Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Bioinformatics ; 37(12): 1776-1777, 2021 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-33045081

RESUMEN

SUMMARY: The C++ library Highly Optimized Polytope Sampling (HOPS) provides implementations of efficient and scalable algorithms for sampling convex-constrained models that are equipped with arbitrary target functions. For uniform sampling, substantial performance gains were achieved compared to the state-of-the-art. The ease of integration and utility of non-uniform sampling is showcased in a Bayesian inference setting, demonstrating how HOPS interoperates with third-party software. AVAILABILITY AND IMPLEMENTATION: Source code is available at https://github.com/modsim/hops/, tested on Linux and MS Windows, includes unit tests, detailed documentation, example applications and a Dockerfile. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Bibliotecas , Programas Informáticos , Algoritmos , Teorema de Bayes , Biblioteca de Genes
2.
Biotechnol Bioeng ; 114(11): 2668-2684, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28695999

RESUMEN

13 C Metabolic Fluxes Analysis (13 C MFA) remains to be the most powerful approach to determine intracellular metabolic reaction rates. Decisions on strain engineering and experimentation heavily rely upon the certainty with which these fluxes are estimated. For uncertainty quantification, the vast majority of 13 C MFA studies relies on confidence intervals from the paradigm of Frequentist statistics. However, it is well known that the confidence intervals for a given experimental outcome are not uniquely defined. As a result, confidence intervals produced by different methods can be different, but nevertheless equally valid. This is of high relevance to 13 C MFA, since practitioners regularly use three different approximate approaches for calculating confidence intervals. By means of a computational study with a realistic model of the central carbon metabolism of E. coli, we provide strong evidence that confidence intervals used in the field depend strongly on the technique with which they were calculated and, thus, their use leads to misinterpretation of the flux uncertainty. In order to provide a better alternative to confidence intervals in 13 C MFA, we demonstrate that credible intervals from the paradigm of Bayesian statistics give more reliable flux uncertainty quantifications which can be readily computed with high accuracy using Markov chain Monte Carlo. In addition, the widely applied chi-square test, as a means of testing whether the model reproduces the data, is examined closer.


Asunto(s)
Carbono/metabolismo , Escherichia coli/metabolismo , Análisis de Flujos Metabólicos/métodos , Redes y Vías Metabólicas/fisiología , Modelos Biológicos , Modelos Estadísticos , Teorema de Bayes , Isótopos de Carbono/farmacocinética , Simulación por Computador , Proteínas de Escherichia coli/metabolismo , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
3.
ACS Cent Sci ; 9(2): 307-317, 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36844498

RESUMEN

Automation and digitalization solutions in the field of small molecule synthesis face new challenges for chemical reaction analysis, especially in the field of high-performance liquid chromatography (HPLC). Chromatographic data remains locked in vendors' hardware and software components, limiting their potential in automated workflows and data science applications. In this work, we present an open-source Python project called MOCCA for the analysis of HPLC-DAD (photodiode array detector) raw data. MOCCA provides a comprehensive set of data analysis features, including an automated peak deconvolution routine of known signals, even if overlapped with signals of unexpected impurities or side products. We highlight the broad applicability of MOCCA in four studies: (i) a simulation study to validate MOCCA's data analysis features; (ii) a reaction kinetics study on a Knoevenagel condensation reaction demonstrating MOCCA's peak deconvolution feature; (iii) a closed-loop optimization study for the alkylation of 2-pyridone without human control during data analysis; (iv) a well plate screening of categorical reaction parameters for a novel palladium-catalyzed cyanation of aryl halides employing O-protected cyanohydrins. By publishing MOCCA as a Python package with this work, we envision an open-source community project for chromatographic data analysis with the potential of further advancing its scope and capabilities.

4.
J Chromatogr A ; 1653: 462412, 2021 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-34320430

RESUMEN

Elucidation of protein transport mechanism in ion exchanges is essential to model separation performance. In this work we simulate intraparticle adsorption profiles during batch adsorption assuming typical process conditions for pore, solid and parallel diffusion. Artificial confocal laser scanning microscopy images are created to identify apparent differences between the different transport mechanisms. Typical sharp fronts for pore diffusion are characteristic for Langmuir equilibrium constants of KL ≥1. Only at KL = 0.1 and lower, the profiles are smooth and practically indistinguishable from a solid diffusion mechanism. During hold and wash steps, at which the interstitial buffer is removed or exchanged, continuation of diffusion of protein molecules is significant for solid diffusion due to the adsorbed phase concentration driving force. For pore diffusion, protein mobility is considerable at low and moderate binding strength. Only when pore diffusion if completely dominant, and the binding strength is very high, protein mobility is low enough to restrict diffusion out of the particles. Simulation of column operation reveals substantial protein loss when operating conditions are not adjusted appropriately.


Asunto(s)
Cromatografía por Intercambio Iónico , Proteínas , Adsorción , Difusión , Cinética , Microscopía Confocal , Proteínas/química
5.
J Chromatogr A ; 1660: 462669, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34800897

RESUMEN

Mechanistic models for ion-exchange chromatography of proteins are well-established and a broad consensus exists on most aspects of the detailed mathematical and physical description. A variety of specializations of these models can typically capture the general locations of elution peaks, but discrepancies are often observed in peak position and shape, especially if the column load level is in the non-linear range. These discrepancies may prevent the use of models for high-fidelity predictive applications such as process characterization and development of high-purity and -productivity process steps. Our objective is to develop a sufficiently robust mechanistic framework to make both conventional and anomalous phenomena more readily predictable using model parameters that can be evaluated based on independent measurements or well-accepted correlations. This work demonstrates the implementation of this approach for industry-relevant case studies using both a model protein, lysozyme, and biopharmaceutical product monoclonal antibodies, using cation-exchange resins with a variety of architectures (SP Sepharose FF, Fractogel EMD SO3-, Capto S and Toyopearl SP650M). The modeling employs the general rate model with the extension of the surface diffusivity to be variable, as a function of ionic strength or binding affinity. A colloidal isotherm that accounts for protein-surface and protein-protein interactions independently was used, with each characterized by a parameter determined as a function of ionic strength and pH. Both of these isotherm parameters, along with the variable surface diffusivity, were successfully estimated using breakthrough data at different ionic strengths and pH. The model developed was used to predict overloads and elution curves with high accuracy for a wide variety of gradients and different flow rates and protein loads. The in-silico methodology used in this work for parameter estimation, along with a minimal amount of experimental data, can help the industry adopt model-based optimization and control of preparative ion-exchange chromatography with high accuracy.


Asunto(s)
Anticuerpos Monoclonales , Resinas de Intercambio de Catión , Cromatografía por Intercambio Iónico , Concentración Osmolar , Sefarosa
6.
J Chromatogr A ; 1525: 60-70, 2017 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-29055527

RESUMEN

Tentacle resins for IEX are increasingly applied in preparative chromatography for their higher selectivity and higher capacities in comparison to IEX resins without tentacles. However, tentacle resins are often observed to cause unusual elution behavior of monoclonal antibodies under high loading conditions. Understanding this elution behavior is important for a quality by design approach, as it is now mandated by regulatory agencies. A model-based analysis of load, wash and gradient elution is performed for a monoclonal antibody (mAb) on Fractogel SO3-. Four experiments with increasing loaded mass show complex peak shapes and formation of a shoulder under overloaded conditions. We hypothesize that the observed peak shapes are caused by mAbs binding in multiple states on the tentacle ion-exchange resin. A new multi-state SMA binding model is used for testing this hypothesis. A two-state binding model is found to quantitatively reproduce all four experiments. An in-depth analysis reveals that the shoulder formation under overloaded conditions can be explained by multi-state binding that particularly manifests in rapid but weak re-adsorption of eluting molecules near the column end. The introduced multi-state SMA model combines features of the so-called spreading model (multiple bound states) and of the standard SMA model (salt dependency). It is by no means limited to ion-exchange chromatography on tentacle resins, but the same concept can be applied for studying systems that are based on other physical mechanisms. The new model can potentially improve mechanistic understanding and facilitate quantitative simulation of various phenomena, such as caused by reorientation, reconformation or unfolding of bound species. Similar concepts can be applied for studying surface-induced aggregation and denaturation.


Asunto(s)
Anticuerpos Monoclonales/aislamiento & purificación , Anticuerpos Monoclonales/metabolismo , Técnicas de Química Analítica/métodos , Resinas de Intercambio Iónico/metabolismo , Adsorción , Anticuerpos Monoclonales/química , Cromatografía por Intercambio Iónico , Unión Proteica
7.
J Chromatogr A ; 1426: 140-53, 2015 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-26686559

RESUMEN

Ion-exchange chromatography (IEX) is universally accepted as the optimal method for achieving process scale separation of charge variants of a monoclonal antibody (mAb) therapeutic. These variants are closely related to the product and a baseline separation is rarely achieved. The general practice is to fractionate the eluate from the IEX column, analyze the fractions and then pool the desired fractions to obtain the targeted composition of variants. This is, however, a very cumbersome and time consuming exercise. A mechanistic model that is capable of simulating the peak profile will be a much more elegant and effective way to make a decision on the pooling strategy. This paper proposes a mechanistic model, based on the general rate model, to predict elution peak profile for separation of the main product from its variants. The proposed approach uses inverse fit of process scale chromatogram for estimation of model parameters using the initial values that are obtained from theoretical correlations. The packed bed column has been modeled along with the chromatographic system consisting of the mixer, tubing and detectors as a series of dispersed plug flow and continuous stirred tank reactors. The model uses loading ranges starting at 25% to a maximum of 70% of the loading capacity and hence is applicable to process scale separations. Langmuir model has been extended to include the effects of salt concentration and temperature on the model parameters. The extended Langmuir model that has been proposed uses one less parameter than the SMA model and this results in a significant ease of estimating the model parameters from inverse fitting. The proposed model has been validated with experimental data and has been shown to successfully predict peak profile for a range of load capacities (15-28mg/mL), gradient lengths (10-30CV), bed heights (6-20cm), and for three different resins with good accuracy (as measured by estimation of residuals). The model has been also validated for a two component mixture consisting of the main mAb product and one of its basic charge variants. The proposed model can be used for optimization and control of preparative scale chromatography for separation of charge variants.


Asunto(s)
Anticuerpos Monoclonales/química , Cromatografía por Intercambio Iónico/métodos , Inmunoglobulina G/química , Humanos , Modelos Teóricos , Cloruro de Sodio/química , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA