Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 162
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Epidemiol ; 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38576180

RESUMEN

Prenatal exposures are associated with childhood asthma, and risk may increase with simultaneous exposures. Pregnant women living in lower-income communities tend to have elevated exposures to a range of potential asthma risk factors, which may interact in complex ways. We examined the association between prenatal exposures and the risk of childhood asthma acute care clinical encounters (hospitalization, emergency department visit, observational stay) using conditional logistic regression with a multivariable smooth to model the interaction between continuous variables, adjusted for maternal characteristics, and stratified by sex. All births near the New Bedford Harbor (NBH) Superfund site (2000-2006) were followed through 2011 using the Massachusetts Pregnancy to Early Life Longitudinal data system to identify children ages 5-11 with asthma acute care clinical encounters (265 cases among 7,787 with follow-up). Hazard ratios (HRs) were higher for children living closer to the NBH with higher cord blood Pb levels than children living further away from the NBH with lower Pb levels (P<0.001). HRs were highest for girls (HR=4.17, 95% CI: 3.60, 4.82) compared to boys (HR=1.72, 95% CI: 1.46, 2.02). Our results suggest that prenatal Pb exposure in combination with residential proximity to the NBH is associated with childhood asthma acute care clinical encounters.

2.
Environ Res ; 246: 118067, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38157969

RESUMEN

Spontaneous abortion (SAB), defined as a pregnancy loss before 20 weeks of gestation, affects up to 30% of conceptions, yet few modifiable risk factors have been identified. We estimated the effect of ambient air pollution exposure on SAB incidence in Pregnancy Study Online (PRESTO), a preconception cohort study of North American couples who were trying to conceive. Participants completed questionnaires at baseline, every 8 weeks during preconception follow-up, and in early and late pregnancy. We analyzed data on 4643 United States (U.S.) participants and 851 Canadian participants who enrolled during 2013-2019 and conceived during 12 months of follow-up. We used country-specific national spatiotemporal models to estimate concentrations of particulate matter <2.5 µm (PM2.5), nitrogen dioxide (NO2), and ozone (O3) during the preconception and prenatal periods at each participant's residential address. On follow-up and pregnancy questionnaires, participants reported information on pregnancy status, including SAB incidence and timing. We fit Cox proportional hazards regression models with gestational weeks as the time scale to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) for the association of time-varying prenatal concentrations of PM2.5, NO2, and O3 with rate of SAB, adjusting for individual- and neighborhood-level factors. Nineteen percent of pregnancies ended in SAB. Greater PM2.5 concentrations were associated with a higher incidence of SAB in Canada, but not in the U.S. (HRs for a 5 µg/m3 increase = 1.29, 95% CI: 0.99, 1.68 and 0.94, 95% CI: 0.83, 1.08, respectively). NO2 and O3 concentrations were not appreciably associated with SAB incidence. Results did not vary substantially by gestational weeks or season at risk. In summary, we found little evidence for an effect of residential ambient PM2.5, NO2, and O3 concentrations on SAB incidence in the U.S., but a moderate positive association of PM2.5 with SAB incidence in Canada.


Asunto(s)
Aborto Espontáneo , Contaminantes Atmosféricos , Contaminación del Aire , Femenino , Humanos , Embarazo , Estados Unidos/epidemiología , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/análisis , Estudios de Cohortes , Dióxido de Nitrógeno/toxicidad , Dióxido de Nitrógeno/análisis , Aborto Espontáneo/inducido químicamente , Aborto Espontáneo/epidemiología , Canadá/epidemiología , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Material Particulado/toxicidad , Material Particulado/análisis , Exposición a Riesgos Ambientales/análisis
3.
J Community Health ; 49(1): 91-99, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37507525

RESUMEN

Occupational exposure to SARS-CoV-2 varies by profession, but "essential workers" are often considered in aggregate in COVID-19 models. This aggregation complicates efforts to understand risks to specific types of workers or industries and target interventions, specifically towards non-healthcare workers. We used census tract-resolution American Community Survey data to develop novel essential worker categories among the occupations designated as COVID-19 Essential Services in Massachusetts. Census tract-resolution COVID-19 cases and deaths were provided by the Massachusetts Department of Public Health. We evaluated the association between essential worker categories and cases and deaths over two phases of the pandemic from March 2020 to February 2021 using adjusted mixed-effects negative binomial regression, controlling for other sociodemographic risk factors. We observed elevated COVID-19 case incidence in census tracts in the highest tertile of workers in construction/transportation/buildings maintenance (Phase 1: IRR 1.32 [95% CI 1.22, 1.42]; Phase 2: IRR: 1.19 [1.13, 1.25]), production (Phase 1: IRR: 1.23 [1.15, 1.33]; Phase 2: 1.18 [1.12, 1.24]), and public-facing sales and services occupations (Phase 1: IRR: 1.14 [1.07, 1.21]; Phase 2: IRR: 1.10 [1.06, 1.15]). We found reduced case incidence associated with greater percentage of essential workers able to work from home (Phase 1: IRR: 0.85 [0.78, 0.94]; Phase 2: IRR: 0.83 [0.77, 0.88]). Similar trends exist in the associations between essential worker categories and deaths, though attenuated. Estimating industry-specific risk for essential workers is important in targeting interventions for COVID-19 and other diseases and our categories provide a reproducible and straightforward way to support such efforts.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , SARS-CoV-2 , Ocupaciones , Industrias , Massachusetts/epidemiología
4.
PLoS Med ; 20(1): e1004167, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36719864

RESUMEN

BACKGROUND: Inequities in Coronavirus Disease 2019 (COVID-19) vaccine and booster coverage may contribute to future disparities in morbidity and mortality within and between Massachusetts (MA) communities. METHODS AND FINDINGS: We conducted a population-based cross-sectional study of primary series vaccination and booster coverage 18 months into the general population vaccine rollout. We obtained public-use data on residents vaccinated and boosted by ZIP code (and by age group: 5 to 19, 20 to 39, 40 to 64, 65+) from MA Department of Public Health, as of October 10, 2022. We constructed population denominators for postal ZIP codes by aggregating census tract population estimates from the 2015-2019 American Community Survey. We excluded nonresidential ZIP codes and the smallest ZIP codes containing 1% of the state's population. We mapped variation in ZIP code-level primary series vaccine and booster coverage and used regression models to evaluate the association of these measures with ZIP code-level socioeconomic and demographic characteristics. Because age is strongly associated with COVID-19 severity and vaccine access/uptake, we assessed whether observed socioeconomic and racial/ethnic inequities persisted after adjusting for age composition and plotted age-specific vaccine and booster coverage by deciles of ZIP code characteristics. We analyzed data on 418 ZIP codes. We observed wide geographic variation in primary series vaccination and booster rates, with marked inequities by ZIP code-level education, median household income, essential worker share, and racial/ethnic composition. In age-stratified analyses, primary series vaccine coverage was very high among the elderly. However, we found large inequities in vaccination rates among younger adults and children, and very large inequities in booster rates for all age groups. In multivariable regression models, each 10 percentage point increase in "percent college educated" was associated with a 5.1 (95% confidence interval (CI) 3.9 to 6.3, p < 0.001) percentage point increase in primary series vaccine coverage and a 5.4 (95% CI 4.5 to 6.4, p < 0.001) percentage point increase in booster coverage. Although ZIP codes with higher "percent Black/Latino/Indigenous" and higher "percent essential workers" had lower vaccine coverage (-0.8, 95% CI -1.3 to -0.3, p < 0.01; -5.5, 95% CI -7.3 to -3.8, p < 0.001), these associations became strongly positive after adjusting for age and education (1.9, 95% CI 1.0 to 2.8, p < 0.001; 4.8, 95% CI 2.6 to 7.1, p < 0.001), consistent with high demand for vaccines among Black/Latino/Indigenous and essential worker populations within age and education groups. Strong positive associations between "median household income" and vaccination were attenuated after adjusting for age. Limitations of the study include imprecision of the estimated population denominators, lack of individual-level sociodemographic data, and potential for residential ZIP code misreporting in vaccination data. CONCLUSIONS: Eighteen months into MA's general population vaccine rollout, there remained large inequities in COVID-19 primary series vaccine and booster coverage across MA ZIP codes, particularly among younger age groups. Disparities in vaccination coverage by racial/ethnic composition were statistically explained by differences in age and education levels, which may mediate the effects of structural racism on vaccine uptake. Efforts to increase booster coverage are needed to limit future socioeconomic and racial/ethnic disparities in COVID-19 morbidity and mortality.


Asunto(s)
COVID-19 , Vacunas , Adulto , Niño , Humanos , Anciano , Vacunas contra la COVID-19 , Estudios Transversales , COVID-19/epidemiología , COVID-19/prevención & control , Massachusetts/epidemiología
5.
J Urban Health ; 100(6): 1234-1245, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37947996

RESUMEN

Rising ambient temperatures due to climate change will impact both indoor temperatures and heating and cooling utility costs. In traditionally colder climates, there are potential tradeoffs in how to meet the reduced heating and increased cooling demands, and issues related to lack of air conditioning (AC) access in older homes and among lower-income populations to prevent extreme heat exposure. We modeled a typical multi-family home in Boston (MA) in the building simulation program EnergyPlus to assess indoor temperature and energy consumption in current (2020) and projected future (2050) weather conditions. Selected households were those without AC (no AC), those who ran AC sometimes (some AC), and those with sufficient resources to run AC always (full AC). We considered stylized cooling subsidy policies that allowed households to move between groups, both independently and in conjunction with energy efficiency retrofits. Results showed that future weather conditions without policy changes yielded an increase in indoor summer temperatures of 2.1 °C (no AC), increased cooling demand (range: 34-50%), but led to a decrease in net yearly total utility costs per apartment (range: - $21 to - $38). Policies that allowed households to move to greater AC utilization yielded average indoor summer temperature decreases (- 3.5 °C to - 6.2 °C) and net yearly total utility increases (range: + $2 to + $94) per apartment unit, with greater savings for retrofitted homes primarily due to large decreases in heating use. Our model results reinforce the importance of coordinated public policies addressing climate change that have an equity lens for both health and climate goals.


Asunto(s)
Calor Extremo , Vivienda , Humanos , Anciano , Temperatura , Boston , Estaciones del Año
6.
Environ Res ; 225: 115584, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36868447

RESUMEN

Aircraft emissions contribute to overall ambient air pollution, including ultrafine particle (UFP) concentrations. However, accurately ascertaining aviation contributions to UFP is challenging due to high spatiotemporal variability along with intermittent aviation emissions. The objective of this study was to evaluate the impact of arrival aircraft on particle number concentration (PNC), a proxy for UFP, across six study sites 3-17 km from a major arrival aircraft flight path into Boston Logan International Airport by utilizing real-time aircraft activity and meteorological data. Ambient PNC at all monitoring sites was similar at the median but had greater variation at the 95th and 99th percentiles with more than two-fold increases in PNC observed at sites closer to the airport. PNC was elevated during the hours with high aircraft activity with sites closest to the airport exhibiting stronger signals when downwind from the airport. Regression models indicated that the number of arrival aircraft per hour was associated with measured PNC at all six sites, with a maximum contribution of 50% of total PNC at a monitor 3 km from the airport during hours with arrival activity on the flight path of interest (26% across all hours). Our findings suggest strong but intermittent contributions from arrival aircraft to ambient PNC in communities near airports.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Material Particulado/análisis , Aeropuertos , Contaminantes Atmosféricos/análisis , Boston , Aeronaves , Contaminación del Aire/análisis , Massachusetts , Emisiones de Vehículos/análisis , Monitoreo del Ambiente
7.
Environ Res ; 218: 115037, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36502895

RESUMEN

BACKGROUND: Studies of the association between aircraft noise and hypertension are complicated by inadequate control for potential confounders and a lack of longitudinal assessments, and existing evidence is inconclusive. OBJECTIVES: We evaluated the association between long-term aircraft noise exposure and risk of hypertension among post-menopausal women in the Women's Health Initiative Clinical Trials, an ongoing prospective U.S. METHODS: Day-night average (DNL) and night equivalent sound levels (Lnight) were modeled for 90 U.S. airports from 1995 to 2010 in 5-year intervals using the Aviation Environmental Design Tool and linked to participant geocoded addresses from 1993 to 2010. Participants with modeled exposures ≥45 A-weighted decibels (dB [A]) were considered exposed, and those outside of 45 dB(A) who also did not live in close proximity to unmodeled airports were considered unexposed. Hypertension was defined as systolic/diastolic blood pressure ≥140/90 mmHg or inventoried/self-reported antihypertensive medication use. Using time-varying Cox proportional hazards models, we estimated hazard ratios (HRs) for incident hypertension when exposed to DNL or Lnight ≥45 versus <45 dB(A), controlling for sociodemographic, behavioral, and environmental/contextual factors. RESULTS/DISCUSSION: There were 18,783 participants with non-missing DNL exposure and 14,443 with non-missing Lnight exposure at risk of hypertension. In adjusted models, DNL and Lnight ≥45 db(A) were associated with HRs of 1.00 (95% confidence interval [CI]: 0.93, 1.08) and 1.06 (95%CI: 0.91, 1.24), respectively. There was no evidence supporting a positive exposure-response relationship, and findings were robust in sensitivity analyses. Indications of elevated risk were seen among certain subgroups, such as those living in areas with lower population density (HRinteraction: 0.84; 95%CI: 0.72, 0.98) or nitrogen dioxide concentrations (HRinteraction: 0.82; 95%CI: 0.71, 0.95), which may indicate lower ambient/road traffic noise. Our findings do not suggest a relationship between aircraft noise and incident hypertension among older women in the U.S., though associations in lower ambient noise settings merit further investigation.


Asunto(s)
Hipertensión , Ruido del Transporte , Humanos , Femenino , Anciano , Posmenopausia , Estudios Prospectivos , Ruido del Transporte/efectos adversos , Hipertensión/epidemiología , Hipertensión/etiología , Aeronaves , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis
8.
Environ Health ; 21(Suppl 1): 129, 2023 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-36635712

RESUMEN

Human health risk assessment currently uses the reference dose or reference concentration (RfD, RfC) approach to describe the level of exposure to chemical hazards without appreciable risk for non-cancer health effects in people. However, this "bright line" approach assumes that there is minimal risk below the RfD/RfC with some undefined level of increased risk at exposures above the RfD/RfC and has limited utility for decision-making. Rather than this dichotomous approach, non-cancer risk assessment can benefit from incorporating probabilistic methods to estimate the amount of risk across a wide range of exposures and define a risk-specific dose. We identify and review existing approaches for conducting probabilistic non-cancer risk assessments. Using perchloroethylene (PCE), a priority chemical for the U.S. Environmental Protection Agency under the Toxic Substances Control Act, we calculate risk-specific doses for the effects on cognitive deficits using probabilistic risk assessment approaches. Our probabilistic risk assessment shows that chronic exposure to 0.004 ppm PCE is associated with approximately 1-in-1,000 risk for a 5% reduced performance on the Wechsler Memory Scale Visual Reproduction subtest with 95% confidence. This exposure level associated with a 1-in-1000 risk for non-cancer neurocognitive deficits is lower than the current RfC for PCE of 0.0059 ppm, which is based on standard point of departure and uncertainty factor approaches for the same neurotoxic effects in occupationally exposed adults. We found that the population-level risk of cognitive deficit (indicating central nervous system dysfunction) is estimated to be greater than the cancer risk level of 1-in-100,000 at a similar chronic exposure level. The extension of toxicological endpoints to more clinically relevant endpoints, along with consideration of magnitude and severity of effect, will help in the selection of acceptable risk targets for non-cancer effects. We find that probabilistic approaches can 1) provide greater context to existing RfDs and RfCs by describing the probability of effect across a range of exposure levels including the RfD/RfC in a diverse population for a given magnitude of effect and confidence level, 2) relate effects of chemical exposures to clinical disease risk so that the resulting risk assessments can better inform decision-makers and benefit-cost analysis, and 3) better reflect the underlying biology and uncertainties of population risks.


Asunto(s)
Reproducción , Adulto , Humanos , Incertidumbre , Medición de Riesgo/métodos
9.
Environ Health ; 21(Suppl 1): 132, 2023 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-36635734

RESUMEN

The manufacture and production of industrial chemicals continues to increase, with hundreds of thousands of chemicals and chemical mixtures used worldwide, leading to widespread population exposures and resultant health impacts. Low-wealth communities and communities of color often bear disproportionate burdens of exposure and impact; all compounded by regulatory delays to the detriment of public health. Multiple authoritative bodies and scientific consensus groups have called for actions to prevent harmful exposures via improved policy approaches. We worked across multiple disciplines to develop consensus recommendations for health-protective, scientific approaches to reduce harmful chemical exposures, which can be applied to current US policies governing industrial chemicals and environmental pollutants. This consensus identifies five principles and scientific recommendations for improving how agencies like the US Environmental Protection Agency (EPA) approach and conduct hazard and risk assessment and risk management analyses: (1) the financial burden of data generation for any given chemical on (or to be introduced to) the market should be on the chemical producers that benefit from their production and use; (2) lack of data does not equate to lack of hazard, exposure, or risk; (3) populations at greater risk, including those that are more susceptible or more highly exposed, must be better identified and protected to account for their real-world risks; (4) hazard and risk assessments should not assume existence of a "safe" or "no-risk" level of chemical exposure in the diverse general population; and (5) hazard and risk assessments must evaluate and account for financial conflicts of interest in the body of evidence. While many of these recommendations focus specifically on the EPA, they are general principles for environmental health that could be adopted by any agency or entity engaged in exposure, hazard, and risk assessment. We also detail recommendations for four priority areas in companion papers (exposure assessment methods, human variability assessment, methods for quantifying non-cancer health outcomes, and a framework for defining chemical classes). These recommendations constitute key steps for improved evidence-based environmental health decision-making and public health protection.


Asunto(s)
Contaminantes Ambientales , Humanos , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/prevención & control , Salud Ambiental , Contaminantes Ambientales/análisis , Salud Pública , Medición de Riesgo , Conferencias de Consenso como Asunto
10.
Am J Epidemiol ; 191(1): 63-74, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34347034

RESUMEN

Most epidemiologic studies fail to capture the impact of spatiotemporal fluctuations in traffic on exposure to traffic-related air pollutants in the near-road population. Using a case-crossover design and the Research LINE source (R-LINE) dispersion model with spatiotemporally resolved highway traffic data, we quantified associations between primary pollutants generated by highway traffic-particulate matter with an aerodynamic diameter less than or equal to 2.5 µm (PM2.5), oxides of nitrogen (NOx), and black carbon (BC)-and daily nonaccidental, respiratory, cardiovascular, and cerebrovascular mortality among persons who had resided within 1 km (0.6 mile) of major highways in the Puget Sound area of Washington State between 2009 and 2013. We estimated these associations using conditional logistic regression, adjusting for time-varying covariates. Although highly resolved modeled concentrations of PM2.5, NOx, and BC from highway traffic in the hours before death were used, we found no evidence of an association between mortality and the preceding 24-hour average PM2.5 exposure (odds ratio = 0.99, 95% confidence interval: 0.96, 1.02) or exposure during shorter averaging periods. This work did not support the hypothesis that mortality risk was meaningfully higher with greater exposures to PM2.5, NOx, and BC from highways in near-road populations, though we did incorporate a novel approach to estimate exposure to traffic-generated air pollution based on detailed traffic congestion data.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Mortalidad/tendencias , Emisiones de Vehículos/análisis , Anciano , Anciano de 80 o más Años , Carbono/análisis , Causas de Muerte , Estudios Cruzados , Monitoreo del Ambiente , Humanos , Persona de Mediana Edad , Óxidos de Nitrógeno/análisis , Material Particulado , Factores Sociodemográficos , Análisis Espacio-Temporal , Factores de Tiempo , Washingtón
11.
Paediatr Perinat Epidemiol ; 36(1): 57-67, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34890081

RESUMEN

BACKGROUND: Animal and epidemiologic studies indicate that air pollution may adversely affect fertility. Epidemiologic studies have been restricted largely to couples undergoing fertility treatment or have retrospectively ascertained time-to-pregnancy among pregnant women. OBJECTIVES: We examined the association between residential ambient air pollution and fecundability, the per-cycle probability of conception, in a large preconception cohort of Danish pregnancy planners. METHODS: During 2007-2018, we used the Internet to recruit and follow women who were trying to conceive without the use of fertility treatment. Participants completed an online baseline questionnaire eliciting socio-demographic characteristics, lifestyle factors, and medical and reproductive histories and follow-up questionnaires every 8 weeks to ascertain pregnancy status. We determined concentrations of ambient nitrogen oxides (NOx ), nitrogen dioxide (NO2 ), carbon monoxide (CO), ozone (O3 ), particulate matter <2.5 µm (PM2.5 ) and <10 µm (PM10 ), and sulphur dioxide (SO2 ) at each participant's residential address. We calculated average exposure during the year before baseline, during each menstrual cycle over follow-up and during the entire pregnancy attempt time. We used proportional probabilities regression models to estimate fecundability ratios (FRs) and 95% confidence intervals (CIs), adjusting for potential confounders and co-pollutants. The analysis was restricted to the 10,183 participants who were trying to conceive for <12 cycles at study entry whose addresses could be geocoded. RESULTS: During 12 months of follow-up, 73% of participants conceived. Higher concentrations of PM2.5 and PM10 were associated with small reductions in fecundability. For example, the FRs for a one interquartile range (IQR) increase in PM2.5 (IQR = 3.2 µg/m3 ) and PM10 (IQR = 5.3 µg/m3 ) during each menstrual cycle were 0.93 (95% CI: 0.87, 0.99) and 0.91 (95% CI: 0.84, 0.99), respectively. Other air pollutants were not appreciably associated with fecundability. CONCLUSIONS: In this preconception cohort study of Danish women, residential exposures to PM2.5 and PM10 were associated with reduced fecundability.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/toxicidad , Contaminación del Aire/análisis , Contaminación del Aire/estadística & datos numéricos , Estudios de Cohortes , Dinamarca/epidemiología , Femenino , Humanos , Material Particulado/toxicidad , Embarazo , Estudios Prospectivos , Estudios Retrospectivos , Tiempo para Quedar Embarazada
12.
Environ Res ; 215(Pt 3): 114165, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36087775

RESUMEN

BACKGROUND: Assessments of health and environmental effects of clean air and climate policies have revealed substantial health benefits due to reductions in air pollution, but have included few pediatric outcomes or assessed benefits at the neighborhood level. OBJECTIVES: We estimated benefits across a suite of child health outcomes in 42 New York City (NYC) neighborhoods under the proposed regional Transportation and Climate Initiative. We also estimated their distribution across racial/ethnic and socioeconomic groups. METHODS: We estimated changes in ambient fine particulate matter (PM2.5) and nitrogen dioxide (NO2) concentrations associated with on-road emissions under nine different predefined cap-and-invest scenarios. Health outcomes, including selected adverse birth, respiratory, and neurodevelopmental outcomes, were estimated using a program similar to the U.S. EPA BenMAP program. We stratified the associated monetized benefits across racial/ethnic and socioeconomic groups. RESULTS: The benefits varied widely over the different cap-and-investment scenarios. For a 25% reduction in carbon emissions from 2022 to 2032 and a strategy prioritizing public transit investments, NYC would have an estimated 48 fewer medical visits for childhood asthma, 13,000 avoided asthma exacerbations not requiring medical visits, 640 fewer respiratory illnesses unrelated to asthma, and 9 avoided adverse birth outcomes (infant mortality, preterm birth, and term low birth weight) annually, starting in 2032. The total estimated annual avoided costs are $22 million. City-wide, Black and Hispanic children would experience 1.7 times the health benefits per capita than White and Non-Hispanic White children, respectively. Under the same scenario, neighborhoods experiencing the highest poverty rates in NYC would experience about 2.5 times the health benefits per capita than the lowest poverty neighborhoods. CONCLUSION: A cap-and-invest strategy to reduce carbon emissions from the transportation sector could provide substantial health and monetized benefits to children in NYC through reductions in criteria pollutant concentrations, with greater benefits among Black and Hispanic children.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Asma , Nacimiento Prematuro , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Asma/inducido químicamente , Carbono , Niño , Femenino , Humanos , Lactante , Recién Nacido , Ciudad de Nueva York , Dióxido de Nitrógeno , Material Particulado/análisis , Políticas , Nacimiento Prematuro/inducido químicamente
13.
Environ Res ; 207: 112195, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-34627796

RESUMEN

BACKGROUND: Aircraft noise can affect populations living near airports. Chronic exposure to aircraft noise has been associated with cardiovascular disease, including hypertension. However, previous studies have been limited in their ability to characterize noise exposures over time and to adequately control for confounders. OBJECTIVES: The aim of this study was to examine the association between aircraft noise and incident hypertension in two cohorts of female nurses, using aircraft noise exposure estimates with high spatial resolution over a 20-year period. METHODS: We obtained contour maps of modeled aircraft noise levels over time for 90 U.S. airports and linked them with geocoded addresses of participants in the Nurses' Health Study (NHS) and Nurses' Health Study II (NHS II) to assign noise exposure for 1994-2014 and 1995-2013, respectively. We used time-varying Cox proportional hazards models to estimate hypertension risk associated with time-varying noise exposure (dichotomized at 45 and 55 dB(A)), adjusting for fixed and time-varying confounders. Results from both cohorts were pooled via random effects meta-analysis. RESULTS: In meta-analyses of parsimonious and fully-adjusted models with aircraft noise dichotomized at 45 dB(A), hazard ratios (HR) for hypertension incidence were 1.04 (95% CI: 1.00, 1.07) and 1.03 (95% CI: 0.99, 1.07), respectively. When dichotomized at 55 dB(A), HRs were 1.10 (95% CI: 1.01, 1.19) and 1.07 (95% CI: 0.98, 1.15), respectively. After conducting fully-adjusted sensitivity analyses limited to years in which particulate matter (PM) was obtained, we observed similar findings. In NHS, the PM-unadjusted HR was 1.01 (95% CI: 0.90, 1.14) and PM-adjusted HR was 1.01 (95% CI: 0.89, 1.14); in NHS II, the PM-unadjusted HR was 1.08 (95% CI: 0.96, 1.22) and the PM-adjusted HR was 1.08 (95% CI: 0.95, 1.21). Overall, in these cohorts, we found marginally suggestive evidence of a positive association between aircraft noise exposure and hypertension.


Asunto(s)
Hipertensión , Enfermeras y Enfermeros , Aeronaves , Aeropuertos , Exposición a Riesgos Ambientales/efectos adversos , Femenino , Humanos , Hipertensión/epidemiología , Hipertensión/etiología
14.
Indoor Air ; 32(6): e13065, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35762242

RESUMEN

Heating and cooling requirement differences across climates not only have carbon emissions and energy efficiency implications but also impact indoor air quality (IAQ) and health. Energy and IAQ building simulation models help understand tradeoffs or co-benefits, but these have not been applied to evaluate climate zone or multi-family home differences. We modeled a four-story multi-family home in six U.S. climate zones and quantified energy, IAQ, and health outcomes with EnergyPlus, CONTAM, and a pediatric asthma systems science model. Pollutant sources included cooking and ambient. Outputs were daily PM2.5 and NO2 indoor concentrations, infiltration, energy for heating and cooling, and asthma exacerbations, which were compared across climate zones, apartment units, and resident behaviors. Daily ambient-sourced PM2.5 decreased and cooking-sourced PM2.5 increased with higher ambient temperatures. Infiltration air changes per hour were higher on the first versus the fourth floor and in colder climates. Window opening during cooking led to decreases in total pollutant concentrations (11%-18% for PM2.5 and 9%-15% for NO2 ), 3%-4% decreases in asthma exacerbations within climate zones, and minimal impacts on cooling, but led to increased heating demand (4%-8%). Our results demonstrate the influence of meteorology, multi-family building characteristics, and resident behavior on IAQ, energy, and health, focused on multi-zone methodology.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Contaminación del Aire , Asma , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Contaminación del Aire Interior/análisis , Asma/epidemiología , Niño , Monitoreo del Ambiente/métodos , Humanos , Meteorología , Dióxido de Nitrógeno/análisis , Material Particulado/análisis , Estados Unidos
15.
BMC Public Health ; 22(1): 2314, 2022 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-36496371

RESUMEN

The growing frequency, intensity, and duration of extreme heat events necessitates interventions to reduce heat exposures. Local opportunities for heat adaptation may be optimally identified through collection of both quantitative exposure metrics and qualitative data on perceptions of heat. In this study, we used mixed methods to characterize heat exposure among urban residents in the area of Boston, Massachusetts, US, in summer 2020. Repeated interviews of N = 24 study participants ascertained heat vulnerability and adaptation strategies. Participants also used low-cost sensors to collect temperature, location, sleep, and physical activity data. We saw significant differences across temperature metrics: median personal temperature exposures were 3.9 °C higher than median ambient weather station temperatures. Existing air conditioning (AC) units did not adequately control indoor temperatures to desired thermostat levels: even with AC use, indoor maximum temperatures increased by 0.24 °C per °C of maximum outdoor temperature. Sleep duration was not associated with indoor or outdoor temperature. On warmer days, we observed a range of changes in time-at-home, expected given our small study size. Interview results further indicated opportunities for heat adaptation interventions including AC upgrades, hydration education campaigns, and amelioration of energy costs during high heat periods. Our mixed methods design informs heat adaptation interventions tailored to the challenges faced by residents in the study area. The strength of our community-academic partnership was a large part of the success of the mixed methods approach.


Asunto(s)
Calor , Termotolerancia , Humanos , Aire Acondicionado , Sueño , Ejercicio Físico
16.
J Allergy Clin Immunol ; 147(6): 2162-2170, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33338540

RESUMEN

BACKGROUND: Extensive data available in electronic health records (EHRs) have the potential to improve asthma care and understanding of factors influencing asthma outcomes. However, this work can be accomplished only when the EHR data allow for accurate measures of severity, which at present are complex and inconsistent. OBJECTIVE: Our aims were to create and evaluate a standardized pediatric asthma severity phenotype based in clinical asthma guidelines for use in EHR-based health initiatives and studies and also to examine the presence and absence of these data in relation to patient characteristics. METHODS: We developed an asthma severity computable phenotype and compared the concordance of different severity components contributing to the phenotype to trends in the literature. We used multivariable logistic regression to assess the presence of EHR data relevant to asthma severity. RESULTS: The asthma severity computable phenotype performs as expected in comparison with national statistics and the literature. Severity classification for a child is maximized when based on the long-term medication regimen component and minimized when based only on the symptom data component. Use of the severity phenotype results in better, clinically grounded classification. Children for whom severity could be ascertained from these EHR data were more likely to be seen for asthma in the outpatient setting and less likely to be older or Hispanic. Black children were less likely to have lung function testing data present. CONCLUSION: We developed a pragmatic computable phenotype for pediatric asthma severity that is transportable to other EHRs.


Asunto(s)
Asma/diagnóstico , Asma/epidemiología , Registros Electrónicos de Salud , Fenotipo , Factores de Edad , Niño , Humanos , Modelos Logísticos , Pruebas de Función Respiratoria , Índice de Severidad de la Enfermedad
17.
BMC Infect Dis ; 21(1): 686, 2021 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-34271870

RESUMEN

BACKGROUND: Associations between community-level risk factors and COVID-19 incidence have been used to identify vulnerable subpopulations and target interventions, but the variability of these associations over time remains largely unknown. We evaluated variability in the associations between community-level predictors and COVID-19 case incidence in 351 cities and towns in Massachusetts from March to October 2020. METHODS: Using publicly available sociodemographic, occupational, environmental, and mobility datasets, we developed mixed-effect, adjusted Poisson regression models to depict associations between these variables and town-level COVID-19 case incidence data across five distinct time periods from March to October 2020. We examined town-level demographic variables, including population proportions by race, ethnicity, and age, as well as factors related to occupation, housing density, economic vulnerability, air pollution (PM2.5), and institutional facilities. We calculated incidence rate ratios (IRR) associated with these predictors and compared these values across the multiple time periods to assess variability in the observed associations over time. RESULTS: Associations between key predictor variables and town-level incidence varied across the five time periods. We observed reductions over time in the association with percentage of Black residents (IRR = 1.12 [95%CI: 1.12-1.13]) in early spring, IRR = 1.01 [95%CI: 1.00-1.01] in early fall) and COVID-19 incidence. The association with number of long-term care facility beds per capita also decreased over time (IRR = 1.28 [95%CI: 1.26-1.31] in spring, IRR = 1.07 [95%CI: 1.05-1.09] in fall). Controlling for other factors, towns with higher percentages of essential workers experienced elevated incidences of COVID-19 throughout the pandemic (e.g., IRR = 1.30 [95%CI: 1.27-1.33] in spring, IRR = 1.20 [95%CI: 1.17-1.22] in fall). Towns with higher proportions of Latinx residents also had sustained elevated incidence over time (IRR = 1.19 [95%CI: 1.18-1.21] in spring, IRR = 1.14 [95%CI: 1.13-1.15] in fall). CONCLUSIONS: Town-level COVID-19 risk factors varied with time in this study. In Massachusetts, racial (but not ethnic) disparities in COVID-19 incidence may have decreased across the first 8 months of the pandemic, perhaps indicating greater success in risk mitigation in selected communities. Our approach can be used to evaluate effectiveness of public health interventions and target specific mitigation efforts on the community level.


Asunto(s)
COVID-19/epidemiología , Ocupaciones/estadística & datos numéricos , Medio Social , Transportes/estadística & datos numéricos , Adulto , Anciano , Anciano de 80 o más Años , COVID-19/etnología , Etnicidad/estadística & datos numéricos , Femenino , Disparidades en el Estado de Salud , Humanos , Incidencia , Renta/estadística & datos numéricos , Masculino , Massachusetts/epidemiología , Persona de Mediana Edad , Movimiento/fisiología , Pandemias , Características de la Residencia/estadística & datos numéricos , Factores de Riesgo , SARS-CoV-2/fisiología , Factores Socioeconómicos , Factores de Tiempo , Poblaciones Vulnerables/etnología , Poblaciones Vulnerables/estadística & datos numéricos , Adulto Joven
18.
J Urban Health ; 98(3): 315-327, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33471280

RESUMEN

The transportation sector is now the primary contributor to greenhouse gas emissions in the USA. The Transportation Climate Initiative (TCI), a partnership of 12 states and the District of Columbia currently under development, would implement a cap-and-invest program to reduce transportation sector emissions across the Northeast and Mid-Atlantic region, including substantial investment in cycling and pedestrian infrastructure. Using outputs from an investment scenario model and the World Health Organization Health Economic Assessment Tool methodology, we estimate the mortality implications of increased active mobility and their monetized value for three different investment allocation scenarios considered by TCI policymakers. We conduct these analyses for all 378 counties in the TCI region. We find that even for the scenario with the smallest investment in active mobility, when it is fully implemented, TCI would result in hundreds of fewer deaths per year across the region, with monetized benefits in the billions of dollars annually. Under all scenarios considered, the monetized benefits from deaths avoided substantially exceed the direct infrastructure costs of investment. We conclude that investing proceeds in active mobility infrastructure is a cost-effective way of reducing mortality, especially in urban areas, providing a strong motivation for investment in modernization of the transportation system and further evidence of the health co-benefits of climate action.


Asunto(s)
Contaminación del Aire , Emisiones de Vehículos , Ciclismo , District of Columbia , Humanos , Transportes
19.
Environ Res ; 199: 111353, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34048746

RESUMEN

Many environmental justice communities face elevated exposures to multiple stressors, given biases in urban and environmental policy and planning. This paper aims to evaluate sound level exposure in a densely populated environmental justice city in close proximity to major roadways, a nearby airport and high levels of industrial activity. In this study we collected various sound level metrics to evaluate the loudness and frequency composition of the acoustical environment in Chelsea, Massachusetts, USA. A total of 29 week-long sites were collected from October 2019 to June 2020, a time period that also included the influence of the COVID-19 pandemic, which drastically altered activity patterns and corresponding sound level exposures. We found that Chelsea is exposed to high levels of sound, both day and night (65 dB (A), and 80 dB and 90 dB for low frequency, and infrasound sound levels). A spectral analysis shows that 63 Hz was the dominant frequency. Distance to major roads and flight activity (both arrivals and departures) were most strongly correlated with all metrics, most notably with metrics describing contributing from lower frequencies. Overall, we found similar patterns during the COVID-19 pandemic but at levels up to 10 dB lower. Our results demonstrate the importance of noise exposure assessments in environmental justice communities and the importance of using additional metrics to describe communities inundated with significant air, road, and industrial sound levels. It also provides a snapshot of how much quieter communities can be with careful and intentional urban and environmental policy and planning.


Asunto(s)
COVID-19 , Pandemias , Ciudades , Exposición a Riesgos Ambientales , Humanos , Massachusetts/epidemiología , SARS-CoV-2
20.
Environ Res ; 193: 110561, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33275921

RESUMEN

Fine particulate matter (PM2.5) concentrations are highly variable indoors, with evidence for exposure disparities. Real-time monitoring coupled with novel statistical approaches can better characterize drivers of elevated PM2.5 indoors. We collected real-time PM2.5 data in 71 homes in an urban community of Greater Boston, Massachusetts using Alphasense OPC-N2 monitors. We estimated indoor PM2.5 concentrations of non-ambient origin using mass balance principles, and investigated their associations with indoor source activities at the 0.50 to 0.95 exposure quantiles using mixed effects quantile regressions, overall and by homeownership. On average, the majority of indoor PM2.5 concentrations were of non-ambient origin (≥77%), with a higher proportion at increasing quantiles of the exposure distribution. Major source predictors of non-ambient PM2.5 concentrations at the upper quantile (0.95) were cooking (1.4-23 µg/m3) and smoking (15 µg/m3, only among renters), with concentrations also increasing with range hood use (3.6 µg/m3) and during the heating season (5.6 µg/m3). Across quantiles, renters in multifamily housing experienced a higher proportion of PM2.5 concentrations from non-ambient sources than homeowners in single- and multifamily housing. Renters also more frequently reported cooking, smoking, spray air freshener use, and second-hand smoke exposure, and lived in units with higher air exchange rate and building density. Accounting for these factors explained observed PM2.5 exposure disparities by homeownership, particularly in the upper exposure quantiles. Our results suggest that renters in multifamily housing may experience higher PM2.5 exposures due to a combination of behavioral and building factors that are amenable to intervention.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Boston , Exposición a Riesgos Ambientales/análisis , Monitoreo del Ambiente , Massachusetts , Material Particulado/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA