Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(8): 4215-4233, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38364861

RESUMEN

The limited regenerative capacity of the human heart contributes to high morbidity and mortality worldwide. In contrast, zebrafish exhibit robust regenerative capacity, providing a powerful model for studying how to overcome intrinsic epigenetic barriers maintaining cardiac homeostasis and initiate regeneration. Here, we present a comprehensive analysis of the histone modifications H3K4me1, H3K4me3, H3K27me3 and H3K27ac during various stages of zebrafish heart regeneration. We found a vast gain of repressive chromatin marks one day after myocardial injury, followed by the acquisition of active chromatin characteristics on day four and a transition to a repressive state on day 14, and identified distinct transcription factor ensembles associated with these events. The rapid transcriptional response involves the engagement of super-enhancers at genes implicated in extracellular matrix reorganization and TOR signaling, while H3K4me3 breadth highly correlates with transcriptional activity and dynamic changes at genes involved in proteolysis, cell cycle activity, and cell differentiation. Using loss- and gain-of-function approaches, we identified transcription factors in cardiomyocytes and endothelial cells influencing cardiomyocyte dedifferentiation or proliferation. Finally, we detected significant evolutionary conservation between regulatory regions that drive zebrafish and neonatal mouse heart regeneration, suggesting that reactivating transcriptional and epigenetic networks converging on these regulatory elements might unlock the regenerative potential of adult human hearts.


Asunto(s)
Cromatina , Redes Reguladoras de Genes , Corazón , Animales , Humanos , Ratones , Diferenciación Celular , Cromatina/metabolismo , Cromatina/genética , Epigénesis Genética , Código de Histonas , Histonas/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/citología , Regeneración/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Pez Cebra/genética
2.
Circulation ; 150(16): 1248-1267, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39206545

RESUMEN

BACKGROUND: The myocardium adapts to ischemia/reperfusion (I/R) by changes in gene expression, determining the cardiac response to reperfusion. mRNA translation is a key component of gene expression. It is largely unknown how regulation of mRNA translation contributes to cardiac gene expression and inflammation in response to reperfusion and whether it can be targeted to mitigate I/R injury. METHODS: To examine translation and its impact on gene expression in response to I/R, we measured protein synthesis after reperfusion in vitro and in vivo. Underlying mechanisms of translational control were examined by pharmacological and genetic targeting of translation initiation in mice. Cell type-specific ribosome profiling was performed in mice that had been subjected to I/R to determine the impact of mRNA translation on the regulation of gene expression in cardiomyocytes. Translational regulation of inflammation was studied by quantification of immune cell infiltration, inflammatory gene expression, and cardiac function after short-term inhibition of translation initiation. RESULTS: Reperfusion induced a rapid recovery of translational activity that exceeds baseline levels in the infarct and border zone and is mediated by translation initiation through the mTORC1 (mechanistic target of rapamycin complex 1)-4EBP1 (eIF4E-binding protein 1)-eIF (eukaryotic initiation factor) 4F axis. Cardiomyocyte-specific ribosome profiling identified that I/R increased translation of mRNA networks associated with cardiac inflammation and cell infiltration. Short-term inhibition of the mTORC1-4EBP1-eIF4F axis decreased the expression of proinflammatory cytokines such as Ccl2 (C-C motif chemokine ligand 2) of border zone cardiomyocytes, thereby attenuating Ly6Chi monocyte infiltration and myocardial inflammation. In addition, we identified a systemic immunosuppressive effect of eIF4F translation inhibitors on circulating monocytes, directly inhibiting monocyte infiltration. Short-term pharmacological inhibition of eIF4F complex formation by 4EGI-1 or rapamycin attenuated translation, reduced infarct size, and improved cardiac function after myocardial infarction. CONCLUSIONS: Global protein synthesis is inhibited during ischemia and shortly after reperfusion, followed by a recovery of protein synthesis that exceeds baseline levels in the border and infarct zones. Activation of mRNA translation after reperfusion is driven by mTORC1/eIF4F-mediated regulation of initiation and mediates an mRNA network that controls inflammation and monocyte infiltration to the myocardium. Transient inhibition of the mTORC1-/eIF4F axis inhibits translation and attenuates Ly6Chi monocyte infiltration by inhibiting a proinflammatory response at the site of injury and of circulating monocytes.


Asunto(s)
Ratones Endogámicos C57BL , Daño por Reperfusión Miocárdica , Biosíntesis de Proteínas , Animales , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Ratones , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Inflamación/metabolismo , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , ARN Mensajero/metabolismo , Modelos Animales de Enfermedad , Antígenos Ly/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas de Ciclo Celular
3.
Eur Heart J ; 45(21): 1904-1916, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38554125

RESUMEN

BACKGROUND AND AIMS: There is significant potential to streamline the clinical pathway for patients undergoing transcatheter aortic valve implantation (TAVI). The purpose of this study was to evaluate the effect of implementing BENCHMARK best practices on the efficiency and safety of TAVI in 28 sites in 7 European countries. METHODS: This was a study of patients with severe symptomatic aortic stenosis (AS) undergoing TAVI with balloon-expandable valves before and after implementation of BENCHMARK best practices. Principal objectives were to reduce hospital length of stay (LoS) and duration of intensive care stay. Secondary objective was to document patient safety. RESULTS: Between January 2020 and March 2023, 897 patients were documented prior to and 1491 patients after the implementation of BENCHMARK practices. Patient characteristics were consistent with a known older TAVI population and only minor differences. Mean LoS was reduced from 7.7 ± 7.0 to 5.8 ± 5.6 days (median 6 vs. 4 days; P < .001). Duration of intensive care was reduced from 1.8 to 1.3 days (median 1.1 vs. 0.9 days; P < .001). Adoption of peri-procedure best practices led to increased use of local anaesthesia (96.1% vs. 84.3%; P < .001) and decreased procedure (median 47 vs. 60 min; P < .001) and intervention times (85 vs. 95 min; P < .001). Thirty-day patient safety did not appear to be compromised with no differences in all-cause mortality (0.6% in both groups combined), stroke/transient ischaemic attack (1.4%), life-threatening bleeding (1.3%), stage 2/3 acute kidney injury (0.7%), and valve-related readmission (1.2%). CONCLUSIONS: Broad implementation of BENCHMARK practices contributes to improving efficiency of TAVI pathway reducing LoS and costs without compromising patient safety.


Asunto(s)
Estenosis de la Válvula Aórtica , Benchmarking , Tiempo de Internación , Reemplazo de la Válvula Aórtica Transcatéter , Humanos , Reemplazo de la Válvula Aórtica Transcatéter/métodos , Estenosis de la Válvula Aórtica/cirugía , Masculino , Femenino , Anciano de 80 o más Años , Tiempo de Internación/estadística & datos numéricos , Anciano , Vías Clínicas , Europa (Continente)/epidemiología , Complicaciones Posoperatorias/epidemiología , Complicaciones Posoperatorias/prevención & control , Seguridad del Paciente
4.
Basic Res Cardiol ; 119(3): 453-479, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38491291

RESUMEN

Though myocardial infarction (MI) in pigs is a well-established translational large animal model, it has not yet been widely used for immunotherapy studies, and a comprehensive description of the immune response to MI in this species is lacking. We induced MI in Landrace pigs by balloon occlusion of the left anterior descending artery over 90 min. Within 14 days, the necrotic myocardium was progressively replaced by scar tissue with involvement of myofibroblasts. We characterized the immune response in the heart ex vivo by (immuno)histology, flow cytometry, and RNA sequencing of myocardial tissue on days 3, 7, and 14 after MI. Besides a clear predominance of myeloid cells among heart-infiltrating leukocytes, we detected activated T cells and an increasing proportion of CD4+ Foxp3+ regulatory T cells (Treg), especially in the infarct core-findings that closely mirror what has been observed in mice and humans after MI. Transcriptome data indicated inflammatory activity that was persistent but markedly changing in character over time and linked to extracellular matrix biology. Analysis of lymphocytes in heart-draining lymph nodes revealed significantly higher proliferation rates of T helper cell subsets, including Treg on day 7 after MI, compared to sham controls. Elevated frequencies of myeloid progenitors in the spleen suggest that it might be a site of emergency myelopoiesis after MI in pigs, as previously shown in mice. We thus provide a first description of the immune response to MI in pigs, and our results can aid future research using the species for preclinical immunotherapy studies.


Asunto(s)
Modelos Animales de Enfermedad , Infarto del Miocardio , Miocardio , Linfocitos T Reguladores , Animales , Infarto del Miocardio/inmunología , Infarto del Miocardio/patología , Linfocitos T Reguladores/inmunología , Miocardio/patología , Miocardio/inmunología , Sus scrofa , Porcinos , Activación de Linfocitos , Masculino , Transcriptoma , Femenino , Factores de Tiempo
5.
Basic Res Cardiol ; 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39311911

RESUMEN

Inflammation, fibrosis and metabolic stress critically promote heart failure with preserved ejection fraction (HFpEF). Exposure to high-fat diet and nitric oxide synthase inhibitor N[w]-nitro-l-arginine methyl ester (L-NAME) recapitulate features of HFpEF in mice. To identify disease-specific traits during adverse remodeling, we profiled interstitial cells in early murine HFpEF using single-cell RNAseq (scRNAseq). Diastolic dysfunction and perivascular fibrosis were accompanied by an activation of cardiac fibroblast and macrophage subsets. Integration of fibroblasts from HFpEF with two murine models for heart failure with reduced ejection fraction (HFrEF) identified a catalog of conserved fibroblast phenotypes across mouse models. Moreover, HFpEF-specific characteristics included induced metabolic, hypoxic and inflammatory transcription factors and pathways, including enhanced expression of Angiopoietin-like 4 (Angptl4) next to basement membrane compounds, such as collagen IV (Col4a1). Fibroblast activation was further dissected into transcriptional and compositional shifts and thereby highly responsive cell states for each HF model were identified. In contrast to HFrEF, where myofibroblast and matrifibrocyte activation were crucial features, we found that these cell states played a subsidiary role in early HFpEF. These disease-specific fibroblast signatures were corroborated in human myocardial bulk transcriptomes. Furthermore, we identified a potential cross-talk between macrophages and fibroblasts via SPP1 and TNFɑ with estimated fibroblast target genes including Col4a1 and Angptl4. Treatment with recombinant ANGPTL4 ameliorated the murine HFpEF phenotype and diastolic dysfunction by reducing collagen IV deposition from fibroblasts in vivo and in vitro. In line, ANGPTL4, was elevated in plasma samples of HFpEF patients and particularly high levels associated with a preserved global-longitudinal strain. Taken together, our study provides a comprehensive characterization of molecular fibroblast activation patterns in murine HFpEF, as well as the identification of Angiopoietin-like 4 as central mechanistic regulator with protective effects.

6.
Circulation ; 145(10): 765-782, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35113652

RESUMEN

BACKGROUND: Recent studies have established that CCR2 (C-C chemokine receptor type 2) marks proinflammatory subsets of monocytes, macrophages, and dendritic cells that contribute to adverse left ventricle (LV) remodeling and heart failure progression. Elucidation of the effector mechanisms that mediate adverse effects of CCR2+ monocytes, macrophages, and dendritic cells will yield important insights into therapeutic strategies to suppress myocardial inflammation. METHODS: We used mouse models of reperfused myocardial infarction, angiotensin II and phenylephrine infusion, and diphtheria toxin cardiomyocyte ablation to investigate CCL17 (C-C chemokine ligand 17). We used Ccl17 knockout mice, flow cytometry, RNA sequencing, biochemical assays, cell trafficking studies, and in vivo cell depletion to identify the cell types that generate CCL17, define signaling pathways that controlled its expression, delineate the functional importance of CCL17 in adverse LV remodeling and heart failure progression, and determine the mechanistic basis by which CCL17 exerts its effects. RESULTS: We demonstrated that CCL17 is expressed in CCR2+ macrophages and cluster of differentiation 11b+ conventional dendritic cells after myocardial infarction, angiotensin II and phenylephrine infusion, and diphtheria toxin cardiomyocyte ablation. We clarified the transcriptional signature of CCL17+ macrophages and dendritic cells and identified granulocyte-macrophage colony-stimulating factor (GM-CSF) signaling as a key regulator of CCL17 expression through cooperative activation of STAT5 (signal transducer and activator of transcription 5) and canonical NF-κB (nuclear factor κ-light-chain-enhancer of activated B cells) signaling. Ccl17 deletion resulted in reduced LV remodeling, decreased myocardial fibrosis and cardiomyocyte hypertrophy, and improved LV systolic function after myocardial infarction and angiotensin II and phenylephrine infusion. We observed increased abundance of regulatory T cells (Tregs) in the myocardium of injured Ccl17 knockout mice. CCL17 inhibited Treg recruitment through biased activation of CCR4. CCL17 activated Gq signaling and CCL22 (C-C chemokine ligand 22) activated both Gq and ARRB (ß-arrestin) signaling downstream of CCR4. CCL17 competitively inhibited CCL22 stimulated ARRB signaling and Treg migration. We provide evidence that Tregs mediated the protective effects of Ccl17 deletion on myocardial inflammation and adverse LV remodeling. CONCLUSIONS: These findings identify CCL17 as a proinflammatory mediator of CCR2+ macrophages and dendritic cells and suggest that inhibition of CCL17 may serve as an effective strategy to promote Treg recruitment and suppress myocardial inflammation.


Asunto(s)
Insuficiencia Cardíaca , Infarto del Miocardio , Angiotensina II/farmacología , Animales , Quimiocina CCL17/metabolismo , Quimiocina CCL17/farmacología , Toxina Diftérica/metabolismo , Toxina Diftérica/farmacología , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Humanos , Inflamación/metabolismo , Ligandos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fenilefrina/metabolismo , Fenilefrina/farmacología , Linfocitos T Reguladores/metabolismo , Remodelación Ventricular
7.
Basic Res Cardiol ; 118(1): 25, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37378715

RESUMEN

RNA-protein interactions are central to cardiac function, but how activity of individual RNA-binding protein is regulated through signaling cascades in cardiomyocytes during heart failure development is largely unknown. The mechanistic target of rapamycin kinase is a central signaling hub that controls mRNA translation in cardiomyocytes; however, a direct link between mTOR signaling and RNA-binding proteins in the heart has not been established. Integrative transcriptome and translatome analysis revealed mTOR dependent translational upregulation of the RNA binding protein Ybx1 during early pathological remodeling independent of mRNA levels. Ybx1 is necessary for pathological cardiomyocyte growth by regulating protein synthesis. To identify the molecular mechanisms how Ybx1 regulates cellular growth and protein synthesis, we identified mRNAs bound to Ybx1. We discovered that eucaryotic elongation factor 2 (Eef2) mRNA is bound to Ybx1, and its translation is upregulated during cardiac hypertrophy dependent on Ybx1 expression. Eef2 itself is sufficient to drive pathological growth by increasing global protein translation. Finally, Ybx1 depletion in vivo preserved heart function during pathological cardiac hypertrophy. Thus, activation of mTORC1 links pathological signaling cascades to altered gene expression regulation by activation of Ybx1 which in turn promotes translation through increased expression of Eef2.


Asunto(s)
Insuficiencia Cardíaca , Serina-Treonina Quinasas TOR , Cardiomegalia/metabolismo , Insuficiencia Cardíaca/metabolismo , Miocitos Cardíacos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR/metabolismo , Animales , Ratones , Ratas
8.
Basic Res Cardiol ; 117(1): 61, 2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36383299

RESUMEN

AIMS: P-selectin is an activatable adhesion molecule on platelets promoting platelet aggregation, and platelet-leukocyte complex (PLC) formation. Increased numbers of PLC are circulating in the blood of patients shortly after acute myocardial infarction and predict adverse outcomes. These correlations led to speculations about whether PLC may represent novel therapeutic targets. We therefore set out to elucidate the pathomechanistic relevance of PLC in myocardial ischemia and reperfusion injury. METHODS AND RESULTS: By generating P-selectin deficient bone marrow chimeric mice, the post-myocardial infarction surge in PLC numbers in blood was prevented. Yet, intravital microscopy, flow cytometry and immunohistochemical staining, echocardiography, and gene expression profiling showed unequivocally that leukocyte adhesion to the vessel wall, leukocyte infiltration, and myocardial damage post-infarction were not altered in response to the lack in PLC. CONCLUSION: We conclude that myocardial infarction associated sterile inflammation triggers PLC formation, reminiscent of conserved immunothrombotic responses, but without PLC influencing myocardial ischemia and reperfusion injury in return. Our experimental data do not support a therapeutic concept of selectively targeting PLC formation in myocardial infarction.


Asunto(s)
Infarto del Miocardio , Isquemia Miocárdica , Daño por Reperfusión Miocárdica , Daño por Reperfusión , Ratones , Animales , Selectina-P/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Leucocitos , Infarto del Miocardio/metabolismo , Daño por Reperfusión/metabolismo , Isquemia Miocárdica/metabolismo
9.
Basic Res Cardiol ; 117(1): 32, 2022 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-35737129

RESUMEN

Alterations of RNA editing that affect the secondary structure of RNAs can cause human diseases. We therefore studied RNA editing in failing human hearts. Transcriptome sequencing showed that adenosine-to-inosine (A-to-I) RNA editing was responsible for 80% of the editing events in the myocardium. Failing human hearts were characterized by reduced RNA editing. This was primarily attributable to Alu elements in introns of protein-coding genes. In the failing left ventricle, 166 circRNAs were upregulated and 7 circRNAs were downregulated compared to non-failing controls. Most of the upregulated circRNAs were associated with reduced RNA editing in the host gene. ADAR2, which binds to RNA regions that are edited from A-to-I, was decreased in failing human hearts. In vitro, reduction of ADAR2 increased circRNA levels suggesting a causal effect of reduced ADAR2 levels on increased circRNAs in the failing human heart. To gain mechanistic insight, one of the identified upregulated circRNAs with a high reduction of editing in heart failure, AKAP13, was further characterized. ADAR2 reduced the formation of double-stranded structures in AKAP13 pre-mRNA, thereby reducing the stability of Alu elements and the circularization of the resulting circRNA. Overexpression of circAKAP13 impaired the sarcomere regularity of human induced pluripotent stem cell-derived cardiomyocytes. These data show that ADAR2 mediates A-to-I RNA editing in the human heart. A-to-I RNA editing represses the formation of dsRNA structures of Alu elements favoring canonical linear mRNA splicing and inhibiting the formation of circRNAs. The findings are relevant to diseases with reduced RNA editing and increased circRNA levels and provide insights into the human-specific regulation of circRNA formation.


Asunto(s)
Células Madre Pluripotentes Inducidas , Edición de ARN , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , ARN/química , ARN/genética , ARN/metabolismo , ARN Circular/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
10.
J Immunol ; 205(8): 2276-2286, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32938726

RESUMEN

The number and activity of T cell subsets in the atherosclerotic plaques are critical for the prognosis of patients with acute coronary syndrome. ß2 Integrin activation is pivotal for T cell recruitment and correlates with future cardiac events. Despite this knowledge, differential regulation of adhesiveness in T cell subsets has not been explored yet. In this study, we show that in human T cells, SDF-1α-mediated ß2 integrin activation is driven by a, so far, not-described reactive oxidative species (ROS)-regulated calcium influx. Furthermore, we show that CD4+CD28null T cells represent a highly reactive subset showing 25-fold stronger ß2 integrin activation upon SDF-1α stimulation compared with CD28+ T cells. Interestingly, ROS-dependent Ca release was much more prevalent in the pathogenetically pivotal CD28null subset compared with the CD28+ T cells, whereas the established mediators of the classical pathways for ß2 integrin activation (PKC, PI3K, and PLC) were similarly activated in both T cell subsets. Thus, interference with the calcium flux attenuates spontaneous adhesion of CD28null T cells from acute coronary syndrome patients, and calcium ionophores abolished the observed differences in the adhesion properties between CD28+ and CD28null T cells. Likewise, the adhesion of these T cell subsets was indistinguishable in the presence of exogenous ROS/H2O2 Together, these data provide a molecular explanation of the role of ROS in pathogenesis of plaque destabilization.


Asunto(s)
Síndrome Coronario Agudo/inmunología , Antígenos CD18/inmunología , Linfocitos T CD4-Positivos/inmunología , Señalización del Calcio/inmunología , Especies Reactivas de Oxígeno/inmunología , Síndrome Coronario Agudo/patología , Antígenos CD28/inmunología , Linfocitos T CD4-Positivos/patología , Quimiocina CXCL12/inmunología , Femenino , Humanos , Masculino
11.
Int J Mol Sci ; 23(20)2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36293109

RESUMEN

Wnt (a portmanteau of Wingless and Int-1) signaling in the adult heart is largely quiescent. However, there is accumulating evidence that it gets reactivated during the healing process after myocardial infarction (MI). We here tested the therapeutic potential of the Wnt secretion inhibitor LGK-974 on MI healing. Ischemia/reperfusion (I/R) injury was induced in mice and Wnt signaling was inhibited by oral administration of the porcupine inhibitor LGK-974. The transcriptome was analyzed from infarcted tissue by using RNA sequencing analysis. The inflammatory response after I/R was evaluated by flow cytometry. Heart function was assessed by echocardiography and fibrosis by Masson's trichrome staining. Transcriptome and gene set enrichment analysis revealed a modulation of the inflammatory response upon administration of the Wnt secretion inhibitor LGK-974 following I/R. In addition, LGK-974-treated animals showed an attenuated inflammatory response and improved heart function. In an in vitro model of hypoxic cardiomyocyte and monocyte/macrophage interaction, LGK974 inhibited the activation of Wnt signaling in monocytes/macrophages and reduced their pro-inflammatory phenotype. We here show that Wnt signaling affects inflammatory processes after MI. The Wnt secretion inhibitor LGK-974 appears to be a promising compound for future immunomodulatory approaches to improve cardiac remodeling after MI.


Asunto(s)
Infarto del Miocardio , Daño por Reperfusión Miocárdica , Ratones , Animales , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/genética , Miocardio , Macrófagos , Infarto del Miocardio/genética , Miocitos Cardíacos , Vía de Señalización Wnt , Ratones Endogámicos C57BL , Remodelación Ventricular , Modelos Animales de Enfermedad
12.
Circulation ; 141(20): 1628-1644, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32100557

RESUMEN

BACKGROUND: Acute occlusion of a coronary artery results in swift tissue necrosis. Bordering areas of the infarcted myocardium can also experience impaired blood supply and reduced oxygen delivery, leading to altered metabolic and mechanical processes. Although transcriptional changes in hypoxic cardiomyocytes are well studied, little is known about the proteins that are actively secreted from these cells. METHODS: We established a novel secretome analysis of cardiomyocytes by combining stable isotope labeling and click chemistry with subsequent mass spectrometry analysis. Further functional validation experiments included ELISA measurement of human samples, murine left anterior descending coronary artery ligation, and adeno-associated virus 9-mediated in vivo overexpression in mice. RESULTS: The presented approach is feasible for analysis of the secretome of primary cardiomyocytes without serum starvation. A total of 1026 proteins were identified to be secreted within 24 hours, indicating a 5-fold increase in detection compared with former approaches. Among them, a variety of proteins have not yet been explored in the context of cardiovascular pathologies. One of the secreted factors most strongly upregulated upon hypoxia was PCSK6 (proprotein convertase subtilisin/kexin type 6). Validation experiments revealed an increase of PCSK6 on mRNA and protein level in hypoxic cardiomyocytes. PCSK6 expression was elevated in hearts of mice after 3 days of ligation of the left anterior descending artery, a finding confirmed by immunohistochemistry. ELISA measurements in human serum also indicate distinct kinetics for PCSK6 in patients with acute myocardial infarction, with a peak on postinfarction day 3. Transfer of PCSK6-depleted cardiomyocyte secretome resulted in decreased expression of collagen I and III in fibroblasts compared with control treated cells, and small interfering RNA-mediated knockdown of PCSK6 in cardiomyocytes impacted transforming growth factor-ß activation and SMAD3 (mothers against decapentaplegic homolog 3) translocation in fibroblasts. An adeno-associated virus 9-mediated, cardiomyocyte-specific overexpression of PCSK6 in mice resulted in increased collagen expression and cardiac fibrosis, as well as decreased left ventricular function, after myocardial infarction. CONCLUSIONS: A novel mass spectrometry-based approach allows investigation of the secretome of primary cardiomyocytes. Analysis of hypoxia-induced secretion led to the identification of PCSK6 as being crucially involved in cardiac remodeling after acute myocardial infarction.


Asunto(s)
Infarto del Miocardio/enzimología , Miocitos Cardíacos/enzimología , Proproteína Convertasa 9/metabolismo , Función Ventricular Izquierda , Remodelación Ventricular , Animales , Animales Recién Nacidos , Células Cultivadas , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones Endogámicos C57BL , Infarto del Miocardio/genética , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Miocitos Cardíacos/patología , Proproteína Convertasa 9/genética , Proteoma , Ratas Wistar , Vías Secretoras , Transducción de Señal
13.
Circ Res ; 125(3): 282-294, 2019 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-31213138

RESUMEN

RATIONALE: Fluid shear stress (FSS) maintains NOS-3 (endothelial NO synthase) expression. Homozygosity for the C variant of the T-786C single-nucleotide polymorphism of the NOS3 gene, which solely exists in humans, renders the gene less sensitive to FSS, resulting in a reduced endothelial cell (EC) capacity to generate NO. Decreased bioavailability of NO in the arterial vessel wall facilitates atherosclerosis. Consequently, individuals homozygous for the C variant have an increased risk for coronary heart disease (CHD). OBJECTIVE: At least 2 compensatory mechanisms seem to minimize the deleterious effects of this single-nucleotide polymorphism in affected individuals, one of which is characterized herein. METHODS AND RESULTS: Human genotyped umbilical vein ECs and THP-1 monocytes were used to investigate the role of 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) in vitro. Its concentration in plasma samples from genotyped patients with CHD and age-matched CHD-free controls was determined using quantitative ultraperformance LC-MS/MS. Exposure of human ECs to FSS effectively reduced monocyte transmigration particularly through monolayers of CC-genotype ECs. Primarily in CC-genotype ECs, FSS elicited a marked rise in COX (cyclooxygenase)-2 and L-PGDS (lipocalin-type prostaglandin D synthase) expression, which appeared to be NO sensitive, and provoked a significant release of 15d-PGJ2 over baseline. Exogenous 15d-PGJ2 significantly reduced monocyte transmigration and exerted a pronounced anti-inflammatory effect on the transmigrated monocytes by downregulating, for example, transcription of the IL (interleukin)-1ß gene (IL1B). Reporter gene analyses verified that this effect is due to binding of Nrf2 (nuclear factor [erythroid-derived 2]-like 2) to 2 AREs (antioxidant response elements) in the proximal IL1B promoter. In patients with CHD, 15d-PGJ2 plasma levels were significantly upregulated compared with age-matched CHD-free controls, suggesting that this powerful anti-inflammatory prostanoid is part of an endogenous defence mechanism to counteract CHD. CONCLUSIONS: Despite a reduced capacity to form NO, CC-genotype ECs maintain a robust anti-inflammatory phenotype through an enhanced FSS-dependent release of 15d-PGJ2.


Asunto(s)
Células Endoteliales/metabolismo , Óxido Nítrico Sintasa de Tipo III/deficiencia , Óxido Nítrico/sangre , Polimorfismo de Nucleótido Simple , Prostaglandina D2/análogos & derivados , Adaptación Fisiológica , Anciano , Anciano de 80 o más Años , Enfermedad Coronaria/sangre , Enfermedad Coronaria/genética , Ciclooxigenasa 2/biosíntesis , Ciclooxigenasa 2/genética , Inducción Enzimática , Femenino , Genes Reporteros , Predisposición Genética a la Enfermedad , Hemorreología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Inflamación , Oxidorreductasas Intramoleculares/biosíntesis , Oxidorreductasas Intramoleculares/genética , Lipocalinas/biosíntesis , Lipocalinas/genética , Masculino , Persona de Mediana Edad , Factor 2 Relacionado con NF-E2/fisiología , Óxido Nítrico Sintasa de Tipo III/genética , Prostaglandina D2/biosíntesis , Prostaglandina D2/sangre , Prostaglandina D2/fisiología , Interferencia de ARN , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacología , Células THP-1
14.
Circ Res ; 124(6): 881-890, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30661445

RESUMEN

RATIONALE: Paradigm shifting studies have revealed that the heart contains functionally diverse populations of macrophages derived from distinct embryonic and adult hematopoietic progenitors. Under steady-state conditions, the heart is largely populated by CCR2- (C-C chemokine receptor type 2) macrophages of embryonic descent. After tissue injury, a dramatic shift in macrophage composition occurs whereby CCR2+ monocytes are recruited to the heart and differentiate into inflammatory CCR2+ macrophages that contribute to heart failure progression. Currently, there are no techniques to noninvasively detect CCR2+ monocyte recruitment into the heart and thus identify patients who may be candidates for immunomodulatory therapy. OBJECTIVE: To develop a noninvasive molecular imaging strategy with high sensitivity and specificity to visualize inflammatory monocyte and macrophage accumulation in the heart. METHODS AND RESULTS: We synthesized and tested the performance of a positron emission tomography radiotracer (68Ga-DOTA [1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid]-ECL1i [extracellular loop 1 inverso]) that allosterically binds to CCR2. In naive mice, the radiotracer was quickly cleared from the blood and displayed minimal retention in major organs. In contrast, biodistribution and positron emission tomography demonstrated strong myocardial tracer uptake in 2 models of cardiac injury (diphtheria toxin induced cardiomyocyte ablation and reperfused myocardial infarction). 68Ga-DOTA-ECL1i signal localized to sites of tissue injury and was independent of blood pool activity as assessed by quantitative positron emission tomography and ex vivo autoradiography. 68Ga-DOTA-ECL1i uptake was associated with CCR2+ monocyte and CCR2+ macrophage infiltration into the heart and was abrogated in CCR2-/- mice, demonstrating target specificity. Autoradiography demonstrated that 68Ga-DOTA-ECL1i specifically binds human heart failure specimens and with signal intensity associated with CCR2+ macrophage abundance. CONCLUSIONS: These findings demonstrate the sensitivity and specificity of 68Ga-DOTA-ECL1i in the mouse heart and highlight the translational potential of this agent to noninvasively visualize CCR2+ monocyte recruitment and inflammatory macrophage accumulation in patients.


Asunto(s)
Corazón/diagnóstico por imagen , Macrófagos/fisiología , Monocitos/fisiología , Daño por Reperfusión Miocárdica/patología , Miocitos Cardíacos/patología , Animales , Movimiento Celular , Humanos , Ratones , Ratones Endogámicos C57BL , Imagen Molecular , Tomografía de Emisión de Positrones , Receptores CCR2/análisis
15.
Herz ; 46(Suppl 1): 41-47, 2021 Apr.
Artículo en Alemán | MEDLINE | ID: mdl-32313970

RESUMEN

With increasing age valvular heart disease is among the most frequent diseases of the heart. Relevant valvular disease impairs not only the long-term prognosis but also physical resilience, activities of daily living and the quality of life. In cases of middle to high-grade symptomatic cardiac defects, valve replacement or valve reconstruction is still the surgical procedure of choice; however, in recent years the transcatheter percutaneous aortic valve replacement (TAVI) procedure has become more prominent for the most frequent defect, aortic valve stenosis. This article provides an overview of the aftercare and rehabilitation of patients following a TAVI intervention.


Asunto(s)
Estenosis de la Válvula Aórtica , Implantación de Prótesis de Válvulas Cardíacas , Prótesis Valvulares Cardíacas , Reemplazo de la Válvula Aórtica Transcatéter , Actividades Cotidianas , Válvula Aórtica/cirugía , Estenosis de la Válvula Aórtica/diagnóstico por imagen , Estenosis de la Válvula Aórtica/cirugía , Implantación de Prótesis de Válvulas Cardíacas/efectos adversos , Humanos , Calidad de Vida , Atención Subaguda , Reemplazo de la Válvula Aórtica Transcatéter/efectos adversos , Resultado del Tratamiento
16.
Proc Natl Acad Sci U S A ; 115(24): E5556-E5565, 2018 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-29793936

RESUMEN

Monocyte extravasation into the vessel wall is a key step in atherogenesis. It is still elusive how monocytes transmigrate through the endothelial cell (EC) monolayer at atherosclerosis predilection sites. Platelets tethered to ultra-large von Willebrand factor (ULVWF) multimers deposited on the luminal EC surface following CD40 ligand (CD154) stimulation may facilitate monocyte diapedesis. Human ECs grown in a parallel plate flow chamber for live-cell imaging or Transwell permeable supports for transmigration assay were exposed to fluid or orbital shear stress and CD154. Human isolated platelets and/or monocytes were superfused over or added on top of the EC monolayer. Plasma levels and activity of the ULVWF multimer-cleaving protease ADAMTS13 were compared between coronary artery disease (CAD) patients and controls and were verified by the bioassay. Two-photon intravital microscopy was performed to monitor CD154-dependent leukocyte recruitment in the cremaster microcirculation of ADAMTS13-deficient versus wild-type mice. CD154-induced ULVWF multimer-platelet string formation on the EC surface trapped monocytes and facilitated transmigration through the EC monolayer despite high shear stress. Two-photon intravital microscopy revealed CD154-induced ULVWF multimer-platelet string formation preferentially in venules, due to strong EC expression of CD40, causing prominent downstream leukocyte extravasation. Plasma ADAMTS13 abundance and activity were significantly reduced in CAD patients and strongly facilitated both ULVWF multimer-platelet string formation and monocyte trapping in vitro. Moderate ADAMTS13 deficiency in CAD patients augments CD154-mediated deposition of platelet-decorated ULVWF multimers on the luminal EC surface, reinforcing the trapping of circulating monocytes at atherosclerosis predilection sites and promoting their diapedesis.


Asunto(s)
Proteína ADAMTS13/metabolismo , Plaquetas/metabolismo , Antígenos CD40/metabolismo , Comunicación Celular/fisiología , Células Endoteliales/metabolismo , Factor de von Willebrand/metabolismo , Adolescente , Adulto , Anciano , Animales , Aterosclerosis/metabolismo , Células Cultivadas , Endotelio Vascular/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Monocitos/metabolismo , Agregación Plaquetaria/fisiología , Estrés Mecánico , Adulto Joven
17.
Eur Heart J ; 41(9): 989-994, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30945736

RESUMEN

Over a century ago, Élie Metchnikoff described the macrophages' ability to phagocytose. Propelled by advances in technology enabling phenotypic and functional analyses at unpreceded resolution, a recent renaissance in macrophage research has shed new light on these 'big eaters'. We here give an overview of cardiac macrophages' provenance in the contexts of cardiac homeostasis and stress. We highlight the recently identified mechanism by which these cells regulate electrical conduction in the atrioventricular node and discuss why we need a deeper understanding of monocytes and macrophages in systolic and diastolic dysfunctions.


Asunto(s)
Corazón , Macrófagos , Homeostasis , Monocitos
18.
Curr Heart Fail Rep ; 17(5): 213-224, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32783147

RESUMEN

PURPOSE OF REVIEW: The goal of this review is to summarize the state of big data analyses in the study of heart failure (HF). We discuss the use of big data in the HF space, focusing on "omics" and clinical data. We address some limitations of this data, as well as their future potential. RECENT FINDINGS: Omics are providing insight into plasmal and myocardial molecular profiles in HF patients. The introduction of single cell and spatial technologies is a major advance that will reshape our understanding of cell heterogeneity and function as well as tissue architecture. Clinical data analysis focuses on HF phenotyping and prognostic modeling. Big data approaches are increasingly common in HF research. The use of methods designed for big data, such as machine learning, may help elucidate the biology underlying HF. However, important challenges remain in the translation of this knowledge into improvements in clinical care.


Asunto(s)
Macrodatos , Investigación Biomédica/estadística & datos numéricos , Insuficiencia Cardíaca/genética , Aprendizaje Automático , Humanos , Pronóstico
19.
J Mol Cell Cardiol ; 126: 13-22, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30445017

RESUMEN

AIMS: Circulating immune cells have a significant impact on progression and outcome of heart failure. Long non-coding RNAs (lncRNAs) comprise novel epigenetic regulators which control cardiovascular diseases and inflammatory disorders. We aimed to identify lncRNAs regulated in circulating immune cells of the blood of heart failure patients. METHODS AND RESULTS: Next-generation sequencing revealed 110 potentially non-coding RNA transcripts differentially expressed in peripheral blood mononuclear cells of heart failure patients with reduced ejection fraction. The up-regulated lncRNA Heat2 was further functionally characterized. Heat2 expression was detected in whole blood, PBMNCs, eosinophil and basophil granulocytes. Heat2 regulates cell division, invasion, transmigration and immune cell adhesion on endothelial cells. CONCLUSION: Heat2 is an immune cell enriched lncRNA that is elevated in the blood of heart failure patients and controls cellular functions.


Asunto(s)
Regulación de la Expresión Génica , Insuficiencia Cardíaca/genética , ARN Largo no Codificante/genética , Adulto , Anciano , Estudios de Casos y Controles , Estudios de Cohortes , Eosinófilos/metabolismo , Femenino , Insuficiencia Cardíaca/sangre , Humanos , Leucocitos Mononucleares/metabolismo , Masculino , Persona de Mediana Edad , ARN Largo no Codificante/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
20.
Basic Res Cardiol ; 113(6): 44, 2018 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-30327885

RESUMEN

Various cell types are involved in the healing process after myocardial infarction (MI). Besides cardiac resident cells (such as cardiomyocytes, fibroblasts and endothelial cells) already present at the lesion site, a massive influx of leukocytes (mainly monocytes and neutrophils) is observed within hours after the ischemic event. So far, little is known about modes of interaction of these cells. Wnt signaling is an evolutionary conserved signaling cassette known to play an important role in cell-cell communication. While the overall reactivation of Wnt signaling upon ischemic injury is well described, the precise expression pattern of Wnt proteins, however, is far from understood. We here describe known Wnt components that partake in MI healing and differentiate cell-specific aspects. The secretion of Wnt proteins and their antagonists in the context of cardiac inflammation after MI appear to be tightly regulated in a spatial-temporal manner. Overall, we aim to stress the importance of elucidating not only Wnt component-specific aspects, but also their sometimes contradicting effects in different target cells. A better understanding of Wnt signaling in MI healing may eventually lead to the development of successful therapeutic approaches in an often considered "un-druggable" pathway.


Asunto(s)
Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Miocardio/metabolismo , Miocardio/patología , Vía de Señalización Wnt/fisiología , Animales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA