Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(31): e2200667119, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35881789

RESUMEN

Liquid-liquid phase separation (LLPS) is emerging as a key physical principle for biological organization inside living cells, forming condensates that play important regulatory roles. Inside living nuclei, transcription factor (TF) condensates regulate transcriptional initiation and amplify the transcriptional output of expressed genes. However, the biophysical parameters controlling TF condensation are still poorly understood. Here we applied a battery of single-molecule imaging, theory, and simulations to investigate the physical properties of TF condensates of the progesterone receptor (PR) in living cells. Analysis of individual PR trajectories at different ligand concentrations showed marked signatures of a ligand-tunable LLPS process. Using a machine learning architecture, we found that receptor diffusion within condensates follows fractional Brownian motion resulting from viscoelastic interactions with chromatin. Interestingly, condensate growth dynamics at shorter times is dominated by Brownian motion coalescence (BMC), followed by a growth plateau at longer timescales that result in nanoscale condensate sizes. To rationalize these observations, we extended on the BMC model by including the stochastic unbinding of particles within condensates. Our model reproduced the BMC behavior together with finite condensate sizes at the steady state, fully recapitulating our experimental data. Overall, our results are consistent with condensate growth dynamics being regulated by the escaping probability of PR molecules from condensates. The interplay between condensation assembly and molecular escaping maintains an optimum physical condensate size. Such phenomena must have implications for the biophysical regulation of other nuclear condensates and could also operate in multiple biological scenarios.


Asunto(s)
Condensados Biomoleculares , Núcleo Celular , Receptores de Progesterona , Imagen Individual de Molécula , Factores de Transcripción , Condensados Biomoleculares/química , Núcleo Celular/química , Cromatina/química , Ligandos , Aprendizaje Automático , Movimiento (Física) , Receptores de Progesterona/química , Factores de Transcripción/química
2.
Proc Natl Acad Sci U S A ; 119(40): e2207766119, 2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-36161921

RESUMEN

We report on the nonlinear optical signatures of quantum phase transitions in the high-temperature superconductor YBCO, observed through high harmonic generation. While the linear optical response of the material is largely unchanged when cooling across the phase transitions, the nonlinear optical response sensitively imprints two critical points, one at the critical temperature of the cuprate with the exponential growth of the surface harmonic yield in the superconducting phase and another critical point, which marks the transition from strange metal to pseudogap phase. To reveal the underlying microscopic quantum dynamics, a strong-field quasi-Hubbard model was developed, which describes the measured optical response dependent on the formation of Cooper pairs. Further, the theory provides insight into the carrier scattering dynamics and allows us to differentiate between the superconducting, pseudogap, and strange metal phases. The direct connection between nonlinear optical response and microscopic dynamics provides a powerful methodology to study quantum phase transitions in correlated materials. Further implications are light wave control over intricate quantum phases, light-matter hybrids, and application for optical quantum computing.

3.
Phys Rev Lett ; 132(14): 143603, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38640377

RESUMEN

Squeezed optical fields are a powerful resource for a variety of investigations in basic research and technology. However, the generation of intense squeezed light is challenging. Here, we show that intense squeezed light can be produced using strongly laser driven atoms and the so far unrelated process of high harmonic generation. We demonstrate that when the intensity of the driving field significantly depletes the ground state of the atoms, leading to dipole moment correlations, the quantum state of the driving field and the generated high harmonics are entangled and squeezed. Furthermore, we analyze how the resulting quadrature squeezing of the fundamental laser mode after the interaction can be controlled. The findings open the way for the generation of high intensity squeezed light states for a wide range of applications.

4.
Biophys J ; 122(22): 4360-4369, 2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-37853693

RESUMEN

To characterize the mechanisms governing the diffusion of particles in biological scenarios, it is essential to accurately determine their diffusive properties. To do so, we propose a machine-learning method to characterize diffusion processes with time-dependent properties at the experimental time resolution. Our approach operates at the single-trajectory level predicting the properties of interest, such as the diffusion coefficient or the anomalous diffusion exponent, at every time step of the trajectory. In this way, changes in the diffusive properties occurring along the trajectory emerge naturally in the prediction and thus allow the characterization without any prior knowledge or assumption about the system. We first benchmark the method on synthetic trajectories simulated under several conditions. We show that our approach can successfully characterize both abrupt and continuous changes in the diffusion coefficient or the anomalous diffusion exponent. Finally, we leverage the method to analyze experiments of single-molecule diffusion of two membrane proteins in living cells: the pathogen-recognition receptor DC-SIGN and the integrin α5ß1. The analysis allows us to characterize physical parameters and diffusive states with unprecedented accuracy, shedding new light on the underlying mechanisms.


Asunto(s)
Aprendizaje Profundo , Difusión
5.
Rep Prog Phys ; 86(11)2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37699388

RESUMEN

We review methods that allow one to detect and characterize quantum correlations in many-body systems, with a special focus on approaches which are scalable. Namely, those applicable to systems with many degrees of freedom, without requiring a number of measurements or computational resources to analyze the data that scale exponentially with the system size. We begin with introducing the concepts of quantum entanglement, Einstein-Podolsky-Rosen steering, and Bell nonlocality in the bipartite scenario, to then present their multipartite generalization. We review recent progress on characterizing these quantum correlations from partial information on the system state, such as through data-driven methods or witnesses based on low-order moments of collective observables. We then review state-of-the-art experiments that demonstrate the preparation, manipulation and detection of highly-entangled many-body systems. For each platform (e.g. atoms, ions, photons, superconducting circuits) we illustrate the available toolbox for state preparation and measurement, emphasizing the challenges that each system poses. To conclude, we present a list of timely open problems in the field.

6.
Phys Rev Lett ; 131(23): 230403, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38134798

RESUMEN

Understanding the nature of entanglement growth in many-body systems is one of the fundamental questions in quantum physics. Here, we study this problem by characterizing the entanglement fluctuations and distribution of a (d+1)-dimensional qubit lattice evolved under a random unitary circuit. Focusing on Clifford gates, we perform extensive numerical simulations of random circuits in 1≤d≤4 dimensions. Our findings demonstrate that properties of growth of bipartite entanglement entropy are characterized by the roughening exponents of a d-dimensional membrane in a (d+1)-dimensional elastic medium.

7.
Phys Rev Lett ; 131(22): 226601, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38101336

RESUMEN

For bosons with flat energy dispersion, condensation can occur in different symmetry sectors. Here, we consider bosons in a kagome lattice with π-flux hopping, which, in the presence of mean-field interactions, exhibit degenerate condensates in the Γ and the K point. We analyze the excitation above both condensates and find strikingly different properties: For the K-point condensate, the Bogoliubov-de Gennes (BdG) Hamiltonian has broken particle-hole symmetry and exhibits a topologically trivial quasiparticle band structure. However, band flatness plays a key role in breaking the time-reversal symmetry of the BdG Hamiltonian for a Γ-point condensate. Consequently, its quasiparticle band structure exhibits nontrivial topology, characterized by nonzero Chern numbers and by the presence of edge states. Although quantum fluctuations energetically favor the K-point condensate, the interesting properties of the Γ-point condensate become relevant for anisotropic hopping. The topological properties of the Γ-point condensate get even richer in the presence of extended Bose-Hubbard interactions. We find a topological phase transition into a topological condensate characterized by high Chern number and also comment on the realization and detection of such excitations.

8.
Phys Rev Lett ; 131(26): 263001, 2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-38215379

RESUMEN

In this work, we investigate a two-dimensional system of ultracold bosonic atoms inside an optical cavity, and show how photon-mediated interactions give rise to a plaquette-ordered bond pattern in the atomic ground state. The latter corresponds to a 2D Peierls transition, generalizing the spontaneous bond dimerization driven by phonon-electron interactions in the 1D Su-Schrieffer-Heeger (SSH) model. Here the bosonic nature of the atoms plays a crucial role to generate the phase, as similar generalizations with fermionic matter do not lead to a plaquette structure. Similar to the SSH model, we show how this pattern opens a nontrivial topological gap in 2D, resulting in a higher-order topological phase hosting corner states, that we characterize by means of a many-body topological invariant and through its entanglement structure. Finally, we demonstrate how this higher-order topological Peierls insulator can be readily prepared in atomic experiments through adiabatic protocols. Our work thus shows how atomic quantum simulators can be harnessed to investigate novel strongly correlated topological phenomena beyond those observed in natural materials.

9.
Phys Rev Lett ; 129(25): 250402, 2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36608238

RESUMEN

We demonstrate that the one-axis twisting (OAT), a versatile method of creating nonclassical states of bosonic qubits, is a powerful source of many-body Bell correlations. We develop a fully analytical and universal treatment of the process, which allows us to identify the critical time at which the Bell correlations emerge and predict the depth of Bell correlations at all subsequent times. Our findings are illustrated with a highly nontrivial example of the OAT dynamics generated using the Bose-Hubbard model.

10.
Phys Rev Lett ; 128(9): 090601, 2022 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-35302796

RESUMEN

We determine the phase diagram of the Abelian-Higgs model in one spatial dimension and time (1+1D) on a lattice. We identify a line of first order phase transitions separating the Higgs region from the confined one. This line terminates in a quantum critical point above which the two regions are connected by a smooth crossover. We analyze the critical point and find compelling evidence for its description as the product of two noninteracting systems: a massless free fermion and a massless free boson. However, we find also some surprising results that cannot be explained by our simple picture, suggesting this newly discovered critical point is an unusual one.

11.
Phys Rev Lett ; 128(4): 043402, 2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35148131

RESUMEN

The combination of topology and quantum criticality can give rise to an exotic mix of counterintuitive effects. Here, we show that unexpected topological properties take place in a paradigmatic strongly correlated Hamiltonian: the 1D extended Bose-Hubbard model. In particular, we reveal the presence of two distinct topological quantum critical points with localized edge states and gapless bulk excitations. Our results show that the topological critical points separate two phases, one topologically protected and the other topologically trivial, both characterized by a long-range ordered string correlation function. The long-range order persists also at the topological critical points and explains the presence of localized edge states protected by a finite charge gap. Finally, we introduce a superresolution quantum gas microscopy scheme for dipolar dysprosium atoms, which provides a reliable route towards the experimental study of topological quantum critical points.

12.
Phys Rev Lett ; 129(23): 233201, 2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36563195

RESUMEN

Ultrafast imaging of molecular chirality is a key step toward the dream of imaging and interpreting electronic dynamics in complex and biologically relevant molecules. Here, we propose a new ultrafast chiral phenomenon exploiting recent advances in electron optics allowing access to the orbital angular momentum of free electrons. We show that strong-field ionization of a chiral target with a few-cycle linearly polarized 800 nm laser pulse yields photoelectron vortices, whose chirality reveals that of the target, and we discuss the mechanism underlying this phenomenon. Our Letter opens new perspectives in recollision-based chiral imaging.

13.
Phys Rev Lett ; 128(12): 123603, 2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35394324

RESUMEN

We present a theoretical demonstration on the generation of entangled coherent states and of coherent state superpositions, with photon numbers and frequencies orders of magnitude higher than those provided by the current technology. This is achieved by utilizing a quantum mechanical multimode description of the single- and two-color intense laser field driven process of high harmonic generation in atoms. It is found that all field modes involved in the high harmonic generation process are entangled, and upon performing a quantum operation, lead to the generation of high photon number optical cat states spanning from the far infrared to the extreme ultraviolet spectral region. This provides direct insights into the quantum mechanical properties of the optical field in the intense laser matter interaction. Finally, these states can be considered as a new resource for fundamental tests of quantum theory, quantum information processing, or sensing with nonclassical states of light.

14.
Philos Trans A Math Phys Eng Sci ; 380(2216): 20210064, 2022 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-34923836

RESUMEN

The central idea of this review is to consider quantum field theory models relevant for particle physics and replace the fermionic matter in these models by a bosonic one. This is mostly motivated by the fact that bosons are more 'accessible' and easier to manipulate for experimentalists, but this 'substitution' also leads to new physics and novel phenomena. It allows us to gain new information about among other things confinement and the dynamics of the deconfinement transition. We will thus consider bosons in dynamical lattices corresponding to the bosonic Schwinger or [Formula: see text] Bose-Hubbard models. Another central idea of this review concerns atomic simulators of paradigmatic models of particle physics theory such as the Creutz-Hubbard ladder, or Gross-Neveu-Wilson and Wilson-Hubbard models. This article is not a general review of the rapidly growing field-it reviews activities related to quantum simulations for lattice field theories performed by the Quantum Optics Theory group at ICFO and their collaborators from 19 institutions all over the world. Finally, we will briefly describe our efforts to design experimentally friendly simulators of these and other models relevant for particle physics. This article is part of the theme issue 'Quantum technologies in particle physics'.

15.
J Chem Phys ; 156(17): 174106, 2022 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-35525652

RESUMEN

In this paper, we investigate the effects of full electronic correlation on high harmonic generation in the helium atom subjected to laser pulses of extremely high intensity. To do this, we perform real-time propagations of helium atom wavefunction using quantum chemistry methods coupled to Gaussian basis sets. Calculations are performed within the real-time time-dependent configuration interaction framework at two levels of theory: time-dependent configuration interaction with single excitations (uncorrelated method) and time-dependent full configuration interaction (fully correlated method). The electronic wavefunction is expanded in Dunning basis sets supplemented with functions adapted to describing highly excited and continuum states. We also compare the time-dependent configuration interaction results with grid-based propagations of the helium atom within the single-active-electron approximation. Our results show that when including the dynamical electron correlation, a noticeable improvement to the description of high harmonic generation (HHG) can be achieved in terms of, e.g., a more constant intensity in the lower energy part of the harmonic plateau. However, such effects can be captured only if the basis set used suffices to reproduce the most basic features, such as the HHG cutoff position, at the uncorrelated level of theory.

16.
Proc Natl Acad Sci U S A ; 116(17): 8173-8177, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-30952783

RESUMEN

Structural information on electronically excited neutral molecules can be indirectly retrieved, largely through pump-probe and rotational spectroscopy measurements with the aid of calculations. Here, we demonstrate the direct structural retrieval of neutral carbonyl disulfide (CS2) in the [Formula: see text] excited electronic state using laser-induced electron diffraction (LIED). We unambiguously identify the ultrafast symmetric stretching and bending of the field-dressed neutral CS2 molecule with combined picometer and attosecond resolution using intrapulse pump-probe excitation and measurement. We invoke the Renner-Teller effect to populate the [Formula: see text] excited state in neutral CS2, leading to bending and stretching of the molecule. Our results demonstrate the sensitivity of LIED in retrieving the geometric structure of CS2, which is known to appear as a two-center scatterer.

17.
Nano Lett ; 21(22): 9661-9667, 2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34757742

RESUMEN

Quantum simulations can provide new insights into the physics of strongly correlated electronic systems. A well-studied system, but still open in many regards, is the Hubbard-Holstein Hamiltonian, where electronic repulsion is in competition with attraction generated by the electron-phonon coupling. In this context, we study the behavior of four quantum dots in a suspended carbon nanotube and coupled to its flexural degrees of freedom. The system is described by a Hamiltonian of the Hubbard-Holstein class, where electrons on different sites interact with the same phonon. We find that the system presents a transition from the Mott insulating state to a polaronic state, with the appearance of pairing correlations and the breaking of the translational symmetry. These findings will motivate further theoretical and experimental efforts to employ nanoelectromechanical systems to simulate strongly correlated systems with electron-phonon interactions.

18.
Opt Express ; 29(17): 26526-26537, 2021 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-34615086

RESUMEN

Strong field processes involving several active electrons reveal unambiguous dynamical signatures of the Pauli principle importance even in the nonrelativistic regime. We exemplify this statement studying three active electrons model atoms interacting with strong pulsed radiation, using an ab-initio time-dependent Schrödinger equation on a grid. In our restricted dimensionality model we are able to analyze momenta correlations of the three outgoing electrons using Dalitz plots. The different symmetries of the electronic wavefunctions, directly related to the initial state spin components, appear clearly visible.

19.
J Chem Phys ; 154(9): 094111, 2021 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-33685145

RESUMEN

A precise understanding of mechanisms governing the dynamics of electrons in atoms and molecules subjected to intense laser fields has a key importance for the description of attosecond processes such as the high-harmonic generation and ionization. From the theoretical point of view, this is still a challenging task, as new approaches to solve the time-dependent Schrödinger equation with both good accuracy and efficiency are still emerging. Until recently, the purely numerical methods of real-time propagation of the wavefunction using finite grids have been frequently and successfully used to capture the electron dynamics in small one- or two-electron systems. However, as the main focus of attoscience shifts toward many-electron systems, such techniques are no longer effective and need to be replaced by more approximate but computationally efficient ones. In this paper, we explore the increasingly popular method of expanding the wavefunction of the examined system into a linear combination of atomic orbitals and present a novel systematic scheme for constructing an optimal Gaussian basis set suitable for the description of excited and continuum atomic or molecular states. We analyze the performance of the proposed basis sets by carrying out a series of time-dependent configuration interaction calculations for the hydrogen atom in fields of intensity varying from 5 × 1013 W/cm2 to 5 × 1014 W/cm2. We also compare the results with the data obtained using Gaussian basis sets proposed previously by other authors.

20.
Phys Rev Lett ; 125(15): 156601, 2020 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-33095617

RESUMEN

Polynomially filtered exact diagonalization method (POLFED) for large sparse matrices is introduced. The algorithm finds an optimal basis of a subspace spanned by eigenvectors with eigenvalues close to a specified energy target by a spectral transformation using a high order polynomial of the matrix. The memory requirements scale better with system size than in the state-of-the-art shift-invert approach. The potential of POLFED is demonstrated examining many-body localization transition in 1D interacting quantum spin-1/2 chains. We investigate the disorder strength and system size scaling of Thouless time. System size dependence of bipartite entanglement entropy and of the gap ratio highlights the importance of finite-size effects. We discuss possible scenarios regarding the many-body localization transition obtaining estimates for the critical disorder strength.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA