RESUMEN
In oxidation reactions catalysed by supported metal nanoparticles with oxygen as the terminal oxidant, the rate of the oxygen reduction can be a limiting factor. This is exemplified by the oxidative dehydrogenation of alcohols, an important class of reactions with modern commercial applications1-3. Supported gold nanoparticles are highly active for the dehydrogenation of the alcohol to an aldehyde4 but are less effective for oxygen reduction5,6. By contrast, supported palladium nanoparticles offer high efficacy for oxygen reduction5,6. This imbalance can be overcome by alloying gold with palladium, which gives enhanced activity to both reactions7,8,9; however, the electrochemical potential of the alloy is a compromise between that of the two metals, meaning that although the oxygen reduction can be improved in the alloy, the dehydrogenation activity is often limited. Here we show that by separating the gold and palladium components in bimetallic carbon-supported catalysts, we can almost double the reaction rate compared with that achieved with the corresponding alloy catalyst. We demonstrate this using physical mixtures of carbon-supported monometallic gold and palladium catalysts and a bimetallic catalyst comprising separated gold and palladium regions. Furthermore, we demonstrate electrochemically that this enhancement is attributable to the coupling of separate redox processes occurring at isolated gold and palladium sites. The discovery of this catalytic effect-a cooperative redox enhancement-offers an approach to the design of multicomponent heterogeneous catalysts.
Asunto(s)
Oro , Nanopartículas del Metal , Alcoholes , Aleaciones , Carbono , Catálisis , Oxidación-Reducción , Oxígeno , PaladioRESUMEN
ConspectusHydrogen peroxide (H2O2) for industrial applications is manufactured through an indirect process that relies on the sequential reduction and reoxidation of quinone carriers. While highly effective, production is typically centralized and entails numerous energy-intensive concentration steps. Furthermore, the overhydrogenation of the quinone necessitates periodic replacement, leading to incomplete atom efficiency. These factors, in addition to the presence of propriety stabilizing agents and concerns associated with their separation from product streams, have driven interest in alternative technologies for chemical upgrading. The decoupling of oxidative transformations from commercially synthesized H2O2 may offer significant economic savings and a reduction in greenhouse gas emissions for several industrially relevant processes. Indeed, the production and utilization of the oxidant in situ, from the elements, would represent a positive step toward a more sustainable chemical synthesis sector, offering the potential for total atom efficiency, while avoiding the drawbacks associated with current industrial routes, which are inherently linked to commercial H2O2 production. Such interest is perhaps now more pertinent than ever given the rapidly improving viability of green hydrogen production.The application of in situ-generated H2O2 has been a long-standing goal in feedstock valorization, with perhaps the most significant interest placed on propylene epoxidation. Until very recently a viable in situ alternative to current industrial oxidative processes has been lacking, with prior approaches typically hindered by low rates of conversion or poor selectivity toward desired products, often resulting from competitive hydrogenation reactions. Based on over 20 years of research, which has led to the development of catalysts for the direct synthesis of H2O2 that offer high synthesis rates and >99% H2 utilization, we have recently turned our attention to a range of oxidative transformations where H2O2 is generated and utilized in situ. Indeed, we have recently demonstrated that it is possible to rival state-of-the-art industrial processes through in situ H2O2 synthesis, establishing the potential for significant process intensification and considerable decarbonization of the chemical synthesis sector.We have further established the potential of an in situ route to both bulk and fine chemical synthesis through a chemo-catalytic/enzymatic one-pot approach, where H2O2 is synthesized over heterogeneous surfaces and subsequently utilized by a class of unspecific peroxygenase enzymes for C-H bond functionalization. Strikingly, through careful control of the chemo-catalyst, it is possible to ensure that competitive, nonenzymatic pathways are inhibited while also avoiding the regiospecific and selectivity concerns associated with current energy-intensive industrial processes, with further cost savings associated with the operation of the chemo-enzymatic approach at near-ambient temperatures and pressures. Beyond traditional applications of chemo-catalysis, the efficacy of in situ-generated H2O2 (and associated oxygen-based radical species) for the remediation of environmental pollutants has also been a major interest of our laboratory, with such technology offering considerable improvements over conventional disinfection processes.We hope that this Account, which highlights the key contributions of our laboratory to the field over recent years, demonstrates the chemistries that may be unlocked and improved upon via in situ H2O2 synthesis and it inspires broader interest from the scientific community.
RESUMEN
The direct transformation of methane to methanol remains a significant challenge for operation at a larger scale. Central to this challenge is the low reactivity of methane at conditions that can facilitate product recovery. This review discusses the issue through examination of several promising routes to methanol and an evaluation of performance targets that are required to develop the process at scale. We explore the methods currently used, the emergence of active heterogeneous catalysts and their design and reaction mechanisms and provide a critical perspective on future operation. Initial experiments are discussed where identification of gas phase radical chemistry limited further development by this approach. Subsequently, a new class of catalytic materials based on natural systems such as iron or copper containing zeolites were explored at milder conditions. The key issues of these technologies are low methane conversion and often significant overoxidation of products. Despite this, interest remains high in this reaction and the wider appeal of an effective route to key products from C-H activation, particularly with the need to transition to net carbon zero with new routes from renewable methane sources is exciting.
RESUMEN
In the pursuit of improved compound identification and database search tasks, this study explores heteronuclear single quantum coherence (HSQC) spectra simulation and matching methodologies. HSQC spectra serve as unique molecular fingerprints, enabling a valuable balance of data collection time and information richness. We conducted a comprehensive evaluation of the following four HSQC simulation techniques: ACD/Labs (ACD), MestReNova (MNova), Gaussian NMR calculations (DFT), and a graph-based neural network (ML). For the latter two techniques, we developed a reconstruction logic to combine proton and carbon 1D spectra into HSQC spectra. The methodology involved the implementation of three peak-matching strategies (minimum-sum, Euclidean-distance, and Hungarian distance) combined with three padding strategies (zero-padding, peak-truncated, and nearest-neighbor double assignment). We found that coupling these strategies with a robust simulation technique facilitates the accurate identification of correct molecules from similar analogues (regio- and stereoisomers) and allows for fast and accurate large database searches. Furthermore, we demonstrated the efficacy of the best-performing methodology by rectifying the structures of a set of previously misidentified molecules. This research indicates that effective HSQC spectral simulation and matching methodologies significantly facilitate molecular structure elucidation. Furthermore, we offer a Google Colab notebook for researchers to use our methods on their own data (https://github.com/AstraZeneca/hsqc_structure_elucidation.git).
Asunto(s)
Simulación por Computador , Redes Neurales de la ComputaciónRESUMEN
Venom peptides have evolved to target a wide range of membrane proteins through diverse mechanisms of action and structures, providing promising therapeutic leads for diseases, including pain, epilepsy, and cancer, as well as unique probes of ion channel structure-function. In this work, a high-throughput FLIPR window current screening assay on T-type CaV3.2 guided the isolation of a novel peptide named ω-Buthitoxin-Hf1a from scorpion Hottentotta franzwerneri crude venom. At only 10 amino acid residues with one disulfide bond, it is not only the smallest venom peptide known to target T-type CaVs but also the smallest structured scorpion venom peptide yet discovered. Synthetic Hf1a peptides were prepared with C-terminal amidation (Hf1a-NH2) or a free C-terminus (Hf1a-OH). Electrophysiological characterization revealed Hf1a-NH2 to be a concentration-dependent partial inhibitor of CaV3.2 (IC50 = 1.18 µM) and CaV3.3 (IC50 = 0.49 µM) depolarized currents but was ineffective at CaV3.1. Hf1a-OH did not show activity against any of the three T-type subtypes. Additionally, neither form showed activity against N-type CaV2.2 or L-type calcium channels. The three-dimensional structure of Hf1a-NH2 was determined using NMR spectroscopy and used in docking studies to predict its binding site at CaV3.2 and CaV3.3. As both CaV3.2 and CaV3.3 have been implicated in peripheral pain signaling, the analgesic potential of Hf1a-NH2 was explored in vivo in a mouse model of incision-induced acute post-surgical pain. Consistent with this role, Hf1a-NH2 produced antiallodynia in both mechanical and thermal pain.
Asunto(s)
Canales de Calcio Tipo T , Modelos Animales de Enfermedad , Hiperalgesia , Dolor Postoperatorio , Venenos de Escorpión , Animales , Canales de Calcio Tipo T/metabolismo , Canales de Calcio Tipo T/química , Ratones , Venenos de Escorpión/química , Venenos de Escorpión/farmacología , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/metabolismo , Dolor Postoperatorio/tratamiento farmacológico , Dolor Postoperatorio/metabolismo , Calcio/metabolismo , Masculino , Humanos , Bloqueadores de los Canales de Calcio/farmacología , Bloqueadores de los Canales de Calcio/químicaRESUMEN
Novel building blocks are in constant demand during the search for innovative bioactive small molecule therapeutics by enabling the construction of structure-activity-property-toxicology relationships. Complex chiral molecules containing multiple stereocenters are an important component in compound library expansion but can be difficult to access by traditional organic synthesis. Herein, we report a biocatalytic process to access a specific diastereomer of a chiral amine building block used in drug discovery. A reductive aminase (RedAm) was engineered following a structure-guided mutagenesis strategy to produce the desired isomer. The engineered RedAm (IR-09 W204R) was able to generate the (S,S,S)-isomer 3 in 45% conversion and 95% ee from the racemic ketone 2. Subsequent palladium-catalyzed deallylation of 3 yielded the target primary amine 4 in a 73% yield. This engineered biocatalyst was used at preparative scale and represents a potential starting point for further engineering and process development.
Asunto(s)
Aminas , Diseño de Fármacos , Biocatálisis , EstereoisomerismoRESUMEN
Australian funnel-web spiders are infamous for causing human fatalities, which are induced by venom peptides known as δ-hexatoxins (δ-HXTXs). Humans and other primates did not feature in the prey or predator spectrum during evolution of these spiders, and consequently the primate lethality of δ-HXTXs remains enigmatic. Funnel-web envenomations are mostly inflicted by male spiders that wander from their burrow in search of females during the mating season, which suggests a role for δ-HXTXs in self-defense since male spiders rarely feed during this period. Although 35 species of Australian funnel-web spiders have been described, only nine δ-HXTXs from four species have been characterized, resulting in a lack of understanding of the ecological roles and molecular evolution of δ-HXTXs. Here, by profiling venom-gland transcriptomes of 10 funnel-web species, we report 22 δ-HXTXs. Phylogenetic and evolutionary assessments reveal a remarkable sequence conservation of δ-HXTXs despite their deep evolutionary origin within funnel-web spiders, consistent with a defensive role. We demonstrate that δ-HXTX-Ar1a, the lethal toxin from the Sydney funnel-web spider Atrax robustus, induces pain in mice by inhibiting inactivation of voltage-gated sodium (NaV) channels involved in nociceptive signaling. δ-HXTX-Ar1a also inhibited inactivation of cockroach NaV channels and was insecticidal to sheep blowflies. Considering their algogenic effects in mice, potent insecticidal effects, and high levels of sequence conservation, we propose that the δ-HXTXs were repurposed from an initial insecticidal predatory function to a role in defending against nonhuman vertebrate predators by male spiders, with their lethal effects on humans being an unfortunate evolutionary coincidence.
Asunto(s)
Evolución Molecular , Neurotoxinas/genética , Poliaminas/química , Arañas/genética , Secuencia de Aminoácidos/genética , Animales , Australia , Secuencia Conservada/genética , Femenino , Humanos , Masculino , Ratones , Neurotoxinas/química , Neurotoxinas/metabolismo , Péptidos/genética , Filogenia , Poliaminas/metabolismo , Conducta Sexual Animal/fisiología , Venenos de Araña/genética , Arañas/patogenicidad , Transcriptoma/genética , Vertebrados/genética , Vertebrados/fisiologíaRESUMEN
Heterogeneous palladium catalysts modified by N-heterocyclic carbenes (NHCs) are shown to be highly effective toward the direct synthesis of hydrogen peroxide (H2O2), in the absence of the promoters which are typically required to enhance both activity and selectivity. Catalytic evaluation in a batch regime demonstrated that through careful selection of the N-substituent of the NHC it is possible to greatly enhance catalytic performance when compared to the unmodified analogue and reach concentrations of H2O2 rivaling that obtained by state-of-the-art catalysts. The enhanced performance of the modified catalyst, which is retained upon reuse, is attributed to the ability of the NHC to electronically modify Pd speciation.
Asunto(s)
Compuestos Heterocíclicos , Paladio , Catálisis , Peróxido de Hidrógeno , Metano/análogos & derivadosRESUMEN
Cone snail venom biodiversity reflects dietary preference and predatory and defensive envenomation strategies across the ≈900 species of Conidae. To better understand the mechanisms of adaptive radiations in closely related species, we investigated the venom of two phylogenetically and spatially related species, C. flavidus and C. frigidus of the Virgiconus clade. Transcriptomic analysis revealed that the major superfamily profiles were conserved between the two species, including 68 shared conotoxin transcripts. These shared transcripts contributed 90% of the conotoxin expression in C. frigidus and only 49% in C. flavidus, which showed greater toxin diversification in the dominant O1, I2, A, O2, O3, and M superfamilies compared to C. frigidus. On the basis of morphology, two additional sub-groups closely resembling C. flavidus were also identified from One Tree Island Reef. Despite the morphological resemblance, the venom duct proteomes of these cryptic sub-groups were distinct from C. flavidus. We suggest rapid conotoxin sequence divergence may have facilitated adaptive radiation and the establishment of new species and the regulatory mechanisms facilitating species-specific venom evolution.
Asunto(s)
Caracol Conus , Venenos de Moluscos , Animales , Caracol Conus/genética , Caracol Conus/metabolismo , Perfilación de la Expresión Génica , Venenos de Moluscos/genética , Venenos de Moluscos/metabolismo , Péptidos/genética , Péptidos/metabolismo , Filogenia , Proteoma/genética , Proteoma/metabolismoRESUMEN
Australian funnel-web spiders are amongst the most dangerous venomous animals. Their venoms induce potentially deadly symptoms, including hyper- and hypotension, tachycardia, bradycardia and pulmonary oedema. Human envenomation is more frequent with the ground-dwelling species, including the infamous Sydney funnel-web spider (Atrax robustus); although, only two tree-dwelling species induce more severe envenomation. To unravel the mechanisms that lead to this stark difference in clinical outcomes, we investigated the venom transcriptome and proteome of arboreal Hadronyche cerberea and H. formidabilis. Overall, Hadronyche venoms comprised 44 toxin superfamilies, with 12 being exclusive to tree-dwellers. Surprisingly, the major venom components were neprilysins and uncharacterized peptides, in addition to the well-known ω- and δ-hexatoxins and double-knot peptides. The insecticidal effects of Hadronyche venom on sheep blowflies were more potent than Atrax venom, and the venom of both tree- and ground-dwelling species potently modulated human voltage-gated sodium channels, particularly NaV1.2. Only the venom of tree-dwellers exhibited potent modulation of voltage-gated calcium channels. H. formidabilis appeared to be under less diversifying selection pressure compared to the newly adapted tree-dweller, H. cerberea. Thus, this study contributes to unravelling the fascinating molecular and pharmacological basis for the severe envenomation caused by the Australian tree-dwelling funnel-web spiders.
Asunto(s)
Venenos de Araña , Arañas , Animales , Humanos , Venenos de Araña/toxicidad , Venenos de Araña/química , Árboles , Australia , PéptidosRESUMEN
Conopeptides are neurotoxic peptides in the venom of marine cone snails and have broad therapeutic potential for managing pain and other conditions. Here, we identified the single-disulfide peptides Czon1107 and Cca1669 from the venoms of Conus zonatus and Conus caracteristicus, respectively. We observed that Czon1107 strongly inhibits the human α3ß4 (IC50 15.7 ± 3.0 µm) and α7 (IC50 77.1 ± 0.05 µm) nicotinic acetylcholine receptor (nAChR) subtypes, but the activity of Cca1669 remains to be identified. Czon1107 acted at a site distinct from the orthosteric receptor site. Solution NMR experiments revealed that Czon1107 exists in equilibrium between conformational states that are the result of a key Ser4-Pro5cis-trans isomerization. Moreover, we found that the X-Pro amide bonds in the inter-cysteine loop are rigidly constrained to cis conformations. Structure-activity experiments of Czon1107 and its variants at positions P5 and P7 revealed that the conformation around the X-Pro bonds (cis-trans) plays an important role in receptor subtype selectivity. The cis conformation at the Cys6-Pro7 peptide bond was essential for α3ß4 nAChR subtype allosteric selectivity. In summary, we have identified a unique single-disulfide conopeptide with a noncompetitive, potentially allosteric inhibitory mechanism at the nAChRs. The small size and rigidity of the Czon1107 peptide could provide a scaffold for rational drug design strategies for allosteric nAChR modulation. This new paradigm in the "conotoxinomic" structure-function space provides an impetus to screen venom from other Conus species for similar, short bioactive peptides that allosterically modulate ligand-gated receptor function.
Asunto(s)
Caracol Conus/química , Disulfuros/química , Neurotoxinas , Péptidos , Receptores Nicotínicos , Receptor Nicotínico de Acetilcolina alfa 7 , Regulación Alostérica , Animales , Células COS , Chlorocebus aethiops , Células HEK293 , Humanos , Neurotoxinas/farmacología , Péptidos/química , Péptidos/farmacología , Receptores Nicotínicos/química , Receptores Nicotínicos/metabolismo , Relación Estructura-Actividad , Receptor Nicotínico de Acetilcolina alfa 7/química , Receptor Nicotínico de Acetilcolina alfa 7/metabolismoRESUMEN
Structurally complex benzo- and spiro-fused N-polyheterocycles can be accessed via intramolecular Pd(0)-catalyzed alkene 1,2-aminoarylation reactions. The method uses N-(pentafluorobenzoyloxy)carbamates as the initiating motif, and this allows aza-Heck-type alkene amino-palladation in advance of C-H palladation of the aromatic component. The chemistry is showcased in the first total synthesis of the complex alkaloid (+)-pileamartine A, which has resulted in the reassignment of its absolute stereochemistry.
RESUMEN
The venom of the marine predatory cone snails (genus Conus) has evolved for prey capture and defense, providing the basis for survival and rapid diversification of the now estimated 750+ species. A typical Conus venom contains hundreds to thousands of bioactive peptides known as conotoxins. These mostly disulfide-rich and well-structured peptides act on a wide range of targets such as ion channels, G protein-coupled receptors, transporters, and enzymes. Conotoxins are of interest to neuroscientists as well as drug developers due to their exquisite potency and selectivity, not just against prey but also mammalian targets, thereby providing a rich source of molecular probes and therapeutic leads. The rise of integrated venomics has accelerated conotoxin discovery with now well over 10,000 conotoxin sequences published. However, their structural and pharmacological characterization lags considerably behind. In this review, we highlight the diversity of new conotoxins uncovered since 2014, their three-dimensional structures and folds, novel chemical approaches to their syntheses, and their value as pharmacological tools to unravel complex biology. Additionally, we discuss challenges and future directions for the field.
Asunto(s)
Conotoxinas/química , Conotoxinas/metabolismo , Secuencia de Aminoácidos , Animales , Conotoxinas/clasificación , Caracol Conus/metabolismo , Humanos , Modelos Moleculares , Conformación Proteica , Relación Estructura-ActividadRESUMEN
The peripheral effects of ω-conotoxins, selective blockers of N-type voltage-gated calcium channels (CaV2.2), have not been characterised across different clinically relevant pain models. This study examines the effects of locally administered ω-conotoxin MVIIA, GVIA, and CVIF on mechanical and thermal paw withdrawal threshold (PWT) in postsurgical pain (PSP), cisplatin-induced neuropathy (CisIPN), and oxaliplatin-induced neuropathy (OIPN) rodent models. Intraplantar injection of 300, 100 and 30 nM MVIIA significantly (p < 0.0001, p < 0.0001, and p < 0.05, respectively) alleviated mechanical allodynia of mice in PSP model compared to vehicle control group. Similarly, intraplantar injection of 300, 100, and 30 nM MVIIA (p < 0.0001, p < 0.01, and p < 0.05, respectively), and 300 nM and 100 nM GVIA (p < 0.0001 and p < 0.05, respectively) significantly increased mechanical thresholds of mice in OIPN model. The ED50 of GVIA and MVIIA in OIPN was found to be 1.8 pmol/paw and 0.8 pmol/paw, respectively. However, none of the ω-conotoxins were effective in a mouse model of CisIPN. The intraplantar administration of 300 nM GVIA, MVIIA, and CVIF did not cause any locomotor side effects. The intraplantar administration of MVIIA can alleviate incision-induced mechanical allodynia, and GVIA and MVIIA effectively reduce OIPN associated mechanical pain, without locomotor side effects, in rodent models. In contrast, CVIF was inactive in these pain models, suggesting it is unable to block a subset of N-type voltage-gated calcium channels associated with nociceptors in the skin.
Asunto(s)
Bloqueadores de los Canales de Calcio/farmacología , Enfermedades del Sistema Nervioso Periférico/tratamiento farmacológico , omega-Conotoxinas/farmacología , Dolor Agudo/tratamiento farmacológico , Animales , Bloqueadores de los Canales de Calcio/administración & dosificación , Canales de Calcio Tipo N/efectos de los fármacos , Línea Celular Tumoral , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Humanos , Hiperalgesia/tratamiento farmacológico , Inyecciones Subcutáneas , Masculino , Ratones , Ratones Endogámicos C57BL , omega-Conotoxina GVIA/administración & dosificación , omega-Conotoxina GVIA/farmacología , omega-Conotoxinas/administración & dosificaciónRESUMEN
Conotoxins are disulfide-rich peptides found in the venom of cone snails. Due to their exquisite potency and high selectivity for a wide range of voltage and ligand gated ion channels they are attractive drug leads in neuropharmacology. Recently, cone snails were found to have the capability to rapidly switch between venom types with different proteome profiles in response to predatory or defensive stimuli. A novel conotoxin, GXIA (original name G117), belonging to the I3-subfamily was identified as the major component of the predatory venom of piscivorous Conus geographus. Using 2D solution NMR spectroscopy techniques, we resolved the 3D structure for GXIA, the first structure reported for the I3-subfamily and framework XI family. The 32 amino acid peptide is comprised of eight cysteine residues with the resultant disulfide connectivity forming an ICK+1 motif. With a triple stranded ß-sheet, the GXIA backbone shows striking similarity to several tarantula toxins targeting the voltage sensor of voltage gated potassium and sodium channels. Supported by an amphipathic surface, the structural evidence suggests that GXIA is able to embed in the membrane and bind to the voltage sensor domain of a putative ion channel target.
Asunto(s)
Espectroscopía de Resonancia Magnética/métodos , Neurotoxinas/análisis , Neurotoxinas/síntesis química , omega-Conotoxina GVIA/análisis , omega-Conotoxina GVIA/síntesis química , Secuencia de Aminoácidos , Animales , Conotoxinas/análisis , Conotoxinas/síntesis química , Conotoxinas/genética , Caracol Conus , Neurotoxinas/genética , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , omega-Conotoxina GVIA/genéticaRESUMEN
Ciguatera fish poisoning (CFP) and neurotoxic shellfish poisoning syndromes are induced by the consumption of seafood contaminated by ciguatoxins and brevetoxins. Both toxins cause sensory symptoms such as paresthesia, cold dysesthesia and painful disorders. An intense pruritus, which may become chronic, occurs also in CFP. No curative treatment is available and the pathophysiology is not fully elucidated. Here we conducted single-cell calcium video-imaging experiments in sensory neurons from newborn rats to study in vitro the ability of Pacific-ciguatoxin-2 (P-CTX-2) and brevetoxin-1 (PbTx-1) to sensitize receptors and ion channels, (i.e., to increase the percentage of responding cells and/or the response amplitude to their pharmacological agonists). In addition, we studied the neurotrophin release in sensory neurons co-cultured with keratinocytes after exposure to P-CTX-2. Our results show that P-CTX-2 induced the sensitization of TRPA1, TRPV4, PAR2, MrgprC, MrgprA and TTX-r NaV channels in sensory neurons. P-CTX-2 increased the release of nerve growth factor and brain-derived neurotrophic factor in the co-culture supernatant, suggesting that those neurotrophins could contribute to the sensitization of the aforementioned receptors and channels. Our results suggest the potential role of sensitization of sensory receptors/ion channels in the induction or persistence of sensory disturbances in CFP syndrome.
Asunto(s)
Intoxicación por Ciguatera , Ciguatoxinas/farmacología , Toxinas Marinas/farmacología , Oxocinas/farmacología , Células Receptoras Sensoriales/efectos de los fármacos , Animales , Animales Recién Nacidos , Organismos Acuáticos , Modelos Animales , Océano Pacífico , Dolor/metabolismo , Prurito/metabolismo , Ratas , Ratas WistarRESUMEN
Benzene exhibits a rich photochemistry which can provide access to complex molecular scaffolds that are difficult to access with reactions in the electronic ground state. While benzene is aromatic in its ground state, it is antiaromatic in its lowest ππ* excited states. Herein, we clarify to what extent relief of excited-state antiaromaticity (ESAA) triggers a fundamental benzene photoreaction: the photoinitiated nucleophilic addition of solvent to benzene in acidic media leading to substituted bicyclo[3.1.0]hex-2-enes. The reaction scope was probed experimentally, and it was found that silyl-substituted benzenes provide the most rapid access to bicyclo[3.1.0]hexene derivatives, formed as single isomers with three stereogenic centers in yields up to 75% in one step. Two major mechanism hypotheses, both involving ESAA relief, were explored through quantum chemical calculations and experiments. The first mechanism involves protonation of excited-state benzene and subsequent rearrangement to bicyclo[3.1.0]hexenium cation, trapped by a nucleophile, while the second involves photorearrangement of benzene to benzvalene followed by protonation and nucleophilic addition. Our studies reveal that the second mechanism is operative. We also clarify that similar ESAA relief leads to puckering of S1-state silabenzene and pyridinium ion, where the photorearrangement of the latter is of established synthetic utility. Finally, we identified causes for the limitations of the reaction, information that should be valuable in explorations of similar photoreactions. Taken together, we reveal how the ESAA in benzene and 6π-electron heterocycles trigger photochemical distortions that provide access to complex three-dimensional molecular scaffolds from simple reactants.
RESUMEN
DivIVA proteins and their GpsB homologues are late cell division proteins found in Gram-positive bacteria. DivIVA/GpsB proteins associate with the inner leaflet of the cytosolic membrane and act as scaffolds for other proteins required for cell growth and division. DivIVA/GpsB proteins comprise an N-terminal lipid-binding domain for membrane association fused to C-terminal domains supporting oligomerization. Despite sharing the same domain organization, DivIVA and GpsB serve different cellular functions: DivIVA plays diverse roles in division site selection, chromosome segregation and controlling peptidoglycan homeostasis, whereas GpsB contributes to the spatiotemporal control of penicillin-binding protein activity. The crystal structures of the lipid-binding domains of DivIVA from Bacillus subtilis and GpsB from several species share a fold unique to this group of proteins, whereas the C-terminal domains of DivIVA and GpsB are radically different. A number of pivotal features identified from the crystal structures explain the functional differences between the proteins. Herein we discuss these structural and functional relationships and recent advances in our understanding of how DivIVA/GpsB proteins bind and recruit their interaction partners, knowledge that might be useful for future structure-based DivIVA/GpsB inhibitor design.
Asunto(s)
Proteínas Bacterianas/química , Proteínas de Ciclo Celular/química , División Celular , Bacterias Grampositivas/química , Secuencia de Aminoácidos , Bacillus subtilis/química , Bacillus subtilis/genética , Proteínas Bacterianas/genética , Proteínas de Ciclo Celular/genética , Bacterias Grampositivas/genética , Proteínas de Unión a las Penicilinas/química , Peptidoglicano/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de ProteínasRESUMEN
Structural modifications of the neuronal calcium channel blocker MONIRO-1, including constraining the phenoxyaniline portion of the molecule and replacing the guanidinium functionality with tertiary amines, led to compounds with significantly improved affinities for the endogenously expressed CaV2.2 channel in the SH-SY5Y neuroblastoma cell line. These analogues also showed promising activity towards the CaV3.2 channel, recombinantly expressed in HEK293T cells. Both of these ion channels have received attention as likely targets for the treatment of neuropathic pain. The dibenzoazepine and dihydrobenzodiazepine derivatives prepared in this study show an encouraging combination of neuronal calcium ion channel inhibitory potency, plasma stability and potential to cross the blood-brain-barrier.
Asunto(s)
Anilidas/síntesis química , Antineoplásicos/síntesis química , Benzodiazepinas/química , Bloqueadores de los Canales de Calcio/síntesis química , Canales de Calcio/metabolismo , Neuralgia/tratamiento farmacológico , Proteínas Recombinantes/metabolismo , Anilidas/metabolismo , Animales , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Barrera Hematoencefálica/metabolismo , Calcio/metabolismo , Bloqueadores de los Canales de Calcio/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio/genética , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Modelos Moleculares , Neuronas/metabolismo , Ratas Sprague-Dawley , Proteínas Recombinantes/genética , Transducción de Señal , Relación Estructura-ActividadRESUMEN
The direct synthesis of hydrogen peroxide (H2O2) from molecular H2 and O2 offers an attractive, decentralized alternative to production compared to the current means of production, the anthraquinone process. Herein we evaluate the performance of a 0.5%Pd-4.5%Ni/TiO2 catalyst in batch and flow reactor systems using water as a solvent at ambient temperature. These reaction conditions are considered challenging for the synthesis of high H2O2 concentrations, with the use of sub-ambient temperatures and alcohol co-solvents typical. Catalytic activity was observed to be stable to prolonged use in multiple batch experiments or in a flow system, with selectivities towards H2O2 of 97% and 85%, respectively. This study was carried out in the absence of halide or acid additives that are typically used to inhibit sequential H2O2 degradation reactions showing that this Pd-Ni catalyst has the potential to produce H2O2 selectively. This article is part of a discussion meeting issue 'Science to enable the circular economy'.