem Lett ; 22(18): 5811-3, 2012 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-22917519

RESUMEN

The human histone demethylases of the KDM4 (JMJD2) family have been associated to diseases such as prostate and breast cancer, as well as X-linked mental retardation. Therefore, these enzymes are considered oncogenes and their selective inhibition might be a possible therapeutic approach to treat cancer. Here we describe a heterocyclic ring system library screened against the histone demethylase KDM4C (JMJD2C) in the search for novel inhibitory scaffolds. A 4-hydroxypyrazole scaffold was identified as an inhibitor of KDM4C; this scaffold could be employed in the further development of novel therapeutics, as well as for the elucidation of the biological roles of KDM4C on epigenetic regulation.


Asunto(s)
Diseño de Fármacos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Histona Demetilasas con Dominio de Jumonji/antagonistas & inhibidores , Pirazoles/farmacología , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Humanos , Histona Demetilasas con Dominio de Jumonji/metabolismo , Estructura Molecular , Pirazoles/química , Relación Estructura-Actividad
11.
Sci Rep ; 12(1): 1696, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35105898

RESUMEN

Prolactin-releasing peptide (PrRP) is an endogenous neuropeptide involved in appetite regulation and energy homeostasis. PrRP binds with high affinity to G-protein coupled receptor 10 (GPR10) and with lesser activity towards the neuropeptide FF receptor type 2 (NPFF2R). The present study aimed to develop long-acting PrRP31 analogues with potent anti-obesity efficacy. A comprehensive series of C18 lipidated PrRP31 analogues was characterized in vitro and analogues with various GPR10 and NPFF2R activity profiles were profiled for bioavailability and metabolic effects following subcutaneous administration in diet-induced obese (DIO) mice. PrRP31 analogues acylated with a C18 lipid chain carrying a terminal acid (C18 diacid) were potent GPR10-selective agonists and weight-neutral in DIO mice. In contrast, acylation with aliphatic C18 lipid chain (C18) resulted in dual GPR10-NPFF2R co-agonists that suppressed food intake and promoted a robust weight loss in DIO mice, which was sustained for at least one week after last dosing. Rapid in vivo degradation of C18 PrRP31 analogues gave rise to circulating lipidated PrRP metabolites maintaining dual GPR10-NPFF2R agonist profile and long-acting anti-obesity efficacy in DIO mice. Combined GPR10 and NPFF2R activation may therefore be a critical mechanism for obtaining robust anti-obesity efficacy of PrRP31 analogues.


Asunto(s)
Fármacos Antiobesidad/administración & dosificación , Obesidad/tratamiento farmacológico , Hormona Liberadora de Prolactina/análogos & derivados , Hormona Liberadora de Prolactina/administración & dosificación , Receptores Acoplados a Proteínas G/agonistas , Receptores de Neuropéptido/agonistas , Pérdida de Peso/efectos de los fármacos , Acilación , Animales , Regulación del Apetito/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Ingestión de Alimentos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/etiología , Obesidad/metabolismo , Hormona Liberadora de Prolactina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropéptido/metabolismo , Resultado del Tratamiento
12.
J Med Chem ; 65(22): 15066-15084, 2022 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-36346645

RESUMEN

Ca2+/calmodulin-dependent protein kinase II alpha (CaMKIIα) is a brain-relevant kinase and an emerging drug target for ischemic stroke and neurodegenerative disorders. Despite reported CaMKIIα inhibitors, their usefulness is limited by low subtype selectivity and brain permeability. (E)-2-(5-Hydroxy-5,7,8,9-tetrahydro-6H-benzo[7]annulen-6-ylidene)acetic acid (NCS-382) is structurally related to the proposed neuromodulator, γ-hydroxybutyric acid, and is a brain-penetrating high nanomolar-affinity ligand selective for the CaMKIIα hub domain. Herein, we report the first series of NCS-382 analogs displaying improved affinity and preserved brain permeability. Specifically, we present Ph-HTBA (1i) with enhanced mid-nanomolar affinity for the CaMKIIα binding site and a marked hub thermal stabilization effect along with a distinct CaMKIIα Trp403 flip upon binding. Moreover, Ph-HTBA has good cellular permeability and low microsomal clearance and shows brain permeability after systemic administration to mice, signified by a high Kp, uu value (0.85). Altogether, our study highlights Ph-HTBA as a promising candidate for CaMKIIα-associated pharmacological interventions and future clinical development.


Asunto(s)
Benzocicloheptenos , Encéfalo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Animales , Ratones , Benzocicloheptenos/farmacología , Sitios de Unión , Encéfalo/metabolismo , Unión Proteica , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/antagonistas & inhibidores
13.
Bioconjug Chem ; 22(7): 1320-9, 2011 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-21668011

RESUMEN

Here, we report on the synthesis, enzymatic stability, and antitumor activity of novel bioconjugates containing the chemotherapeutic agent daunorubicin attached through an oxime bond to various gonadotropin-releasing hormone-III (GnRH-III) derivatives. In order to increase the enzymatic stability of the bioconjugates (in particular against chymotrypsin), (4)Ser was replaced by N-Me-Ser or Lys(Ac). A compound in which (4)Lys was not acetylated was also prepared, with the aim of investigating the influence of the free ε-amino group on the biochemical properties. The in vitro cytostatic effect of the bioconjugates was determined on MCF-7 human breast, HT-29 human colon, and LNCaP human prostate cancer cells by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Their stability/degradation (1) in human serum, (2) in the presence of rat liver lysosomal homogenate, and (3) in the presence of digestive enzymes (trypsin, chymotrypsin, and pepsin) was analyzed by liquid chromatography in combination with mass spectrometry. The results showed that (1) all synthesized bioconjugates had in vitro cytostatic effect, (2) they were stable in human serum at least for 24 h, and (3) they were hydrolyzed in the presence of lysosomal homogenate. All compounds were stable in the presence of (1) pepsin and (2) trypsin (except for the (4)Lys containing bioconjugate). In the presence of chymotrypsin, all bioconjugates were digested; the degradation rate strongly depending on their structure. The bioconjugates in which (4)Ser was replaced by N-Me-Ser or Lys(Ac) had the highest enzymatic stability, making them potential candidates for oral administration. In vivo tumor growth inhibitory effect of two selected bioconjugates was evaluated on orthotopically developed C26 murine colon carcinoma bearing mice. The results indicated that the compound containing Lys(Ac) in position 4 had significantly higher antitumor activity than the parent bioconjugate.


Asunto(s)
Antibióticos Antineoplásicos/metabolismo , Antibióticos Antineoplásicos/uso terapéutico , Daunorrubicina/metabolismo , Daunorrubicina/uso terapéutico , Hormona Liberadora de Gonadotropina/metabolismo , Hormona Liberadora de Gonadotropina/uso terapéutico , Neoplasias/tratamiento farmacológico , Ácido Pirrolidona Carboxílico/análogos & derivados , Secuencia de Aminoácidos , Animales , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacología , Línea Celular Tumoral , Daunorrubicina/química , Daunorrubicina/farmacología , Estabilidad de Medicamentos , Femenino , Hormona Liberadora de Gonadotropina/química , Hormona Liberadora de Gonadotropina/farmacología , Humanos , Lisosomas/metabolismo , Ratones , Ratones Endogámicos BALB C , Estructura Secundaria de Proteína , Ácido Pirrolidona Carboxílico/química , Ácido Pirrolidona Carboxílico/metabolismo , Ácido Pirrolidona Carboxílico/farmacología , Ácido Pirrolidona Carboxílico/uso terapéutico , Ratas , Suero/metabolismo
14.
J Pept Sci ; 17(1): 39-46, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20812368

RESUMEN

Owing to the high chemoselectivity between an aminooxy function and a carbonyl group, oxime ligation is one of the most preferred procedures for the preparation of peptide conjugates. However, the sensitivity of (aminooxy)acetylated peptides to ketones and aldehydes makes their synthesis and storage difficult. In our study, we established the efficient synthesis of an (aminooxy)acetylated-somatostatin derivative in the presence of free (aminooxy)acetic acid, which was used as a 'carbonyl capture' reagent in the final cleavage step. This (aminooxy)acetylated compound was further used for the chemoselective ligation (oxime bond formation) with daunorubicin and 4-fluorobenzaldehyde leading to the formation of conjugates with potential applications in targeted cancer chemotherapy and positron emission tomography.


Asunto(s)
Ácido Aminooxiacético/química , Daunorrubicina/química , Somatostatina/química , Somatostatina/síntesis química , Acetilación , Línea Celular Tumoral , Cromatografía Líquida de Alta Presión , Humanos , Espectrometría de Masas , Estructura Molecular
15.
Br J Pharmacol ; 177(17): 3975-3990, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32484592

RESUMEN

BACKGROUND AND PURPOSE: The δ-subunit-containing GABAA receptors, α4 ß1 δ and α4 ß3 δ, in dentate gyrus granule cells (DGGCs) are known to exhibit both spontaneous channel openings (i.e. constitutive activity) and agonist-induced current. The functional implications of spontaneous gating are unclear. In this study, we tested the hypothesis that constitutively active α4 ß1/3 δ receptors limit agonist efficacy. EXPERIMENTAL APPROACH: Whole-cell electrophysiological recordings of adult male rat and mouse hippocampal DGGCs were used to characterize known agonists and antagonists at δ-subunit-containing GABAA receptors. To separate constitutive and agonist-induced currents, different recording conditions were employed. KEY RESULTS: Recordings at either 24°C or 34°C, including the PKC autoinhibitory peptide (19-36) intracellularly, removed spontaneous gating by GABAA receptors. In the absence of spontaneous gating, DGGCs responded to the α4 ß1/3 δ orthosteric agonist Thio-THIP with a four-fold increased efficacy relative to recording conditions favouring constitutive activity. Surprisingly, the neutral antagonist gabazine was unable to antagonize the current by Thio-THIP. Furthermore, a current was elicited by gabazine alone only when the constitutive current was silenced (EC50 2.1 µM). The gabazine-induced current was inhibited by picrotoxin, potentiated by DS2, completely absent in δ-/- mice and reduced in ß1 -/- mice, but could not be replicated in human α4 ß1/3 δ receptors expressed heterologously in HEK cells. CONCLUSION AND IMPLICATIONS: Kinase activity infers spontaneous gating in α4 ß1/3 δ receptors in DGGCs. This significantly limits the efficacy of GABAA agonists and has implications in pathologies involving aberrant excitability caused by phosphorylation (e.g. addiction and epilepsy). In such cases, the efficacy of δ-preferring GABAA ligands may be reduced.


Asunto(s)
Neuronas , Receptores de GABA-A , Animales , Hipocampo/metabolismo , Ligandos , Masculino , Ratones , Neuronas/metabolismo , Ratas , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Ácido gamma-Aminobutírico
16.
Protein Pept Lett ; 23(9): 772-6, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27295953

RESUMEN

The design and synthesis of modified pentapeptides based on a truncated version of the substrate for KDM4C, a histone lysine demethylase (KDM), and investigation of their inhibitory activity at KDM4C is reported. By modifying the lysine residue corresponding to lysine 9 at histone 3 (H3K9), three different series of peptides were designed and synthesized. One series contained N-acylated H3K9 and two series introduced triazoles in this position via click chemistry to enable facile variation of headgroups. The click reaction is compatible with free amino acids and this was performed on an azido containing deprotected pentapeptide demonstrating a highly facile and convergent synthetic strategy for making substrate-based inhibitors. One of the 14 peptides showed inhibitory activity at KDM4C demonstrating the need for an iron chelator in the pentapeptide series.


Asunto(s)
Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Histonas/química , Histona Demetilasas con Dominio de Jumonji/antagonistas & inhibidores , Péptidos/síntesis química , Péptidos/farmacología , Química Clic , Diseño de Fármacos , Inhibidores Enzimáticos/química , Humanos , Lisina/metabolismo , Estructura Molecular , Péptidos/química
17.
Eur J Pharm Biopharm ; 93: 95-109, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25791210

RESUMEN

Protein pharmaceuticals are the fastest growing class of novel therapeutic agents, and have been a major research and development focus in the (bio)pharmaceutical industry. Due to their large size and structural diversity, biopharmaceuticals represent a formidable challenge regarding analysis and characterization compared to traditional small molecule drugs. Any changes to the primary, secondary, tertiary or quaternary structure of a protein can potentially impact its function, efficacy and safety. The analysis and characterization of (structural) protein heterogeneity is therefore of utmost importance. Mass spectrometry has evolved as a powerful tool for the characterization of both primary and higher order structures of protein pharmaceuticals. Furthermore, the chemical and physical stability of protein drugs, as well as their pharmacokinetics are nowadays routinely determined by mass spectrometry. Here we review current techniques in primary, secondary and tertiary structure analysis of proteins by mass spectrometry. An overview of established top-down and bottom-up protein analyses will be given, and in particular the use of advanced technologies such as hydrogen/deuterium exchange mass spectrometry (HDX-MS) for higher-order structure analysis will be discussed. Modification and degradation pathways of protein drugs and their detection by mass spectrometry will be described, as well as the growing use of mass spectrometry to assist protein design and biopharmaceutical development.


Asunto(s)
Espectrometría de Masas , Preparaciones Farmacéuticas/química , Proteínas/química , Proteínas/farmacología , Tecnología Farmacéutica/métodos , Estabilidad de Medicamentos , Modelos Moleculares , Conformación Proteica , Desnaturalización Proteica , Estabilidad Proteica , Proteolisis , Relación Estructura-Actividad
18.
Mol Biosyst ; 11(10): 2786-97, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26205238

RESUMEN

In the cell the second messenger cyclic nucleotides cAMP and cGMP mediate a wide variety of external signals. Both signaling molecules are degraded by the superfamily of phosphodiesterases (PDEs) consisting of more than 50 different isoforms. Several of these PDEs are implicated in disease processes inspiring the quest for and synthesis of selective PDE inhibitors, that unfortunately have led to very mixed successes in clinical trials. This may be partially caused by their pharmacological action. Accumulating data suggests that small differences between different PDE isoforms may already result in specific tissue distributions, cellular localization and different involvement in higher order signal protein complexes. The role of PDEs in these higher order signal protein complexes has only been marginally addressed, as no screening methodology is available to address this in a more comprehensive way. Affinity based chemical proteomics is a relatively new tool to identify specific protein-protein interactions. Here, to study the interactome of PDEs, we synthesized a broad spectrum PDE-capturing resin based on the non-selective PDE inhibitor 3-isobutyl-1-methylxanthine (IBMX). Chemical proteomics characterization of this resin in HeLa cell lysates led to the capture of several different PDEs. Combining the IBMX-resin with in-solution competition with the available more selective PDE inhibitors, cilostamide and papaverine, allowed us to selectively probe the interactome of PDE3A in HeLa cells. Besides known interactors such as the family of 14-3-3 proteins, PDE3A was found to associate with a PP2A complex composed of a regulatory, scaffold and catalytic subunit.


Asunto(s)
1-Metil-3-Isobutilxantina/farmacología , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3/metabolismo , Inhibidores de Fosfodiesterasa/farmacología , Proteómica/métodos , 1-Metil-3-Isobutilxantina/química , Proteínas 14-3-3/metabolismo , Células HeLa , Humanos , Papaverina/farmacología , Inhibidores de Fosfodiesterasa/química , Unión Proteica/efectos de los fármacos , Mapas de Interacción de Proteínas , Proteína Fosfatasa 2/metabolismo , Quinolonas/farmacología
19.
ACS Chem Biol ; 9(9): 2131-8, 2014 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-25014588

RESUMEN

Inhibition of histone demethylases has within recent years advanced into a new strategy for treating cancer and other diseases. Targeting specific histone demethylases can be challenging, as the active sites of KDM1A-B and KDM4A-D histone demethylases are highly conserved. Most inhibitors developed up-to-date target either the cofactor- or substrate-binding sites of these enzymes, resulting in a lack of selectivity and off-target effects. This study describes the discovery of the first peptide-based inhibitors of KDM4 histone demethylases that do not share the histone peptide sequence or inhibit through substrate competition. Through screening of DNA-encoded peptide libraries against KDM1 and -4 histone demethylases by phage display, two cyclic peptides targeting the histone demethylase KDM4C were identified and developed as inhibitors by amino acid replacement, truncation, and chemical modifications. Hydrogen/deuterium exchange mass spectrometry revealed that the peptide-based inhibitors target KDM4C through substrate-independent interactions located on the surface remote from the active site within less conserved regions of KDM4C. The sites discovered in this study provide a new approach of targeting KDM4C through substrate- and cofactor-independent interactions and may be further explored to develop potent selective inhibitors and biological probes for the KDM4 family.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Histona Demetilasas con Dominio de Jumonji/antagonistas & inhibidores , Biblioteca de Péptidos , Secuencia de Aminoácidos , Dominio Catalítico , Línea Celular/efectos de los fármacos , Coenzimas , Medición de Intercambio de Deuterio , Inhibidores Enzimáticos/química , Ensayos Analíticos de Alto Rendimiento/métodos , Histona Demetilasas/antagonistas & inhibidores , Histona Demetilasas/metabolismo , Humanos , Concentración 50 Inhibidora , Histona Demetilasas con Dominio de Jumonji/metabolismo , Datos de Secuencia Molecular
20.
PLoS One ; 8(7): e67653, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23844048

RESUMEN

Posttranslational modifications (PTMs) of the histone H3 tail such as methylation, acetylation and phosphorylation play important roles in epigenetic signaling. Here we study the effect of some of these PTMs on the demethylation rates of methylated lysine 9 in vitro using peptide substrates mimicking histone H3. Various combinations with other PTMs were employed to study possible cross-talk effects by comparing enzyme kinetic characteristics. We compared the kinetics of histone tail substrates for truncated histone lysine demethylases KDM4A and KDM4C containing only the catalytic core (cc) and some combinations were characterized on full length (FL) KDM4A and KDM4C. We found that the substrates combining trimethylated K4 and K9 resulted in a significant increase in the catalytic activity for FL-KDM4A. For the truncated versions of KDM4A and KDM4C a two-fold increase in the catalytic activity toward bis-trimethylated substrates could be observed. Furthermore, a significant difference in the catalytic activity between dimethylated and trimethylated substrates was found for full length demethylases in line with what has been reported previously for truncated demethylases. Histone peptide substrates phosphorylated at T11 could not be demethylated by neither truncated nor full length KDM4A and KDM4C, suggesting that phosphorylation of threonine 11 prevents demethylation of the H3K9me3 mark on the same peptide. Acetylation of K14 was also found to influence demethylation rates significantly. Thus, for truncated KDM4A, acetylation on K14 of the substrate leads to an increase in enzymatic catalytic efficiency (k cat/K m), while for truncated KDM4C it induces a decrease, primarily caused by changes in K m. This study demonstrates that demethylation activities towards trimethylated H3K9 are significantly influenced by other PTMs on the same peptide, and emphasizes the importance of studying these interactions at the peptide level to get a more detailed understanding of the dynamics of epigenetic marks.


Asunto(s)
Histona Demetilasas/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Procesamiento Proteico-Postraduccional , Acetilación , Secuencia de Aminoácidos , Pruebas de Enzimas , Epigénesis Genética , Histona Demetilasas/química , Histonas/química , Humanos , Cinética , Lisina/química , Metilación , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Fosforilación , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Transducción de Señal , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA