Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Mol Ther Methods Clin Dev ; 32(2): 101228, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38524756

RESUMEN

Manufacturing of adeno-associated viruses (AAV) for gene and cell therapy applications has increased significantly and spurred development of improved mammalian and insect cell-based production systems. We developed a baculovirus-based insect cell production system-the SGMO Helper-with a novel gene architecture and greater flexibility to modulate the expression level and content of individual Rep and Cap proteins. In addition, we incorporated modifications to the AAV6 capsid sequence that improves yield, capsid integrity, and potency. Production of recombinant AAV 6 (rAAV6) using the SGMO Helper had improved yields compared to the Bac-RepCap helper from the Kotin lab. SGMO Helper-derived rAAV6 is resistant to a previously described proteolytic cleavage unique to baculovirus-insect cell production systems and has improved capsid ratios and potency, in vitro and in vivo, compared with rAAV6 produced using Bac-RepCap. Next-generation sequencing sequence analysis demonstrated that the SGMO Helper is stable over six serial passages and rAAV6 capsids contain comparable amounts of non-vector genome DNA as rAAV6 produced using Bac-RepCap. AAV production using the SGMO Helper is scalable using bioreactors and has improved yield, capsid ratio, and in vitro potency. Our studies demonstrate that the SGMO Helper is an improved platform for AAV manufacturing to enable delivery of cutting-edge gene and cell therapies.

2.
Nat Commun ; 15(1): 1181, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38360922

RESUMEN

Nucleobase editors represent an emerging technology that enables precise single-base edits to the genomes of eukaryotic cells. Most nucleobase editors use deaminase domains that act upon single-stranded DNA and require RNA-guided proteins such as Cas9 to unwind the DNA prior to editing. However, the most recent class of base editors utilizes a deaminase domain, DddAtox, that can act upon double-stranded DNA. Here, we target DddAtox fragments and a FokI-based nickase to the human CIITA gene by fusing these domains to arrays of engineered zinc fingers (ZFs). We also identify a broad variety of Toxin-Derived Deaminases (TDDs) orthologous to DddAtox that allow us to fine-tune properties such as targeting density and specificity. TDD-derived ZF base editors enable up to 73% base editing in T cells with good cell viability and favorable specificity.


Asunto(s)
Citidina Desaminasa , Edición Génica , Humanos , Citidina Desaminasa/genética , Citidina Desaminasa/metabolismo , ADN/metabolismo , Dedos de Zinc , Citidina/genética , Sistemas CRISPR-Cas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA