Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Mol Cell ; 78(5): 835-849.e7, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32369735

RESUMEN

Disrupted sleep-wake and molecular circadian rhythms are a feature of aging associated with metabolic disease and reduced levels of NAD+, yet whether changes in nucleotide metabolism control circadian behavioral and genomic rhythms remains unknown. Here, we reveal that supplementation with the NAD+ precursor nicotinamide riboside (NR) markedly reprograms metabolic and stress-response pathways that decline with aging through inhibition of the clock repressor PER2. NR enhances BMAL1 chromatin binding genome-wide through PER2K680 deacetylation, which in turn primes PER2 phosphorylation within a domain that controls nuclear transport and stability and that is mutated in human advanced sleep phase syndrome. In old mice, dampened BMAL1 chromatin binding, transcriptional oscillations, mitochondrial respiration rhythms, and late evening activity are restored by NAD+ repletion to youthful levels with NR. These results reveal effects of NAD+ on metabolism and the circadian system with aging through the spatiotemporal control of the molecular clock.


Asunto(s)
Relojes Circadianos/fisiología , Ritmo Circadiano/genética , Proteínas Circadianas Period/metabolismo , Factores de Transcripción ARNTL/genética , Factores de Edad , Envejecimiento/genética , Animales , Proteínas CLOCK/genética , Ritmo Circadiano/fisiología , Citocinas/metabolismo , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , NAD/metabolismo , Proteínas Circadianas Period/genética , Sirtuina 1/metabolismo , Sirtuinas/metabolismo
2.
Semin Cell Dev Biol ; 126: 15-26, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34281771

RESUMEN

Intrinsic circadian clocks are present in all forms of photosensitive life, enabling daily anticipation of the light/dark cycle and separation of energy storage and utilization cycles on a 24-h timescale. The core mechanism underlying circadian rhythmicity involves a cell-autonomous transcription/translation feedback loop that in turn drives rhythmic organismal physiology. In mammals, genetic studies have established that the core clock plays an essential role in maintaining metabolic health through actions within both brain pacemaker neurons and peripheral tissues and that disruption of the clock contributes to disease. Peripheral clocks, in turn, can be entrained by metabolic cues. In this review, we focus on the role of the nucleotide NAD(P)(H) and NAD+-dependent sirtuin deacetylases as integrators of circadian and metabolic cycles, as well as the implications for this interrelationship in healthful aging.


Asunto(s)
Relojes Circadianos , Sirtuinas , Animales , Relojes Circadianos/genética , Ritmo Circadiano/genética , Mamíferos/metabolismo , NAD/metabolismo , Sirtuinas/genética , Sirtuinas/metabolismo
3.
Curr Opin Neurobiol ; 86: 102874, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38582021

RESUMEN

The metabolic signals that regulate sleep and the metabolic functions that occur during sleep are active areas of research. Prior studies have focused on sugars and nucleotides but new genetic evidence suggests novel functions of lipid and amino acid metabolites in sleep. Additional genetic studies of energetic signaling pathways and the circadian clock transcription factor network have increased our understanding of how sleep responds to changes in the metabolic state. This review focuses on key recent insights from genetic experiments in humans and model organisms to improve our understanding of the interrelationship between metabolism and sleep.


Asunto(s)
Sueño , Humanos , Sueño/fisiología , Sueño/genética , Animales , Metabolismo Energético/fisiología , Metabolismo Energético/genética , Relojes Circadianos/fisiología , Relojes Circadianos/genética , Ritmo Circadiano/fisiología , Ritmo Circadiano/genética
4.
bioRxiv ; 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38352599

RESUMEN

The circadian clock synchronizes metabolic and behavioral cycles with the rotation of the Earth by integrating environmental cues, such as light. Nutrient content also regulates the clock, though how and why this environmental signal affects the clock remains incompletely understood. Here, we elucidate a role for nutrient in regulating circadian alignment to seasonal photoperiods. High fat diet (HFD) promoted entrainment to a summer light cycle and inhibited entrainment to a winter light cycle by phosphorylating PER2 on serine 662. PER2-S662 phospho-mimetic mutant mice were incapable of entraining to a winter photoperiod, while PER2-S662 phospho-null mutant mice were incapable of entraining to a summer photoperiod, even in the presence of HFD. Multi-omic experimentation in conjunction with isocaloric hydrogenated-fat feeding, revealed a role for polyunsaturated fatty acids in nutrient-dependent seasonal entrainment. Altogether, we identify the mechanism whereby nutrient content shifts circadian rhythms to anticipate seasonal photoperiods in which that nutrient state predominates. HIGHLIGHTS: High fat diet promotes entrainment to summer but inhibits entrainment to winter.Calorie restriction promotes entrainment to winter but inhibits entrainment to summer.PER2-S662 phosphorylation is required for nutritional regulation of seasonal circadian entrainment.Dietary polyunsaturated fatty acids regulate seasonal circadian entrainment.

5.
JCI Insight ; 8(6)2023 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-36787197

RESUMEN

The molecular clock machinery regulates several homeostatic rhythms, including glucose metabolism. We previously demonstrated that Roux-en-Y gastric bypass (RYGB) has a weight-independent effect on glucose homeostasis and transiently reduces food intake. In this study we investigate the effects of RYGB on diurnal eating behavior as well as on the molecular clock and this clock's requirement for the metabolic effects of this bariatric procedure in obese mice. We find that RYGB reversed the high-fat diet-induced disruption in diurnal eating pattern during the early postsurgery phase of food reduction. Dark-cycle pair-feeding experiments improved glucose tolerance to the level of bypass-operated animals during the physiologic fasting phase (Zeitgeber time 2, ZT2) but not the feeding phase (ZT14). Using a clock gene reporter mouse model (mPer2Luc), we reveal that RYGB induced a liver-specific phase shift in peripheral clock oscillation with no changes to the central clock activity within the suprachiasmatic nucleus. In addition, we show that weight loss effects were attenuated in obese ClockΔ19 mutant mice after RYGB that also failed to improve glucose metabolism after surgery, specifically hepatic glucose production. We conclude that RYGB reprograms the peripheral clock within the liver early after surgery to alter diurnal eating behavior and regulate hepatic glucose flux.


Asunto(s)
Derivación Gástrica , Resistencia a la Insulina , Ratones , Animales , Glucosa/metabolismo , Derivación Gástrica/métodos , Glucemia/metabolismo , Resistencia a la Insulina/fisiología , Conducta Alimentaria , Hígado/metabolismo
6.
Sci Adv ; 8(7): eabm1189, 2022 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-35179955

RESUMEN

Exogenous glucocorticoids interact with the circadian clock, but little attention is paid to the timing of intake. We recently found that intermittent once-weekly prednisone improved nutrient oxidation in dystrophic muscle. Here, we investigated whether dosage time affected prednisone effects on muscle bioenergetics. In mice treated with once-weekly prednisone, drug dosing in the light-phase promoted nicotinamide adenine dinucleotide (NAD+) levels and mitochondrial function in wild-type muscle, while this response was lost with dark-phase dosing. These effects depended on a normal circadian clock since they were disrupted in muscle from [Brain and muscle Arnt-like protein-1 (Bmal1)]-knockout mice. The light-phase prednisone pulse promoted BMAL1-dependent glucocorticoid receptor recruitment on noncanonical targets, including Nampt and Ppargc1a [peroxisome proliferator-activated receptor-γ coactivator 1α (PGC1α)]. In mice with muscle-restricted inducible PGC1α ablation, bioenergetic stimulation by light-phase prednisone required PGC1α. These results demonstrate that glucocorticoid "chronopharmacology" for muscle bioenergetics requires an intact clock and muscle PGC1α activity.


Asunto(s)
Relojes Circadianos , Factores de Transcripción ARNTL/genética , Animales , Glucocorticoides/farmacología , Ratones , Mitocondrias/metabolismo , Músculos , NAD , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Prednisona
7.
Curr Biol ; 31(1): 138-149.e5, 2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33157022

RESUMEN

The timing of behavior under natural light-dark conditions is a function of circadian clocks and photic input pathways, but a mechanistic understanding of how these pathways collaborate in animals is lacking. Here we demonstrate in Drosophila that the Phosphatase of Regenerating Liver-1 (PRL-1) sets period length and behavioral phase gated by photic signals. PRL-1 knockdown in PDF clock neurons dramatically lengthens circadian period. PRL-1 mutants exhibit allele-specific interactions with the light- and clock-regulated gene timeless (tim). Moreover, we show that PRL-1 promotes TIM accumulation and dephosphorylation. Interestingly, the PRL-1 mutant period lengthening is suppressed in constant light, and PRL-1 mutants display a delayed phase under short, but not long, photoperiod conditions. Thus, our studies reveal that PRL-1-dependent dephosphorylation of TIM is a core mechanism of the clock that sets period length and phase in darkness, enabling the behavioral adjustment to change day-night cycles.


Asunto(s)
Ritmo Circadiano/fisiología , Proteínas de Drosophila/metabolismo , Neuronas/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Animales , Animales Modificados Genéticamente , Oscuridad , Proteínas de Drosophila/genética , Drosophila melanogaster , Femenino , Técnicas de Silenciamiento del Gen , Masculino , Mutación , Neuropéptidos/metabolismo , Fosforilación/fisiología , Fotoperiodo , Proteínas Tirosina Fosfatasas/genética , Factores de Tiempo
8.
Nat Metab ; 3(12): 1621-1632, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34903884

RESUMEN

In mammals, circadian rhythms are entrained to the light cycle and drive daily oscillations in levels of NAD+, a cosubstrate of the class III histone deacetylase sirtuin 1 (SIRT1) that associates with clock transcription factors. Although NAD+ also participates in redox reactions, the extent to which NAD(H) couples nutrient state with circadian transcriptional cycles remains unknown. Here we show that nocturnal animals subjected to time-restricted feeding of a calorie-restricted diet (TRF-CR) only during night-time display reduced body temperature and elevated hepatic NADH during daytime. Genetic uncoupling of nutrient state from NADH redox state through transduction of the water-forming NADH oxidase from Lactobacillus brevis (LbNOX) increases daytime body temperature and blood and liver acyl-carnitines. LbNOX expression in TRF-CR mice induces oxidative gene networks controlled by brain and muscle Arnt-like protein 1 (BMAL1) and peroxisome proliferator-activated receptor alpha (PPARα) and suppresses amino acid catabolic pathways. Enzymatic analyses reveal that NADH inhibits SIRT1 in vitro, corresponding with reduced deacetylation of SIRT1 substrates during TRF-CR in vivo. Remarkably, Sirt1 liver nullizygous animals subjected to TRF-CR display persistent hypothermia even when NADH is oxidized by LbNOX. Our findings reveal that the hepatic NADH cycle links nutrient state to whole-body energetics through the rhythmic regulation of SIRT1.


Asunto(s)
Metabolismo Energético , Ayuno , NAD/metabolismo , Sirtuina 1/genética , Sirtuina 1/metabolismo , Transcripción Genética , Aminoácidos/metabolismo , Animales , Temperatura Corporal , Ritmo Circadiano , Dieta , Ácidos Grasos/metabolismo , Regulación de la Expresión Génica , Hígado/metabolismo , Ratones , Factores de Transcripción
9.
Curr Biol ; 29(12): 1954-1962.e4, 2019 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-31155351

RESUMEN

In plants, cryptochromes are photoreceptors that negatively regulate the ubiquitin ligase CRL4Cop1. In mammals, cryptochromes are core components of the circadian clock and repressors of the glucocorticoid receptor (GR). Moreover, mammalian cryptochromes lost their ability to interact with Cop1, suggesting that they are unable to inhibit CRL4Cop1. Contrary to this assumption, we found that mammalian cryptochromes are also negative regulators of CRL4Cop1, and through this mechanism, they repress the GR transcriptional network both in cultured cells and in the mouse liver. Mechanistically, cryptochromes inactivate Cop1 by interacting with Det1, a subunit of the mammalian CRL4Cop1 complex that is not present in other CRL4s. Through this interaction, the ability of Cop1 to join the CRL4 complex is inhibited; therefore, its substrates accumulate. Thus, the interaction between cryptochromes and Det1 in mammals mirrors the interaction between cryptochromes and Cop1 in planta, pointing to a common ancestor in which the cryptochromes-Cop1 axis originated.


Asunto(s)
Criptocromos/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Nucleares/genética , Transducción de Señal , Ubiquitina-Proteína Ligasas/genética , Animales , Evolución Biológica , Línea Celular , Femenino , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Nucleares/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
10.
Cell Metab ; 29(5): 1078-1091.e5, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-30827863

RESUMEN

The alignment of fasting and feeding with the sleep/wake cycle is coordinated by hypothalamic neurons, though the underlying molecular programs remain incompletely understood. Here, we demonstrate that the clock transcription pathway maximizes eating during wakefulness and glucose production during sleep through autonomous circadian regulation of NPY/AgRP neurons. Tandem profiling of whole-cell and ribosome-bound mRNAs in morning and evening under dynamic fasting and fed conditions identified temporal control of activity-dependent gene repertoires in AgRP neurons central to synaptogenesis, bioenergetics, and neurotransmitter and peptidergic signaling. Synaptic and circadian pathways were specific to whole-cell RNA analyses, while bioenergetic pathways were selectively enriched in the ribosome-bound transcriptome. Finally, we demonstrate that the AgRP clock mediates the transcriptional response to leptin. Our results reveal that time-of-day restriction in transcriptional control of energy-sensing neurons underlies the alignment of hunger and food acquisition with the sleep/wake state.


Asunto(s)
Proteína Relacionada con Agouti/metabolismo , Relojes Circadianos/genética , Ritmo Circadiano/genética , Hambre/fisiología , Neuronas/metabolismo , Transcripción Genética/genética , Proteína Relacionada con Agouti/genética , Animales , Ingestión de Alimentos/fisiología , Ayuno/fisiología , Redes Reguladoras de Genes , Glucosa/metabolismo , Hipotálamo/metabolismo , Leptina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Transducción de Señal/genética , Sueño/fisiología , Transcriptoma , Vigilia/fisiología
11.
Cell Metab ; 25(1): 86-92, 2017 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-27773696

RESUMEN

Circadian clocks are encoded by a transcription-translation feedback loop that aligns energetic processes with the solar cycle. We show that genetic disruption of the clock activator BMAL1 in skeletal myotubes and fibroblasts increased levels of the hypoxia-inducible factor 1α (HIF1α) under hypoxic conditions. Bmal1-/- myotubes displayed reduced anaerobic glycolysis, mitochondrial respiration with glycolytic fuel, and transcription of HIF1α targets Phd3, Vegfa, Mct4, Pk-m, and Ldha, whereas abrogation of the clock repressors CRY1/2 stabilized HIF1α in response to hypoxia. HIF1α bound directly to core clock gene promoters, and, when co-expressed with BMAL1, led to transactivation of PER2-LUC and HRE-LUC reporters. Further, genetic stabilization of HIF1α in Vhl-/- cells altered circadian transcription. Finally, induction of clock and HIF1α target genes in response to strenuous exercise varied according to the time of day in wild-type mice. Collectively, our results reveal bidirectional interactions between circadian and HIF pathways that influence metabolic adaptation to hypoxia.


Asunto(s)
Relojes Circadianos , Glucólisis , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Músculo Esquelético/metabolismo , Oxígeno/metabolismo , Anaerobiosis , Animales , Relojes Circadianos/genética , Ritmo Circadiano/genética , Hipoxia/genética , Hipoxia/metabolismo , Ratones , Especificidad de Órganos , Consumo de Oxígeno , Condicionamiento Físico Animal , Transcripción Genética
12.
Cell Rep ; 21(6): 1471-1480, 2017 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-29117554

RESUMEN

Aging drives the occurrence of numerous diseases, including cardiovascular disease (CVD). Recent studies indicate that blood from young mice reduces age-associated pathologies. However, the "anti-aging" factors in juvenile circulation remain poorly identified. Here, we characterize the role of the apelinergic axis in mammalian aging and identify apelin as an anti-aging factor. The expression of apelin (apln) and its receptor (aplnr) exhibits an age-dependent decline in multiple organs. Reduced apln signaling perturbs organismal homeostasis; mice harboring genetic deficiency of aplnr or apln exhibit enhanced cardiovascular, renal, and reproductive aging. Genetic or pharmacological abrogation of apln signaling also induces cellular senescence mediated, in part, by the activation of senescence-promoting transcription factors. Conversely, restoration of apln in 15-month-old wild-type mice reduces cardiac hypertrophy and exercise-induced hypertensive response. Additionally, apln-restored mice exhibit enhanced vigor and rejuvenated behavioral and circadian phenotypes. Hence, a declining apelinergic axis promotes aging, whereas its restoration extends the murine healthspan.


Asunto(s)
Envejecimiento/genética , Receptores de Apelina/genética , Apelina/genética , Regulación hacia Abajo , Animales , Apelina/deficiencia , Apelina/metabolismo , Receptores de Apelina/deficiencia , Receptores de Apelina/metabolismo , Cardiomegalia/metabolismo , Cardiomegalia/patología , Línea Celular , Vasos Coronarios/citología , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Células Endoteliales/citología , Células Endoteliales/metabolismo , Femenino , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Humanos , Hipertensión/etiología , Hipertensión/metabolismo , Lentivirus/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Transducción de Señal
13.
Science ; 342(6158): 1243417, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24051248

RESUMEN

Circadian clocks are self-sustained cellular oscillators that synchronize oxidative and reductive cycles in anticipation of the solar cycle. We found that the clock transcription feedback loop produces cycles of nicotinamide adenine dinucleotide (NAD(+)) biosynthesis, adenosine triphosphate production, and mitochondrial respiration through modulation of mitochondrial protein acetylation to synchronize oxidative metabolic pathways with the 24-hour fasting and feeding cycle. Circadian control of the activity of the NAD(+)-dependent deacetylase sirtuin 3 (SIRT3) generated rhythms in the acetylation and activity of oxidative enzymes and respiration in isolated mitochondria, and NAD(+) supplementation restored protein deacetylation and enhanced oxygen consumption in circadian mutant mice. Thus, circadian control of NAD(+) bioavailability modulates mitochondrial oxidative function and organismal metabolism across the daily cycles of fasting and feeding.


Asunto(s)
Relojes Circadianos/fisiología , Metabolismo Energético , Mitocondrias Hepáticas/metabolismo , NAD/metabolismo , Factores de Transcripción ARNTL/genética , Factores de Transcripción ARNTL/metabolismo , Acetilación , Animales , Relojes Circadianos/genética , Ayuno , Metabolismo de los Lípidos , Hígado/metabolismo , Ratones , Ratones Noqueados , Oxidación-Reducción , Consumo de Oxígeno , Sirtuina 3/genética , Sirtuina 3/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA