Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(43): e2206083119, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36269859

RESUMEN

Genome-wide association studies (GWASs) have identified genetic loci associated with the risk of Alzheimer's disease (AD), but the molecular mechanisms by which they confer risk are largely unknown. We conducted a metabolome-wide association study (MWAS) of AD-associated loci from GWASs using untargeted metabolic profiling (metabolomics) by ultraperformance liquid chromatography-mass spectrometry (UPLC-MS). We identified an association of lactosylceramides (LacCer) with AD-related single-nucleotide polymorphisms (SNPs) in ABCA7 (P = 5.0 × 10-5 to 1.3 × 10-44). We showed that plasma LacCer concentrations are associated with cognitive performance and genetically modified levels of LacCer are associated with AD risk. We then showed that concentrations of sphingomyelins, ceramides, and hexosylceramides were altered in brain tissue from Abca7 knockout mice, compared with wild type (WT) (P = 0.049-1.4 × 10-5), but not in a mouse model of amyloidosis. Furthermore, activation of microglia increases intracellular concentrations of hexosylceramides in part through induction in the expression of sphingosine kinase, an enzyme with a high control coefficient for sphingolipid and ceramide synthesis. Our work suggests that the risk for AD arising from functional variations in ABCA7 is mediated at least in part through ceramides. Modulation of their metabolism or downstream signaling may offer new therapeutic opportunities for AD.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Enfermedad de Alzheimer , Ceramidas , Animales , Ratones , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Ceramidas/metabolismo , Cromatografía Liquida , Estudio de Asociación del Genoma Completo , Lactosilceramidos , Metaboloma , Ratones Noqueados , Esfingomielinas , Espectrometría de Masas en Tándem
2.
Metabolomics ; 20(4): 73, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38980450

RESUMEN

INTRODUCTION: During the Metabolomics 2023 conference, the Metabolomics Quality Assurance and Quality Control Consortium (mQACC) presented a QA/QC workshop for LC-MS-based untargeted metabolomics. OBJECTIVES: The Best Practices Working Group disseminated recent findings from community forums and discussed aspects to include in a living guidance document. METHODS: Presentations focused on reference materials, data quality review, metabolite identification/annotation and quality assurance. RESULTS: Live polling results and follow-up discussions offered a broad international perspective on QA/QC practices. CONCLUSIONS: Community input gathered from this workshop series is being used to shape the living guidance document, a continually evolving QA/QC best practices resource for metabolomics researchers.


Asunto(s)
Espectrometría de Masas , Metabolómica , Control de Calidad , Metabolómica/métodos , Metabolómica/normas , Cromatografía Liquida/métodos , Cromatografía Liquida/normas , Espectrometría de Masas/métodos , Humanos , Consenso , Cromatografía Líquida con Espectrometría de Masas
3.
Metabolomics ; 20(2): 20, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38345679

RESUMEN

BACKGROUND: Quality assurance (QA) and quality control (QC) practices are key tenets that facilitate study and data quality across all applications of untargeted metabolomics. These important practices will strengthen this field and accelerate its success. The Best Practices Working Group (WG) within the Metabolomics Quality Assurance and Quality Control Consortium (mQACC) focuses on community use of QA/QC practices and protocols and aims to identify, catalogue, harmonize, and disseminate current best practices in untargeted metabolomics through community-driven activities. AIM OF REVIEW: A present goal of the Best Practices WG is to develop a working strategy, or roadmap, that guides the actions of practitioners and progress in the field. The framework in which mQACC operates promotes the harmonization and dissemination of current best QA/QC practice guidance and encourages widespread adoption of these essential QA/QC activities for liquid chromatography-mass spectrometry. KEY SCIENTIFIC CONCEPTS OF REVIEW: Community engagement and QA/QC information gathering activities have been occurring through conference workshops, virtual and in-person interactive forum discussions, and community surveys. Seven principal QC stages prioritized by internal discussions of the Best Practices WG have received participant input, feedback and discussion. We outline these stages, each involving a multitude of activities, as the framework for identifying QA/QC best practices. The ultimate planned product of these endeavors is a "living guidance" document of current QA/QC best practices for untargeted metabolomics that will grow and change with the evolution of the field.


Asunto(s)
Exactitud de los Datos , Metabolómica , Humanos , Metabolómica/métodos , Control de Calidad , Encuestas y Cuestionarios
4.
Circulation ; 145(14): 1040-1052, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35050683

RESUMEN

BACKGROUND: White matter hyperintensities (WMH), identified on T2-weighted magnetic resonance images of the human brain as areas of enhanced brightness, are a major risk factor of stroke, dementia, and death. There are no large-scale studies testing associations between WMH and circulating metabolites. METHODS: We studied up to 9290 individuals (50.7% female, average age 61 years) from 15 populations of 8 community-based cohorts. WMH volume was quantified from T2-weighted or fluid-attenuated inversion recovery images or as hypointensities on T1-weighted images. Circulating metabolomic measures were assessed with mass spectrometry and nuclear magnetic resonance spectroscopy. Associations between WMH and metabolomic measures were tested by fitting linear regression models in the pooled sample and in sex-stratified and statin treatment-stratified subsamples. Our basic models were adjusted for age, sex, age×sex, and technical covariates, and our fully adjusted models were also adjusted for statin treatment, hypertension, type 2 diabetes, smoking, body mass index, and estimated glomerular filtration rate. Population-specific results were meta-analyzed using the fixed-effect inverse variance-weighted method. Associations with false discovery rate (FDR)-adjusted P values (PFDR)<0.05 were considered significant. RESULTS: In the meta-analysis of results from the basic models, we identified 30 metabolomic measures associated with WMH (PFDR<0.05), 7 of which remained significant in the fully adjusted models. The most significant association was with higher level of hydroxyphenylpyruvate in men (PFDR.full.adj=1.40×10-7) and in both the pooled sample (PFDR.full.adj=1.66×10-4) and statin-untreated (PFDR.full.adj=1.65×10-6) subsample. In men, hydroxyphenylpyruvate explained 3% to 14% of variance in WMH. In men and the pooled sample, WMH were also associated with lower levels of lysophosphatidylcholines and hydroxysphingomyelins and a larger diameter of low-density lipoprotein particles, likely arising from higher triglyceride to total lipids and lower cholesteryl ester to total lipids ratios within these particles. In women, the only significant association was with higher level of glucuronate (PFDR=0.047). CONCLUSIONS: Circulating metabolomic measures, including multiple lipid measures (eg, lysophosphatidylcholines, hydroxysphingomyelins, low-density lipoprotein size and composition) and nonlipid metabolites (eg, hydroxyphenylpyruvate, glucuronate), associate with WMH in a general population of middle-aged and older adults. Some metabolomic measures show marked sex specificities and explain a sizable proportion of WMH variance.


Asunto(s)
Diabetes Mellitus Tipo 2 , Sustancia Blanca , Anciano , Encéfalo/patología , Diabetes Mellitus Tipo 2/patología , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Metaboloma , Persona de Mediana Edad , Sustancia Blanca/diagnóstico por imagen
5.
Bioinformatics ; 38(18): 4437-4439, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35861573

RESUMEN

SUMMARY: 1H nuclear magnetic resonance (NMR) spectroscopy is an established bioanalytical technology for metabolic profiling of biofluids in both clinical and large-scale population screening applications. Recently, urinary protein quantification has been demonstrated using the same 1D 1H NMR experimental data captured for metabolic profiling. Here, we introduce NMRpQuant, a freely available platform that builds on these findings with both novel and further optimized computational NMR approaches for rigorous, automated protein urine quantification. The results are validated by interlaboratory comparisons, demonstrating agreement with clinical/biochemical methodologies, pointing at a ready-to-use tool for routine protein urinalyses. AVAILABILITY AND IMPLEMENTATION: NMRpQuant was developed on MATLAB programming environment. Source code and Windows/macOS compiled applications are available at https://github.com/pantakis/NMRpQuant, and working examples are available at https://doi.org/10.6084/m9.figshare.18737189.v1. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Imagen por Resonancia Magnética , Programas Informáticos , Espectroscopía de Protones por Resonancia Magnética , Espectroscopía de Resonancia Magnética/métodos , Metabolómica/métodos
6.
Clin Endocrinol (Oxf) ; 99(3): 272-284, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36345253

RESUMEN

OBJECTIVES: Peptide tyrosine tyrosine (PYY) exists as two species, PYY1-36 and PYY3-36 , with distinct effects on insulin secretion and appetite regulation. The detailed effects of bariatric surgery on PYY1-36 and PYY3-36 secretion are not known as previous studies have used nonspecific immunoassays to measure total PYY. Our objective was to characterize the effect of sleeve gastrectomy (SG) and Roux-en-Y gastric bypass (RYGB) on fasting and postprandial PYY1-36 and PYY3-36 secretion using a newly developed liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay. DESIGN AND SUBJECTS: Observational study in 10 healthy nonobese volunteers and 30 participants with obesity who underwent RYGB (n = 24) or SG (n = 6) at the Imperial Weight Centre [NCT01945840]. Participants were studied using a standardized mixed meal test (MMT) before and 1 year after surgery. The outcome measures were PYY1-36 and PYY3-36 concentrations. RESULTS: Presurgery, the fasting and postprandial levels of PYY1-36 and PYY3-36 were low, with minimal responses to the MMT, and these did not differ from healthy nonobese volunteers. The postprandial secretion of both PYY1-36 and PYY3-36 at 1 year was amplified after RYGB, but not SG, with the response being significantly higher in RYGB compared with SG. CONCLUSIONS: There appears to be no difference in PYY secretion between nonobese and obese volunteers at baseline. At 1 year after surgery, RYGB, but not SG, is associated with increased postprandial secretion of PYY1-36 and PYY3-36 , which may account for long-term differences in efficacy and adverse effects between the two types of surgery.


Asunto(s)
Derivación Gástrica , Humanos , Derivación Gástrica/métodos , Péptido YY , Cromatografía Liquida , Glucemia , Espectrometría de Masas en Tándem , Obesidad/cirugía , Gastrectomía , Tirosina
7.
Brain ; 145(7): 2461-2471, 2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35254405

RESUMEN

Cerebral small vessel disease is a major cause of vascular cognitive impairment and dementia. There are few treatments, largely reflecting limited understanding of the underlying pathophysiology. Metabolomics can be used to identify novel risk factors to better understand pathogenesis and to predict disease progression and severity. We analysed data from 624 patients with symptomatic cerebral small vessel disease from two prospective cohort studies. Serum samples were collected at baseline and patients underwent MRI scans and cognitive testing at regular intervals with up to 14 years of follow-up. Using ultra-performance liquid chromatography-mass spectrometry and nuclear magnetic resonance spectroscopy, we obtained metabolic and lipidomic profiles from 369 annotated metabolites and 54 764 unannotated features and examined their association with respect to disease severity, assessed using MRI small vessel disease markers, cognition and future risk of all-cause dementia. Our analysis identified 28 metabolites that were significantly associated with small vessel disease imaging markers and cognition. Decreased levels of multiple glycerophospholipids and sphingolipids were associated with increased small vessel disease load as evidenced by higher white matter hyperintensity volume, lower mean diffusivity normalized peak height, greater brain atrophy and impaired cognition. Higher levels of creatine, FA(18:2(OH)) and SM(d18:2/24:1) were associated with increased lacune count, higher white matter hyperintensity volume and impaired cognition. Lower baseline levels of carnitines and creatinine were associated with higher annualized change in peak width of skeletonized mean diffusivity, and 25 metabolites, including lipoprotein subclasses, amino acids and xenobiotics, were associated with future dementia incidence. Our results show multiple distinct metabolic signatures that are associated with imaging markers of small vessel disease, cognition and conversion to dementia. Further research should assess causality and the use of metabolomic screening to improve the ability to predict future disease severity and dementia risk in small vessel disease. The metabolomic profiles may also provide novel insights into disease pathogenesis and help identify novel treatment approaches.


Asunto(s)
Enfermedades de los Pequeños Vasos Cerebrales , Demencia , Leucoaraiosis , Enfermedades de los Pequeños Vasos Cerebrales/complicaciones , Demencia/complicaciones , Humanos , Imagen por Resonancia Magnética/métodos , Estudios Prospectivos , Índice de Severidad de la Enfermedad
8.
BMC Bioinformatics ; 23(1): 133, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35428194

RESUMEN

BACKGROUND: Mass spectrometry imaging (MSI) data often consist of tens of thousands of mass spectra collected from a sample surface. During the time necessary to perform a single acquisition, it is likely that uncontrollable factors alter the validity of the initial mass calibration of the instrument, resulting in mass errors of magnitude significantly larger than their theoretical values. This phenomenon has a two-fold detrimental effect: (a) it reduces the ability to interpret the results based on the observed signals, (b) it can affect the quality of the observed signal spatial distributions. RESULTS: We present a post-acquisition computational method capable of reducing the observed mass drift by up to 60 ppm in biological samples, exploiting the presence of typical molecules with a known mass-to-charge ratio. The procedure, tested on time-of-flight and Orbitrap mass spectrometry analyzers interfaced to a desorption electrospray ionization (DESI) source, improves the molecular annotation quality and the spatial distributions of the detected ions. CONCLUSION: The presented method represents a robust and accurate tool for performing post-acquisition mass recalibration of DESI-MSI datasets and can help to increase the reliability of the molecular assignment and the data quality.


Asunto(s)
Diagnóstico por Imagen , Espectrometría de Masa por Ionización de Electrospray , Calibración , Iones , Reproducibilidad de los Resultados , Espectrometría de Masa por Ionización de Electrospray/métodos
9.
Anal Chem ; 94(3): 1760-1768, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35026111

RESUMEN

Liquid chromatography-mass spectrometry (LC-MS) is the main workhorse of metabolomics owing to its high degree of analytical sensitivity and specificity when measuring diverse chemistry in complex biological samples. LC-MS-based metabolic profiling of human urine, a biofluid of primary interest for clinical and biobank studies, is not widely considered to be compromised by the presence of endogenous interferences and is often accomplished using a simple "dilute-and-shoot" approach. Yet, it is our experience that broad obscuring signals are routinely observed in LC-MS metabolic profiles and represent interferences that lack consideration in the relevant metabolomics literature. In this work, we chromatographically isolated the interfering metabolites from human urine and unambiguously identified them via de novo structure elucidation as two separate proline-containing dipeptides: N,N,N-trimethyl-l-alanine-l-proline betaine (l,l-TMAP) and N,N-dimethyl-l-proline-l-proline betaine (l,l-DMPP), the latter reported here for the first time. Offline LC-MS/MS, magnetic resonance mass spectrometry (MRMS), and nuclear magnetic resonance (NMR) spectroscopy were essential components of this workflow for the full chemical and spectroscopic characterization of these metabolites and for establishing the coexistence of cis and trans isomers of both dipeptides in solution. Analysis of these definitive structures highlighted intramolecular ionic interactions as responsible for slow interconversion between these isomeric forms resulting in their unusually broad elution profiles. Proposed mitigation strategies, aimed at increasing the quality of LC-MS-based urine metabolomics data, include modification of column temperature and mobile-phase pH to reduce the chromatographic footprint of these dipeptides, thereby reducing their interfering effect on the underlying metabolic profiles. Alternatively, sample dilution and internal standardization methods may be employed to reduce or account for the observed effects of ionization suppression on the metabolic profile.


Asunto(s)
Metabolómica , Espectrometría de Masas en Tándem , Cromatografía Liquida/métodos , Humanos , Espectroscopía de Resonancia Magnética/métodos , Metaboloma , Metabolómica/métodos , Espectrometría de Masas en Tándem/métodos
10.
Anal Chem ; 94(8): 3446-3455, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35180347

RESUMEN

Untargeted metabolomics and lipidomics LC-MS experiments produce complex datasets, usually containing tens of thousands of features from thousands of metabolites whose annotation requires additional MS/MS experiments and expert knowledge. All-ion fragmentation (AIF) LC-MS/MS acquisition provides fragmentation data at no additional experimental time cost. However, analysis of such datasets requires reconstruction of parent-fragment relationships and annotation of the resulting pseudo-MS/MS spectra. Here, we propose a novel approach for automated annotation of isotopologues, adducts, and in-source fragments from AIF LC-MS datasets by combining correlation-based parent-fragment linking with molecular fragment matching. Our workflow focuses on a subset of features rather than trying to annotate the full dataset, saving time and simplifying the process. We demonstrate the workflow in three human serum datasets containing 599 features manually annotated by experts. Precision and recall values of 82-92% and 82-85%, respectively, were obtained for features found in the highest-rank scores (1-5). These results equal or outperform those obtained using MS-DIAL software, the current state of the art for AIF data annotation. Further validation for other biological matrices and different instrument types showed variable precision (60-89%) and recall (10-88%) particularly for datasets dominated by nonlipid metabolites. The workflow is freely available as an open-source R package, MetaboAnnotatoR, together with the fragment libraries from Github (https://github.com/gggraca/MetaboAnnotatoR).


Asunto(s)
Metabolómica , Espectrometría de Masas en Tándem , Cromatografía Liquida/métodos , Humanos , Metabolómica/métodos , Programas Informáticos , Espectrometría de Masas en Tándem/métodos , Flujo de Trabajo
11.
Anal Chem ; 94(19): 6919-6923, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35503092

RESUMEN

Normalization to account for variation in urinary dilution is crucial for interpretation of urine metabolic profiles. Probabilistic quotient normalization (PQN) is used routinely in metabolomics but is sensitive to systematic variation shared across a large proportion of the spectral profile (>50%). Where 1H nuclear magnetic resonance (NMR) spectroscopy is employed, the presence of urinary protein can elevate the spectral baseline and substantially impact the resulting profile. Using 1H NMR profile measurements of spot urine samples collected from hospitalized COVID-19 patients in the ISARIC 4C study, we determined that PQN coefficients are significantly correlated with observed protein levels (r2 = 0.423, p < 2.2 × 10-16). This correlation was significantly reduced (r2 = 0.163, p < 2.2 × 10-16) when using a computational method for suppression of macromolecular signals known as small molecule enhancement spectroscopy (SMolESY) for proteinic baseline removal prior to PQN. These results highlight proteinuria as a common yet overlooked source of bias in 1H NMR metabolic profiling studies which can be effectively mitigated using SMolESY or other macromolecular signal suppression methods before estimation of normalization coefficients.


Asunto(s)
COVID-19 , Humanos , Espectroscopía de Resonancia Magnética/métodos , Metaboloma , Metabolómica/métodos , Espectroscopía de Protones por Resonancia Magnética
12.
Anal Chem ; 94(14): 5493-5503, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35360896

RESUMEN

Integration of multiple datasets can greatly enhance bioanalytical studies, for example, by increasing power to discover and validate biomarkers. In liquid chromatography-mass spectrometry (LC-MS) metabolomics, it is especially hard to combine untargeted datasets since the majority of metabolomic features are not annotated and thus cannot be matched by chemical identity. Typically, the information available for each feature is retention time (RT), mass-to-charge ratio (m/z), and feature intensity (FI). Pairs of features from the same metabolite in separate datasets can exhibit small but significant differences, making matching very challenging. Current methods to address this issue are too simple or rely on assumptions that cannot be met in all cases. We present a method to find feature correspondence between two similar LC-MS metabolomics experiments or batches using only the features' RT, m/z, and FI. We demonstrate the method on both real and synthetic datasets, using six orthogonal validation strategies to gauge the matching quality. In our main example, 4953 features were uniquely matched, of which 585 (96.8%) of 604 manually annotated features were correct. In a second example, 2324 features could be uniquely matched, with 79 (90.8%) out of 87 annotated features correctly matched. Most of the missed annotated matches are between features that behave very differently from modeled inter-dataset shifts of RT, MZ, and FI. In a third example with simulated data with 4755 features per dataset, 99.6% of the matches were correct. Finally, the results of matching three other dataset pairs using our method are compared with a published alternative method, metabCombiner, showing the advantages of our approach. The method can be applied using M2S (Match 2 Sets), a free, open-source MATLAB toolbox, available at https://github.com/rjdossan/M2S.


Asunto(s)
Metabolómica , Biomarcadores/análisis , Cromatografía Liquida/métodos , Espectrometría de Masas/métodos , Metabolómica/métodos
13.
Bioinformatics ; 37(24): 4886-4888, 2021 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-34125879

RESUMEN

SUMMARY: Untargeted liquid chromatography-mass spectrometry (LC-MS) profiling assays are capable of measuring thousands of chemical compounds in a single sample, but unreliable feature extraction and metabolite identification remain considerable barriers to their interpretation and usefulness. peakPantheR (Peak Picking and ANnoTation of High-resolution Experiments in R) is an R package for the targeted extraction and integration of annotated features from LC-MS profiling experiments. It takes advantage of chromatographic and spectral databases and prior information of sample matrix composition to generate annotated and interpretable metabolic phenotypic datasets and power workflows for real-time data quality assessment. AVAILABILITY AND IMPLEMENTATION: peakPantheR is available via Bioconductor (https://bioconductor.org/packages/peakPantheR/). Documentation and worked examples are available at https://phenomecentre.github.io/peakPantheR.github.io/ and https://github.com/phenomecentre/metabotyping-dementia-urine. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Programas Informáticos , Espectrometría de Masas en Tándem , Cromatografía Liquida , Metabolómica , Documentación
14.
Metabolomics ; 18(4): 24, 2022 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-35397018

RESUMEN

INTRODUCTION: The metabolomics quality assurance and quality control consortium (mQACC) is enabling the identification, development, prioritization, and promotion of suitable reference materials (RMs) to be used in quality assurance (QA) and quality control (QC) for untargeted metabolomics research. OBJECTIVES: This review aims to highlight current RMs, and methodologies used within untargeted metabolomics and lipidomics communities to ensure standardization of results obtained from data analysis, interpretation and cross-study, and cross-laboratory comparisons. The essence of the aims is also applicable to other 'omics areas that generate high dimensional data. RESULTS: The potential for game-changing biochemical discoveries through mass spectrometry-based (MS) untargeted metabolomics and lipidomics are predicated on the evolution of more confident qualitative (and eventually quantitative) results from research laboratories. RMs are thus critical QC tools to be able to assure standardization, comparability, repeatability and reproducibility for untargeted data analysis, interpretation, to compare data within and across studies and across multiple laboratories. Standard operating procedures (SOPs) that promote, describe and exemplify the use of RMs will also improve QC for the metabolomics and lipidomics communities. CONCLUSIONS: The application of RMs described in this review may significantly improve data quality to support metabolomics and lipidomics research. The continued development and deployment of new RMs, together with interlaboratory studies and educational outreach and training, will further promote sound QA practices in the community.


Asunto(s)
Lipidómica , Metabolómica , Espectrometría de Masas/métodos , Metabolómica/métodos , Control de Calidad , Reproducibilidad de los Resultados
15.
J Nutr ; 152(11): 2358-2366, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36774102

RESUMEN

BACKGROUND: South Asians are at higher risk for cardiometabolic disease than many other racial/ethnic minority groups. Diet patterns in US South Asians have unique components associated with cardiometabolic disease. OBJECTIVES: We aimed to characterize the metabolites associated with 3 representative diet patterns. METHODS: We included 722 participants in the Mediators of Atherosclerosis in South Asians Living in America (MASALA) cohort study aged 40-84 y without known cardiovascular disease. Fasting serum specimens and diet and demographic questionnaires were collected at baseline and diet patterns previously generated through principal components analysis. LC-MS-based untargeted metabolomic and lipidomic analysis was conducted with targeted integration of known metabolite and lipid signals. Linear regression models of diet pattern factor score and log-transformed metabolites adjusted for age, sex, caloric intake, and BMI and adjusted for multiple comparisons were performed, followed by elastic net linear regression of significant metabolites. RESULTS: There were 443 metabolites of known identity extracted from the profiling data. The "animal protein" diet pattern was associated with 61 metabolites and lipids, including glycerophospholipids phosphatidylethanolamine PE(O-16:1/20:4) and/or PE(P-16:0/20:4) (ß: 0.13; 95% CI: 0.11, 0.14) and N-acyl phosphatidylethanolamines (NAPEs) NAPE(O-18:1/20:4/18:0) and/or NAPE(P-18:0/20:4/18:0) (ß: 0.13; 95% CI: 0.11, 0.14), lysophosphatidylinositol (LPI) (22:6/0:0) (ß: 0.14; 95% CI: 0.12, 0.17), and fatty acid (FA) (22:6) (ß: 0.15; 95% CI: 0.13, 0.17). The "fried snacks, sweets, high-fat dairy" pattern was associated with 12 lipids, including PC(16:0/22:6) (ß: -0.08; 95% CI: -0.09, -0.06) and FA (22:6) (ß: 0.14; 95% CI: -0.17, -0.10). The "fruits, vegetables, nuts, and legumes" pattern was associated with 5 metabolites including proline betaine (ß: 0.17; 95% CI: 0.09, 0.25) (P < 0.0002). CONCLUSIONS: Three predominant dietary patterns in US South Asians are associated with circulating metabolites differentiated by lipids including glycerophospholipids and PUFAs and the amino acid proline betaine.


Asunto(s)
Enfermedades Cardiovasculares , Etnicidad , Humanos , Estados Unidos , Estudios de Cohortes , Personas del Sur de Asia , Grupos Minoritarios , Dieta , Verduras , Lípidos
16.
Anal Chem ; 93(4): 1924-1933, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33448796

RESUMEN

Liquid chromatography-mass spectrometry (LC-MS) is a powerful and widely used technique for measuring the abundance of chemical species in living systems. Its sensitivity, analytical specificity, and direct applicability to biofluids and tissue extracts impart great promise for the discovery and mechanistic characterization of biomarker panels for disease detection, health monitoring, patient stratification, and treatment personalization. Global metabolic profiling applications yield complex data sets consisting of multiple feature measurements for each chemical species observed. While this multiplicity can be useful in deriving enhanced analytical specificity and chemical identities from LC-MS data, data set inflation and quantitative imprecision among related features is problematic for statistical analyses and interpretation. This Perspective provides a critical evaluation of global profiling data fidelity with respect to measurement linearity and the quantitative response variation observed among components of the spectra. These elements of data quality are widely overlooked in untargeted metabolomics yet essential for the generation of data that accurately reflect the metabolome. Advanced feature filtering informed by linear range estimation and analyte response factor assessment is advocated as an attainable means of controlling LC-MS data quality in global profiling studies and exemplified herein at both the feature and data set level.


Asunto(s)
Cromatografía Liquida/métodos , Espectrometría de Masas/métodos , Metabolómica/métodos , Metabolómica/normas , Control de Calidad , Metaboloma , Transcriptoma
17.
Anal Chem ; 93(12): 4995-5000, 2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33733737

RESUMEN

Small Molecule Enhancement SpectroscopY (SMolESY) was employed to develop a unique and fully automated computational solution for the assignment and integration of 1H nuclear magnetic resonance (NMR) signals from metabolites in challenging matrices containing macromolecules (herein blood products). Sensitive and reliable quantitation is provided by instant signal deconvolution and straightforward integration bolstered by spectral resolution enhancement and macromolecular signal suppression. The approach is highly efficient, requiring only standard one-dimensional 1H NMR spectra and avoiding the need for sample preprocessing, complex deconvolution, and spectral baseline fitting. The performance of the algorithm, developed using >4000 NMR serum and plasma spectra, was evaluated using an additional >8800 spectra, yielding an assignment accuracy greater than 99.5% for all 22 metabolites targeted. Further validation of its quantitation capabilities illustrated a reliable performance among challenging phenotypes. The simplicity and complete automation of the approach support the application of NMR-based metabolite panel measurements in clinical and population screening applications.


Asunto(s)
Algoritmos , Imagen por Resonancia Magnética , Automatización , Espectroscopía de Resonancia Magnética , Metabolómica , Espectroscopía de Protones por Resonancia Magnética
18.
Nat Methods ; 15(9): 681-684, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30150755

RESUMEN

We report XCMS-MRM and METLIN-MRM ( http://xcmsonline-mrm.scripps.edu/ and http://metlin.scripps.edu/ ), a cloud-based data-analysis platform and a public multiple-reaction monitoring (MRM) transition repository for small-molecule quantitative tandem mass spectrometry. This platform provides MRM transitions for more than 15,500 molecules and facilitates data sharing across different instruments and laboratories.


Asunto(s)
Nube Computacional , Bibliotecas de Moléculas Pequeñas/química , Cromatografía Liquida/métodos , Biología Computacional , Metabolómica , Espectrometría de Masas en Tándem
19.
Diabet Med ; 38(2): e14494, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33617033

RESUMEN

BACKGROUND: South Asians are at higher risk for diabetes (DM) than many other racial/ethnic groups. Circulating metabolites are measurable products of metabolic processes that may explain the aetiology of elevated risk. We characterized metabolites associated with prevalent DM and glycaemic measures in South Asians. METHODS: We included 717 participants from the Mediators of Atherosclerosis in South Asians Living in America (MASALA) study, aged 40-84 years. We used baseline fasting serum for metabolomics and demographic, behavioural, glycaemic data from baseline and at 5 years. We performed LC-MS untargeted metabolomic and lipidomic analysis with targeted integration of known signals. Individual linear and ordinal logistic regression models were adjusted for age, sex, BMI, diet, exercise, alcohol, smoking and family history of DM followed by elastic net regression to identify metabolites most associated with the outcome. RESULTS: There were 258 metabolites with detectable signal in >98% of samples. Thirty-four metabolites were associated with prevalent DM in an elastic net model. Predominant metabolites associated with DM were sphingomyelins, proline (OR 15.86; 95% CI 4.72, 53.31) and betaine (OR 0.03; 0.004, 0.14). Baseline tri- and di-acylglycerols [DG (18:0/16:0) (18.36; 11.79, 24.92)] were positively associated with fasting glucose and long-chain acylcarnitines [CAR 26:1 (-0.40; -0.54, -0.27)] were inversely associated with prevalent DM and HbA1c at follow-up. DISCUSSION: A metabolomic signature in South Asians may help determine the unique aetiology of diabetes in this high-risk ethnic group. Future work will externally validate our findings and determine the effects of modifiable risk factors for DM.


Asunto(s)
Glucemia/metabolismo , Diabetes Mellitus/metabolismo , Hemoglobina Glucada/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Asia Occidental/etnología , Betaína/metabolismo , Carnitina/análogos & derivados , Carnitina/metabolismo , Cromatografía Liquida , Estudios de Cohortes , Diabetes Mellitus/epidemiología , Diabetes Mellitus/etnología , Diglicéridos/metabolismo , Femenino , Humanos , Modelos Lineales , Lipidómica , Modelos Logísticos , Masculino , Espectrometría de Masas , Metabolómica , Persona de Mediana Edad , Prolina/metabolismo , Esfingomielinas/metabolismo , Triglicéridos/metabolismo , Estados Unidos
20.
Bioinformatics ; 35(24): 5359-5360, 2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31350543

RESUMEN

SUMMARY: As large-scale metabolic phenotyping studies become increasingly common, the need for systemic methods for pre-processing and quality control (QC) of analytical data prior to statistical analysis has become increasingly important, both within a study, and to allow meaningful inter-study comparisons. The nPYc-Toolbox provides software for the import, pre-processing, QC and visualization of metabolic phenotyping datasets, either interactively, or in automated pipelines. AVAILABILITY AND IMPLEMENTATION: The nPYc-Toolbox is implemented in Python, and is freely available from the Python package index https://pypi.org/project/nPYc/, source is available at https://github.com/phenomecentre/nPYc-Toolbox. Full documentation can be found at http://npyc-toolbox.readthedocs.io/ and exemplar datasets and tutorials at https://github.com/phenomecentre/nPYc-toolbox-tutorials.


Asunto(s)
Metabolómica , Programas Informáticos , Documentación , Control de Calidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA