Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(16): e2318600121, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38588431

RESUMEN

Antibiotics are considered one of the most important contributions to clinical medicine in the last century. Due to the use and overuse of these drugs, there have been increasing frequencies of infections with resistant pathogens. One form of resistance, heteroresistance, is particularly problematic; pathogens appear sensitive to a drug by common susceptibility tests. However, upon exposure to the antibiotic, resistance rapidly ascends, and treatment fails. To quantitatively explore the processes contributing to the emergence and ascent of resistance during treatment and the waning of resistance following cessation of treatment, we develop two distinct mathematical and computer-simulation models of heteroresistance. In our analysis of the properties of these models, we consider the factors that determine the response to antibiotic-mediated selection. In one model, heteroresistance is progressive, with each resistant state sequentially generating a higher resistance level. In the other model, heteroresistance is non-progressive, with a susceptible population directly generating populations with different resistance levels. The conditions where resistance will ascend in the progressive model are narrower than those of the non-progressive model. The rates of reversion from the resistant to the sensitive states are critically dependent on the transition rates and the fitness cost of resistance. Our results demonstrate that the standard test used to identify heteroresistance is insufficient. The predictions of our models are consistent with empirical results. Our results demand a reevaluation of the definition and criteria employed to identify heteroresistance. We recommend that the definition of heteroresistance should include a consideration of the rate of return to susceptibility.


Asunto(s)
Antibacterianos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Dinámica Poblacional , Pruebas de Sensibilidad Microbiana
2.
mBio ; 15(2): e0268023, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38126752

RESUMEN

This year we commemorate the centennial of the birth of the mature concept of bacteriostasis by John W. Churchman at Cornell University Medical School. The term bacteriostasis has primarily been applied to antibiotics (bacteriostatic antibiotics). In this Opinion paper, we are revisiting this concept by suggesting that bacteriostasis essentially reflects a distinct cellular status (or "cell variant") characterized by the inability to be killed as a consequence of an antibiotic-induced stress impacting on bacterial physiology/metabolism (growth). Note that the term "bacteriostasis" should not be associated only with antimicrobials but with many stressful conditions. In that respect, the drug promotion of bacteriostasis might resemble other types of stress-induced cellular differentiation, such as sporulation, in which spores can be considered "bacteriostatic cells" or perhaps as persister bacteria, which can become "normal cells" again when the stressful conditions have abated.IMPORTANCEThis year we commemorate the centennial of the birth of the mature concept of bacteriostasis by John W. Churchman at Cornell University Medical School. The term bacteriostasis has primarily been applied to antibiotics (bacteriostatic antibiotics). In this Opinion paper, we are revisiting this concept by suggesting that some antibiotics are drugs that induce bacteria to become bacteriostatic. Cells that are unable to multiply, thereby preventing the antibiotic from exerting major lethal effects on them, are a variant ("different") type of cells, bacteriostatic cells. Note that the term "bacteriostasis" should not be associated only with antimicrobials but with many stressful conditions. In that respect, the drug promotion of bacteriostasis might resemble other types of stress-induced cellular differentiation, such as sporulation, in which spores can be considered "bacteriostatic cells" or perhaps as persister bacteria, which can become "normal cells" again when the stressful conditions have abated.


Asunto(s)
Antibacterianos , Antiinfecciosos , Humanos , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Bacterias , Fenómenos Fisiológicos Bacterianos
3.
PLoS One ; 19(4): e0298680, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38557757

RESUMEN

In the dairy industry bacteriophage (phage) contamination significantly impairs the production and quality of products like yogurt and cheese. To combat this issue, the strains of bacteria used as starter cultures possess mechanisms that make them resistant to phage infection, such as envelope resistance, or processes that render them immune to phage infection, such as restriction-modification and CRISPR-Cas. Lactococcus lactis, used to manufacture cheese and other dairy products, can also block the reproduction of infecting phages by abortive infection (Abi), a process in which phage-infected cells die before the phage replicate. We employ mathematical-computer simulation models and experiments with two Lactococcus lactis strains and two lytic phages to investigate the conditions under which Abi can limit the proliferation of phages in L. lactis populations and prevent the extinction of their populations by these viruses. According to our model, if Abi is almost perfect and there are no other populations of bacteria capable of supporting the replication of the L. lactis phages, Abi can protect bacterial populations from succumbing to infections with these viruses. This prediction is supported by the results of our experiment, which indicate that Abi can help protect L. lactis populations from extinction by lytic phage infections. However, our results also predict abortive infection is only one element of L. lactis defenses against phage infection. Mutant phages that can circumvent the Abi systems of these bacteria emerge. The survival of L. lactis populations then depends on the evolution of envelope mutants that are resistant to the evolved host-range phage.


Asunto(s)
Bacteriófagos , Lactococcus lactis , Bacteriófagos/genética , Lactococcus lactis/genética , Simulación por Computador , Proteínas Bacterianas , Bacterias
4.
bioRxiv ; 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38617265

RESUMEN

The rational design of the antibiotic treatment of bacterial infections employs these drugs to reach concentrations that exceed the minimum needed to prevent the replication of the target bacteria. However, within a treated patient, spatial and physiological heterogeneity promotes antibiotic gradients such that the concentration of antibiotics at specific sites is below the minimum needed to inhibit bacterial growth. Here, we investigate the effects of sub-inhibitory antibiotic concentrations on three parameters central to bacterial infection and the success of antibiotic treatment, using in vitro experiments with Staphylococcus aureus and mathematical-computer simulation models. Our results, using drugs of six different classes, demonstrate that exposure to sub-inhibitory antibiotic concentrations not only alters the dynamics of bacterial growth but also increases the mutation rate to antibiotic resistance and decreases the rate of production of persister cells thereby reducing the persistence level. Understanding this trade-off between mutation rates and persistence levels resulting from sub-inhibitory antibiotic exposure is crucial for optimizing, and mitigating the failure of, antibiotic therapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA