Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 229
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 607(7920): 721-725, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35859181

RESUMEN

Mounting concern over the global decline of pollinators has fuelled calls for investigating their role in maintaining plant diversity1,2. Theory predicts that competition for pollinators can stabilize interactions between plant species by providing opportunities for niche differentiation3, while at the same time can drive competitive imbalances that favour exclusion4. Here we empirically tested these contrasting effects by manipulating competition for pollinators in a way that predicts its long-term implications for plant coexistence. We subjected annual plant individuals situated across experimentally imposed gradients in neighbour density to either ambient insect pollination or a pollen supplementation treatment alleviating competition for pollinators. The vital rates of these individuals informed plant population dynamic models predicting the key theoretical metrics of species coexistence. Competition for pollinators generally destabilized the interactions between plant species, reducing the proportion of pairs expected to coexist. Interactions with pollinators also influenced the competitive imbalances between plant species, effects that are expected to strengthen with pollinator decline, potentially disrupting plant coexistence. Indeed, results from an experiment simulating pollinator decline showed that plant species experiencing greater reductions in floral visitation also suffered greater declines in population growth rate. Our results reveal that competition for pollinators may weaken plant coexistence by destabilizing interactions and contributing to competitive imbalances, information critical for interpreting the impacts of pollinator decline.


Asunto(s)
Insectos , Fenómenos Fisiológicos de las Plantas , Plantas , Polinización , Animales , Biodiversidad , Conducta Competitiva , Flores/fisiología , Insectos/clasificación , Insectos/fisiología , Plantas/clasificación , Polen , Dinámica Poblacional
2.
Nature ; 611(7936): 507-511, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36323782

RESUMEN

Although precipitation patterns have long been known to shape plant distributions1, the effect of changing climate on the interactions of species and therefore community composition is far less understood2,3. Here, we explored how changes in precipitation alter competitive dynamics via direct effects on individual species, as well as by the changing strength of competitive interactions between species, using an annual grassland community in California. We grew plants under ambient and reduced precipitation in the field to parameterize a competition model4 with which we quantified the stabilizing niche and fitness differences that determine species coexistence in each rainfall regime. We show that reduced precipitation had little direct effect on species grown alone, but it qualitatively shifted predicted competitive outcomes for 10 of 15 species pairs. In addition, species pairs that were functionally more similar were less likely to experience altered outcomes, indicating that functionally diverse communities may be most threatened by changing interactions. Our results highlight how important it is to account for changes to species interactions when predicting species and community response to global change.


Asunto(s)
Biota , Cambio Climático , Pradera , Fenómenos Fisiológicos de las Plantas , Plantas , Lluvia , Clima , Plantas/clasificación , Especificidad de la Especie , California
3.
Proc Natl Acad Sci U S A ; 119(22): e2122088119, 2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35605114

RESUMEN

Soil microorganisms play a major role in shaping plant diversity, not only through their direct effects as pathogens, mutualists, and decomposers, but also by altering the outcome of plant interactions. In particular, previous research has shown that the soil community often generates frequency-dependent feedback loops among plants that can either stabilize or destabilize species interactions and thereby promote or hinder species coexistence. However, recent insights from modern coexistence theory have shown that microbial effects on plant coexistence depend not only on these stabilizing or destabilizing effects, but also on the degree to which they generate competitive fitness differences. While many previous experiments have generated the data necessary for evaluating microbially mediated fitness differences, these effects have rarely been quantified in the literature. Here, we present a meta-analysis of data from 50 studies, which we used to quantify the microbially mediated (de)stabilization and fitness differences derived from a classic plant-soil feedback model. We found that across 518 plant species pairs, soil microbes generated both stabilization (or destabilization) and fitness differences, but also that the microbially mediated fitness differences dominated. As a consequence, if plants are otherwise equivalent competitors, the balance of soil microbe­generated (de)stabilization and fitness differences drives species exclusion much more frequently than coexistence or priority effects. Our work shows that microbially mediated fitness differences are an important but overlooked effect of soil microbes on plant coexistence. This finding paves the way for a more complete understanding of the processes that maintain plant biodiversity.


Asunto(s)
Biodiversidad , Aptitud Genética , Plantas , Microbiología del Suelo , Ecología , Suelo
4.
Proc Natl Acad Sci U S A ; 119(43): e2205063119, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36252042

RESUMEN

A central assumption in most ecological models is that the interactions in a community operate only between pairs of species. However, two species may interactively affect the growth of a focal species. Although interactions among three or more species, called higher-order interactions, have the potential to modify our theoretical understanding of coexistence, ecologists lack clear expectations for how these interactions shape community structure. Here we analytically predict and numerically confirm how the variability and strength of higher-order interactions affect species coexistence. We found that as higher-order interaction strengths became more variable across species, fewer species could coexist, echoing the behavior of pairwise models. If interspecific higher-order interactions became too harmful relative to self-regulation, coexistence in diverse communities was destabilized, but coexistence was also lost when these interactions were too weak and mutualistic higher-order effects became prevalent. This behavior depended on the functional form of the interactions as the destabilizing effects of the mutualistic higher-order interactions were ameliorated when their strength saturated with species' densities. Last, we showed that more species-rich communities structured by higher-order interactions lose species more readily than their species-poor counterparts, generalizing classic results for community stability. Our work provides needed theoretical expectations for how higher-order interactions impact species coexistence in diverse communities.


Asunto(s)
Ecosistema , Modelos Teóricos , Modelos Biológicos
5.
Ecol Lett ; 27(3): e14422, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38549235

RESUMEN

Understanding how diversity is maintained in plant communities requires that we first understand the mechanisms of competition for limiting resources. In ecology, there is an underappreciated but fundamental distinction between systems in which the depletion of limiting resources reduces the growth rates of competitors and systems in which resource depletion reduces the time available for competitors to grow, a mechanism we call 'competition for time'. Importantly, modern community ecology and our framing of the coexistence problem are built on the implicit assumption that competition reduces the growth rate. However, recent theoretical work suggests competition for time may be the predominant competitive mechanism in a broad array of natural communities, a significant advance given that when species compete for time, diversity-maintaining trade-offs emerge organically. In this study, we first introduce competition for time conceptually using a simple model of interacting species. Then, we perform an experiment in a Mediterranean annual grassland to determine whether competition for time is an important competitive mechanism in a field system. Indeed, we find that species respond to increased competition through reductions in their lifespan rather than their rate of growth. In total, our study suggests competition for time may be overlooked as a mechanism of biodiversity maintenance.


Asunto(s)
Biodiversidad , Ecología , Plantas , Ecosistema
6.
Ecol Lett ; 27(6): e14458, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38877741

RESUMEN

Most ecological models are based on the assumption that species interact in pairs. Diverse communities, however, can have higher-order interactions, in which two or more species jointly impact the growth of a third species. A pitfall of the common pairwise approach is that it misses the higher-order interactions potentially responsible for maintaining natural diversity. Here, we explore the stability properties of systems where higher-order interactions guarantee that a specified set of abundances is a feasible equilibrium of the dynamics. Even these higher-order interactions which lead to equilibria do not necessarily produce stable coexistence. Instead, these systems are more likely to be stable when the pairwise interactions are weak or facilitative. Correlations between the pairwise and higher-order interactions, however, do permit robust coexistence even in diverse systems. Our work not only reveals the challenges in generating stable coexistence through higher-order interactions but also uncovers interaction patterns that can enable diversity.


Asunto(s)
Modelos Biológicos , Biodiversidad , Ecosistema , Dinámica Poblacional
7.
Artículo en Inglés | MEDLINE | ID: mdl-38993175

RESUMEN

PURPOSE: The objective was to predict proliferative diabetic retinopathy (PDR) in non-Hispanic Black (NHB) and Latino (LA) patients by applying machine learning algorithms to routinely collected blood and urine laboratory results. METHODS: Electronic medical records of 1124 type 2 diabetes patients treated at the Bronxcare Hospital eye clinic between January and December 2019 were analysed. Data collected included demographic information (ethnicity, age and sex), blood (fasting glucose, haemoglobin A1C [HbA1c] high-density lipoprotein [HDL], low-density lipoprotein [LDL], serum creatinine and estimated glomerular filtration rate [eGFR]) and urine (albumin-to-creatinine ratio [ACR]) test results and the outcome measure of retinopathy status. The efficacy of different machine learning models was assessed and compared. SHapley Additive exPlanations (SHAP) analysis was employed to evaluate the contribution of each feature to the model's predictions. RESULTS: The balanced random forest model surpassed other models in predicting PDR for both NHB and LA cohorts, achieving an AUC (area under the curve) of 83%. Regarding sex, the model exhibited remarkable performance for the female LA demographic, with an AUC of 87%. The SHAP analysis revealed that PDR-related factors influenced NHB and LA patients differently, with more pronounced disparity between sexes. Furthermore, the optimal cut-off values for these factors showed variations based on sex and ethnicity. CONCLUSIONS: This study demonstrates the potential of machine learning in identifying individuals at higher risk for PDR by leveraging routine blood and urine test results. It allows clinicians to prioritise at-risk individuals for timely evaluations. Furthermore, the findings emphasise the importance of accounting for both ethnicity and sex when analysing risk factors for PDR in type 2 diabetes individuals.

8.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33536336

RESUMEN

Eco-evolutionary dynamics will play a critical role in determining species' fates as climatic conditions change. Unfortunately, we have little understanding of how rapid evolutionary responses to climate play out when species are embedded in the competitive communities that they inhabit in nature. We tested the effects of rapid evolution in response to interspecific competition on subsequent ecological and evolutionary trajectories in a seasonally changing climate using a field-based evolution experiment with Drosophila melanogaster Populations of D. melanogaster were either exposed, or not exposed, to interspecific competition with an invasive competitor, Zaprionus indianus, over the summer. We then quantified these populations' ecological trajectories (abundances) and evolutionary trajectories (heritable phenotypic change) when exposed to a cooling fall climate. We found that competition with Z. indianus in the summer affected the subsequent evolutionary trajectory of D. melanogaster populations in the fall, after all interspecific competition had ceased. Specifically, flies with a history of interspecific competition evolved under fall conditions to be larger and have lower cold fecundity and faster development than flies without a history of interspecific competition. Surprisingly, this divergent fall evolutionary trajectory occurred in the absence of any detectible effect of the summer competitive environment on phenotypic evolution over the summer or population dynamics in the fall. This study demonstrates that competitive interactions can leave a legacy that shapes evolutionary responses to climate even after competition has ceased, and more broadly, that evolution in response to one selective pressure can fundamentally alter evolution in response to subsequent agents of selection.


Asunto(s)
Evolución Biológica , Drosophila melanogaster/genética , Drosophilidae/genética , Especies Introducidas , Animales , Cambio Climático , Drosophila melanogaster/fisiología , Drosophilidae/fisiología , Dinámica Poblacional , Estaciones del Año
9.
Nature ; 546(7656): 56-64, 2017 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-28569813

RESUMEN

The tremendous diversity of species in ecological communities has motivated a century of research into the mechanisms that maintain biodiversity. However, much of this work examines the coexistence of just pairs of competitors. This approach ignores those mechanisms of coexistence that emerge only in diverse competitive networks. Despite the potential for these mechanisms to create conditions under which the loss of one competitor triggers the loss of others, we lack the knowledge needed to judge their importance for coexistence in nature. Progress requires borrowing insight from the study of multitrophic interaction networks, and coupling empirical data to models of competition.


Asunto(s)
Biodiversidad , Conducta Competitiva , Modelos Biológicos , Animales , Biota , Extinción Biológica
10.
Vet Radiol Ultrasound ; 64(4): 706-712, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37296076

RESUMEN

The "claw sign" is a radiographic sign studied in human imaging to determine if a mass arises from a solid structure or organ versus a close adjacent location, resulting in distortion of the outline of an organ. We investigated its utility in characterizing MRI axial localization of peripherally located intracranial glioma versus meningioma, due to their overlap in MRI appearance. This retrospective, secondary analysis, cross-sectional study aimed to report the sensitivity, specificity, and inter- and intraobserver variabilities using kappa statistics, hypothesizing that the claw sign will have strong inter- and intraobserver agreement (κ > 0.8). Dogs with a histologically confirmed diagnosis of peripherally located glioma or meningioma and available 3T MRI data were retrieved from medical record archives from 2009 to 2021. A total of 27 cases, 11 glioma and 16 meningioma, were included. The postcontrast T1-weighted images were provided to five blinded image evaluators in two separate randomized sessions separated by a 6-week wash out period. Prior to the first evaluation, evaluators were provided with a training video and set of training cases for the "claw sign," which were excluded from the study. Evaluators were asked to rate cases as "positive," "negative," or "indeterminate" for the "claw sign." The sensitivity and specificity for the "claw sign" for the first session were 85.5% and 80%, respectively. The interobserver agreement for identifying the "claw sign" was moderate (κ = 0.48), and the intraobserver agreement across the two sessions was substantial (κ = 0.72). These findings indicate the claw sign is supportive but not pathognomonic for intra-axial localization in cases of canine glioma on MRI.


Asunto(s)
Enfermedades de los Perros , Glioma , Neoplasias Meníngeas , Meningioma , Humanos , Animales , Perros , Estudios Retrospectivos , Meningioma/veterinaria , Estudios Transversales , Imagen por Resonancia Magnética/veterinaria , Glioma/diagnóstico por imagen , Glioma/veterinaria , Variaciones Dependientes del Observador , Neoplasias Meníngeas/veterinaria , Enfermedades de los Perros/patología
11.
Ecol Lett ; 25(2): 541-554, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34850533

RESUMEN

Although studies quantifying evolutionary change in response to the selective pressures that organisms face in the wild have demonstrated that organisms can evolve rapidly, we lack a systematic assessment of the frequency, magnitude and direction of rapid evolutionary change across taxa. To address this gap, we conducted a meta-analysis of 58 studies that document the effects of warming, predation or competition on the evolution of body size, development rate or fecundity in natural or experimental animal populations. We tested whether there was a consistent effect of any selective agent on any trait, whether the direction of these effects align with theoretical predictions, and whether the three agents select in opposing directions on any trait. Overall, we found weak effects of all three selective agents on trait evolution: none of our nine traits by selective agent combinations had an overall effect that differed from zero, only 31% of studies had a significant within-study effect, and attributes of the included studies generally did not account for between-study variation in results. One notable exception was that predation targeting adults consistently resulted in the evolution of smaller prey body size. We discuss potential causes of these generally weak responses and consider how our results inform the ongoing development of eco-evolutionary research.


Asunto(s)
Rasgos de la Historia de Vida , Conducta Predatoria , Animales , Evolución Biológica , Tamaño Corporal , Fertilidad
12.
Ecol Lett ; 25(10): 2091-2106, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35962483

RESUMEN

Community ecology typically assumes that competitive exclusion and species coexistence are unaffected by evolution on the time scale of ecological dynamics. However, recent studies suggest that rapid evolution operating concurrently with competition may enable species coexistence. Such findings necessitate general theory that incorporates the coexistence contributions of eco-evolutionary processes in parallel with purely ecological mechanisms and provides metrics for quantifying the role of evolution in shaping competitive outcomes in both modelling and empirical contexts. To foster the development of such theory, here we extend the interpretation of the two principal metrics of modern coexistence theory-niche and competitive ability differences-to systems where competitors evolve. We define eco-evolutionary versions of these metrics by considering how invading and resident species adapt to conspecific and heterospecific competitors. We show that the eco-evolutionary niche and competitive ability differences are sums of ecological and evolutionary processes, and that they accurately predict the potential for stable coexistence in previous theoretical studies of eco-evolutionary dynamics. Finally, we show how this theory frames recent empirical assessments of rapid evolution effects on species coexistence, and how empirical work and theory on species coexistence and eco-evolutionary dynamics can be further integrated.


Asunto(s)
Evolución Biológica , Modelos Teóricos , Adaptación Fisiológica , Ecosistema , Dinámica Poblacional
13.
Ecol Lett ; 25(7): 1604-1617, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35651315

RESUMEN

When species simultaneously compete with two or more species of competitor, higher-order interactions (HOIs) can lead to emergent properties not present when species interact in isolated pairs. To extend ecological theory to multi-competitor communities, ecologists must confront the challenges of measuring and interpreting HOIs in models of competition fit to data from nature. Such efforts are hindered by the fact that different studies use different definitions, and these definitions have unclear relationships to one another. Here, we propose a distinction between 'soft' HOIs, which identify possible interaction modification by competitors, and 'hard' HOIs, which identify interactions uniquely emerging in systems with three or more competitors. We show how these two classes of HOI differ in their motivation and interpretation, as well as the tests one uses to identify them in models fit to data. We then show how to operationalise this structure of definitions by analysing the results of a simulated competition experiment underlain by a consumer resource model. In the course of doing so, we clarify the challenges of interpreting HOIs in nature, and suggest a more precise framing of this research endeavour to catalyse further investigations.


Asunto(s)
Biota
14.
Ecol Lett ; 25(5): 1110-1125, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35301777

RESUMEN

Both competition for water and phenological variation are important determinants of plant community structure, but ecologists lack a synthetic theory for how they affect coexistence outcomes. We developed an analytically tractable model of water competition for Mediterranean annual communities and demonstrated that variation in phenology alone can maintain high diversity in spatially homogenous assemblages of water-limited plants. We modelled a system where all water arrives early in the season and species vary in their ability to grow under drying conditions. As a consequence, species differ in growing season length and compete by shortening the growing season of their competitors. This model replicates and offers mechanistic explanations for patterns observed in empirical studies of how phenology influences coexistence among Mediterranean annuals. Additionally, we found that a decreasing, concave-up trade-off between growth rate and access to water can maintain high diversity under simple but realistic assumptions. High diversity is possible because: (1) later plants escape competition after their earlier season competitors have gone to seed and (2) early-season species are more than compensated for their shortened growing season by a growth rate advantage. Together, these mechanisms provide an explanation for how phenologically variable annual plant species might coexist when competing only for water.


Asunto(s)
Plantas , Agua , Ecosistema , Estaciones del Año , Semillas
15.
Ecol Lett ; 25(10): 2156-2166, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36028464

RESUMEN

Forecasting the trajectories of species assemblages in response to ongoing climate change requires quantifying the time lags in the demographic and ecological processes through which climate impacts species' abundances. Since experimental climate manipulations are typically abrupt, the observed species responses may not match their responses to gradual climate change. We addressed this problem by transplanting alpine grassland turfs to lower elevations, recording species' demographic responses to climate and competition, and using these data to parameterise community dynamics models forced by scenarios of gradual climate change. We found that shifts in community structure following an abrupt climate manipulation were not simply accelerated versions of shifts expected under gradual warming, as the former missed the transient rise of species benefiting from moderate warming. Time lags in demography and species interactions controlled the pace and trajectory of changing species' abundances under simulated 21st-century climate change, and thereby prevented immediate diversity loss.


Asunto(s)
Cambio Climático , Plantas
16.
Am Nat ; 199(1): 1-20, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34978962

RESUMEN

AbstractA scientific understanding of the biological world arises when ideas about how nature works are formalized, tested, refined, and then tested again. Although the benefits of feedback between theoretical and empirical research are widely acknowledged by ecologists, this link is still not as strong as it could be in ecological research. This is in part because theory, particularly when expressed mathematically, can feel inaccessible to empiricists who may have little formal training in advanced math. To address this persistent barrier, we provide a general and accessible guide that covers the basic, step-by-step process of how to approach, understand, and use ecological theory in empirical work. We first give an overview of how and why mathematical theory is created, then outline four specific ways to use both mathematical and verbal theory to motivate empirical work, and finally present a practical tool kit for reading and understanding the mathematical aspects of ecological theory. We hope that empowering empiricists to embrace theory in their work will help move the field closer to a full integration of theoretical and empirical research.

17.
Vet Pathol ; 59(1): 132-137, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34490804

RESUMEN

Canine multiple system degeneration (CMSD) is a progressive hereditary neurodegenerative disorder commonly characterized by neuronal degeneration and loss in the cerebellum, olivary nuclei, substantia nigra, and caudate nuclei. In this article, we describe 3 cases of CMSD in Ibizan hounds. All patients exhibited marked cerebellar ataxia and had cerebellar atrophy on magnetic resonance imaging. At necropsy, all cases showed varying degrees of cerebellar atrophy, and 2 cases had gross cavitation of the caudate nuclei. Histologic findings included severe degeneration and loss of all layers of the cerebellum and neuronal loss and degeneration within the olivary nuclei, substantia nigra, and caudate nuclei. Pedigree analysis indicated an autosomal recessive mode of inheritance, but the causative gene in this breed is yet to be identified. CMSD resembles human multiple system atrophy and warrants further investigation.


Asunto(s)
Enfermedades de los Perros , Enfermedades Neurodegenerativas , Animales , Autopsia/veterinaria , Cruzamiento , Cerebelo/diagnóstico por imagen , Enfermedades de los Perros/diagnóstico , Enfermedades de los Perros/genética , Perros , Humanos , Enfermedades Neurodegenerativas/veterinaria
18.
Proc Natl Acad Sci U S A ; 116(13): 6199-6204, 2019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30850526

RESUMEN

Adaptation to climate is expected to increase the performance of invasive species and their community-level impacts. However, while the fitness gains from adaptation should, in general, promote invader competitive ability, empirical demonstrations of this prediction are scarce. Furthermore, climate adaptation, in the form of altered timing of life cycle transitions, should affect the phenological overlap between nonnative and native competitors, with potentially large, but poorly tested, impacts on native species persistence. We evaluated these predictions by growing native California grassland plants in competition with nonnative Lactuca serriola, a species that flowers earlier in parts of its nonnative range that are drier than its putative European source region. In common garden experiments in southern California with L. serriola populations differing in phenology, plants originating from arid climates bolted up to 48 d earlier than plants from more mesic climates, and selection favored early flowering, supporting an adaptive basis for the phenology cline. The per capita competitive effects of L. serriola from early flowering populations on five early flowering native species were greater than the effects of L. serriola from later flowering populations. Consequently, the ability of the native species to increase when rare in competition with L. serriola, as inferred from field-parameterized competition models, declined with earlier L. serriola phenology. Indeed, changes to L. serriola phenology affected whether or not one native species was predicted to persist in competition with L. serriola Our results suggest that evolution in response to new climatic conditions can have important consequences for species interactions, and enhance the impacts of biological invasions on natural communities.


Asunto(s)
Especies Introducidas , Lactuca , Adaptación Fisiológica , California , Clima , Ecosistema , Europa (Continente) , Flores/crecimiento & desarrollo , Lactuca/crecimiento & desarrollo
19.
Proc Natl Acad Sci U S A ; 116(6): 2112-2117, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30659157

RESUMEN

Increasing evidence for rapid evolution suggests that the maintenance of species diversity in ecological communities may be influenced by more than purely ecological processes. Classic theory shows that interspecific competition may select for traits that increase niche differentiation, weakening competition and thus promoting species coexistence. While empirical work has demonstrated trait evolution in response to competition, if and how evolution affects the dynamics of the competing species-the key step for completing the required eco-evolutionary feedback-has been difficult to resolve. Here, we show that evolution in response to interspecific competition feeds back to change the course of competitive population dynamics of aquatic plant species over 10-15 generations in the field. By manipulating selection imposed by heterospecific competitors in experimental ponds, we demonstrate that (i) interspecific competition drives rapid genotypic change, and (ii) this evolutionary change in one competitor, while not changing the coexistence outcome, causes the population trajectories of the two competing species to converge. In contrast to the common expectation that interspecific competition should drive the evolution of niche differentiation, our results suggest that genotypic evolution resulted in phenotypic changes that altered population dynamics by affecting the competitive hierarchy. This result is consistent with theory suggesting that competition for essential resources can limit opportunities for the evolution of niche differentiation. Our finding that rapid evolution regulates the dynamics of competing species suggests that ecosystems may rely on continuous feedbacks between ecology and evolution to maintain species diversity.


Asunto(s)
Biodiversidad , Evolución Biológica , Selección Genética , Algoritmos , Análisis de Varianza , Modelos Teóricos , Dinámica Poblacional , Carácter Cuantitativo Heredable
20.
Aesthet Surg J ; 42(7): 733-739, 2022 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-35354201

RESUMEN

BACKGROUND: The subnasal lip lift is a surgical technique that elevates the "lip line" (interface between vertical maxillary incisor height and upper lip) to achieve a more youthful aesthetic. OBJECTIVES: The authors sought to offer the first ever definition, to their knowledge, of 3-dimensional (3D) changes to the upper lip due to subnasal lip lift. METHODS: A lip lift procedure was performed (on cadaveric samples) in a sequential manner from 2.5- to 5.0-mm intervals (n = 13). 3D photographs were taken with the VECTRA H1 system (Canfield Scientific, Fairfield, NJ), and 3D analysis was performed including vermillion height and width, philtral height, sagittal lip projection, vermillion surface area, and incisor show. A subset of samples (n = 9) underwent a modification of the technique by undermining the upper lip subcutaneous tissue off the underlying muscular fascia. RESULTS: Vermillion surface area (baseline range, 1.45-5.52 cm2) increased by an average of 20.5% and 43.1% with 2.5-mm and 5.0-mm lip lift, respectively. Anterior projection of the vermillion increased in all cases by an average of 2.13 and 4.07 mm at 2.5 and 5.0 mm, respectively. Philtral height decreased in all cases by an average of 3.37 and 7.23 mm at 2.5 and 5.0 mm, whereas incisal show increased on average of 1.9 and 4.09 mm, respectively. CONCLUSIONS: This study is the first to our knowledge to define the 3D morphometric changes to the upper lip following subnasal lip lift. Quantifying these changes aids the surgeon in preoperative planning and guiding patient expectations.


Asunto(s)
Labio , Estética , Humanos , Labio/cirugía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA