Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Am J Hum Genet ; 109(2): 240-252, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35090585

RESUMEN

Body mass index (BMI) is a complex disease risk factor known to be influenced by genes acting via both metabolic pathways and appetite regulation. In this study, we aimed to gain insight into the phenotypic consequences of BMI-associated genetic variants, which may be mediated by their expression in different tissues. First, we harnessed meta-analyzed gene expression datasets derived from subcutaneous adipose (n = 1257) and brain (n = 1194) tissue to identify 86 and 140 loci, respectively, which provided evidence of genetic colocalization with BMI. These two sets of tissue-partitioned loci had differential effects with respect to waist-to-hip ratio, suggesting that the way they influence fat distribution might vary despite their having very similar average magnitudes of effect on BMI itself (adipose = 0.0148 and brain = 0.0149 standard deviation change in BMI per effect allele). For instance, BMI-associated variants colocalized with TBX15 expression in adipose tissue (posterior probability [PPA] = 0.97), but not when we used TBX15 expression data derived from brain tissue (PPA = 0.04) This gene putatively influences BMI via its role in skeletal development. Conversely, there were loci where BMI-associated variants provided evidence of colocalization with gene expression in brain tissue (e.g., NEGR1, PPA = 0.93), but not when we used data derived from adipose tissue, suggesting that these genes might be more likely to influence BMI via energy balance. Leveraging these tissue-partitioned variant sets through a multivariable Mendelian randomization framework provided strong evidence that the brain-tissue-derived variants are predominantly responsible for driving the genetically predicted effects of BMI on cardiovascular-disease endpoints (e.g., coronary artery disease: odds ratio = 1.05, 95% confidence interval = 1.04-1.07, p = 4.67 × 10-14). In contrast, our analyses suggested that the adipose tissue variants might predominantly be responsible for the underlying relationship between BMI and measures of cardiac function, such as left ventricular stroke volume (beta = 0.21, 95% confidence interval = 0.09-0.32, p = 6.43 × 10-4).


Asunto(s)
Índice de Masa Corporal , Moléculas de Adhesión Celular Neuronal/genética , Enfermedad de la Arteria Coronaria/genética , Diabetes Mellitus Tipo 2/genética , Obesidad/genética , Proteínas de Dominio T Box/genética , Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Encéfalo/metabolismo , Encéfalo/patología , Moléculas de Adhesión Celular Neuronal/metabolismo , Enfermedad de la Arteria Coronaria/metabolismo , Enfermedad de la Arteria Coronaria/patología , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Sitios Genéticos , Variación Genética , Genoma Humano , Estudio de Asociación del Genoma Completo , Humanos , Análisis de la Aleatorización Mendeliana , Redes y Vías Metabólicas/genética , Obesidad/metabolismo , Obesidad/patología , Volumen Sistólico/fisiología , Proteínas de Dominio T Box/metabolismo , Relación Cintura-Cadera
2.
PLoS Biol ; 20(6): e3001656, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35679339

RESUMEN

Children with obesity typically have larger left ventricular heart dimensions during adulthood. However, whether this is due to a persistent effect of adiposity extending into adulthood is challenging to disentangle due to confounding factors throughout the lifecourse. We conducted a multivariable mendelian randomization (MR) study to separate the independent effects of childhood and adult body size on 4 magnetic resonance imaging (MRI) measures of heart structure and function in the UK Biobank (UKB) study. Strong evidence of a genetically predicted effect of childhood body size on all measures of adulthood heart structure was identified, which remained robust upon accounting for adult body size using a multivariable MR framework (e.g., left ventricular end-diastolic volume (LVEDV), Beta = 0.33, 95% confidence interval (CI) = 0.23 to 0.43, P = 4.6 × 10-10). Sensitivity analyses did not suggest that other lifecourse measures of body composition were responsible for these effects. Conversely, evidence of a genetically predicted effect of childhood body size on various other MRI-based measures, such as fat percentage in the liver (Beta = 0.14, 95% CI = 0.05 to 0.23, P = 0.002) and pancreas (Beta = 0.21, 95% CI = 0.10 to 0.33, P = 3.9 × 10-4), attenuated upon accounting for adult body size. Our findings suggest that childhood body size has a long-term (and potentially immutable) influence on heart structure in later life. In contrast, effects of childhood body size on other measures of adulthood organ size and fat percentage evaluated in this study are likely explained by the long-term consequence of remaining overweight throughout the lifecourse.


Asunto(s)
Adiposidad , Análisis de la Aleatorización Mendeliana , Adiposidad/genética , Adulto , Índice de Masa Corporal , Tamaño Corporal/genética , Niño , Estudio de Asociación del Genoma Completo , Humanos , Obesidad
3.
PLoS Biol ; 20(2): e3001547, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35213538

RESUMEN

Large-scale molecular profiling and genotyping provide a unique opportunity to systematically compare the genetically predicted effects of therapeutic targets on the human metabolome. We firstly constructed genetic risk scores for 8 drug targets on the basis that they primarily modify low-density lipoprotein (LDL) cholesterol (HMGCR, PCKS9, and NPC1L1), high-density lipoprotein (HDL) cholesterol (CETP), or triglycerides (APOC3, ANGPTL3, ANGPTL4, and LPL). Conducting mendelian randomisation (MR) provided strong evidence of an effect of drug-based genetic scores on coronary artery disease (CAD) risk with the exception of ANGPTL3. We then systematically estimated the effects of each score on 249 metabolic traits derived using blood samples from an unprecedented sample size of up to 115,082 UK Biobank participants. Genetically predicted effects were generally consistent among drug targets, which were intended to modify the same lipoprotein lipid trait. For example, the linear fit for the MR estimates on all 249 metabolic traits for genetically predicted inhibition of LDL cholesterol lowering targets HMGCR and PCSK9 was r2 = 0.91. In contrast, comparisons between drug classes that were designed to modify discrete lipoprotein traits typically had very different effects on metabolic signatures (for instance, HMGCR versus each of the 4 triglyceride targets all had r2 < 0.02). Furthermore, we highlight this discrepancy for specific metabolic traits, for example, finding that LDL cholesterol lowering therapies typically had a weak effect on glycoprotein acetyls, a marker of inflammation, whereas triglyceride modifying therapies assessed provided evidence of a strong effect on lowering levels of this inflammatory biomarker. Our findings indicate that genetically predicted perturbations of these drug targets on the blood metabolome can drastically differ, despite largely consistent effects on risk of CAD, with potential implications for biomarkers in clinical development and measuring treatment response.


Asunto(s)
Colesterol , Proproteína Convertasa 9 , Proteína 3 Similar a la Angiopoyetina , Proteínas Similares a la Angiopoyetina , HDL-Colesterol , LDL-Colesterol , Humanos , Lipoproteínas , Análisis de la Aleatorización Mendeliana , Proproteína Convertasa 9/genética , Triglicéridos
4.
Hum Mol Genet ; 2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-33481009

RESUMEN

Integrating findings from genome-wide association studies with molecular datasets can develop insight into the underlying functional mechanisms responsible for trait-associated genetic variants. We have applied the principles of Mendelian randomization (MR) to investigate whether brain-derived gene expression (n = 1194) may be responsible for mediating the effect of genetic variants on eight cognitive and psychological outcomes (attention deficit hyperactivity disorder (ADHD), Alzheimer's disease, bipolar disorder, depression, intelligence, insomnia, neuroticism and schizophrenia). Transcriptome-wide analyses identified 83 genes associated with at least one outcome (PBonferroni < 6.72 × 10-6), with multiple-trait colocalization also implicating changes to brain-derived DNA methylation at nine of these loci. Comparing effects between outcomes identified evidence of enrichment which may reflect putative causal relationships, such as an inverse relationship between genetic liability towards schizophrenia risk and cognitive ability in later life. Repeating these analyses in whole blood (n = 31 684), we replicated 58.2% of brain-derived effects (based on P < 0.05). Finally, we undertook phenome-wide evaluations at associated loci to investigate pleiotropic effects with 700 complex traits. This highlighted pleiotropic loci such as FURIN (initially implicated in schizophrenia risk (P = 1.05 × 10-7)) which had evidence of an effect on 28 other outcomes, as well as genes which may have a more specific role in disease pathogenesis (e.g. SLC12A5 which only provided evidence of an effect on depression (P = 7.13 × 10-10)). Our results support the utility of whole blood as a valuable proxy for informing initial target identification but also suggest that gene discovery in a tissue-specific manner may be more informative. Finally, non-pleiotropic loci highlighted by our study may be of use for therapeutic translational endeavours.

5.
Br J Cancer ; 128(4): 618-625, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36434155

RESUMEN

BACKGROUND: Body mass index (BMI) is known to influence the risk of various site-specific cancers, however, dissecting which subcomponents of this heterogenous risk factor are predominantly responsible for driving disease effects has proven difficult to establish. We have leveraged tissue-specific gene expression to separate the effects of distinct phenotypes underlying BMI on the risk of seven site-specific cancers. METHODS: SNP-exposure estimates were weighted in a multivariable Mendelian randomisation analysis by their evidence for colocalization with subcutaneous adipose- and brain-tissue-derived gene expression using a recently developed methodology. RESULTS: Our results provide evidence that brain-tissue-derived BMI variants are predominantly responsible for driving the genetically predicted effect of BMI on lung cancer (OR: 1.17; 95% CI: 1.01-1.36; P = 0.03). Similar findings were identified when analysing cigarettes per day as an outcome (Beta = 0.44; 95% CI: 0.26-0.61; P = 1.62 × 10-6), highlighting a possible shared aetiology or mediator effect between brain-tissue BMI, smoking and lung cancer. Our results additionally suggest that adipose-tissue-derived BMI variants may predominantly drive the effect of BMI and increased risk for endometrial cancer (OR: 1.71; 95% CI: 1.07-2.74; P = 0.02), highlighting a putatively important role in the aetiology of endometrial cancer. CONCLUSIONS: The study provides valuable insight into the divergent underlying pathways between BMI and the risk of site-specific cancers.


Asunto(s)
Neoplasias Endometriales , Neoplasias Pulmonares , Humanos , Femenino , Índice de Masa Corporal , Factores de Riesgo , Obesidad/complicaciones , Neoplasias Endometriales/genética , Neoplasias Pulmonares/complicaciones , Polimorfismo de Nucleótido Simple , Estudio de Asociación del Genoma Completo
6.
J Am Heart Assoc ; 13(6): e030453, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38456449

RESUMEN

BACKGROUND: Observational epidemiological studies have reported an association between childhood adiposity and altered cardiac morphology and function in later life. However, whether this is due to a direct consequence of being overweight during childhood has been difficult to establish, particularly as accounting for other measures of body composition throughout the lifecourse can be exceptionally challenging. METHODS AND RESULTS: In this study, we used human genetics to investigate this using a causal inference technique known as lifecourse Mendelian randomization. This approach allowed us to evaluate the effect of childhood body size on 11 measures of right heart and pulmonary circulation independent of other anthropometric traits at various stages in the lifecourse. We found strong evidence that childhood body size has a direct effect on an enlarged right heart structure in later life (eg, right ventricular end-diastolic volume: ß=0.24 [95% CI, 0.15-0.33]; P=3×10-7) independent of adulthood body size. In contrast, childhood body size effects on maximum ascending aorta diameter attenuated upon accounting for body size in adulthood, suggesting that this effect is likely attributed to individuals remaining overweight into later life. Effects of childhood body size on pulmonary artery traits and measures of right atrial function became weaker upon accounting for adulthood fat-free mass and childhood height, respectively. CONCLUSIONS: Our findings suggest that, although childhood body size has a long-term influence on an enlarged heart structure in adulthood, associations with the other structural components of the cardiovascular system and their function may be largely attributed to body composition at other stages in the lifecourse.


Asunto(s)
Adiposidad , Obesidad Infantil , Humanos , Adiposidad/genética , Sobrepeso/complicaciones , Análisis de la Aleatorización Mendeliana/métodos , Circulación Pulmonar , Índice de Masa Corporal , Obesidad Infantil/diagnóstico , Obesidad Infantil/epidemiología , Obesidad Infantil/genética , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple
7.
Elife ; 122023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37878001

RESUMEN

Background: Findings from Mendelian randomization (MR) studies are conventionally interpreted as lifelong effects, which typically do not provide insight into the molecular mechanisms underlying the effect of an exposure on an outcome. In this study, we apply two recently developed MR approaches (known as 'lifecourse' and 'tissue-partitioned' MR) to investigate lifestage-specific effects and tissues of action in the relationship between adiposity and circulating leptin levels. Methods: Genetic instruments for childhood and adult adiposity were incorporated into a multivariable MR (MVMR) framework to estimate lifestage-specific effects on leptin levels measured during early life (mean age: 10 y) in the Avon Longitudinal Study of Parents and Children and in adulthood (mean age: 55 y) using summary-level data from the deCODE Health study. This was followed by partitioning body mass index (BMI) instruments into those whose effects are putatively mediated by gene expression in either subcutaneous adipose or brain tissues, followed by using MVMR to simultaneously estimate their separate effects on childhood and adult leptin levels. Results: There was strong evidence that childhood adiposity has a direct effect on leptin levels at age 10 y in the lifecourse (ß = 1.10 SD change in leptin levels, 95% CI = 0.90-1.30, p=6 × 10-28), whereas evidence of an indirect effect was found on adulthood leptin along the causal pathway involving adulthood body size (ß = 0.74, 95% CI = 0.62-0.86, p=1 × 10-33). Tissue-partitioned MR analyses provided evidence to suggest that BMI exerts its effect on leptin levels during both childhood and adulthood via brain tissue-mediated pathways (ß = 0.79, 95% CI = 0.22-1.36, p=6 × 10-3 and ß = 0.51, 95% CI = 0.32-0.69, p=1 × 10-7, respectively). Conclusions: Our findings demonstrate the use of lifecourse MR to disentangle direct and indirect effects of early-life exposures on time-varying complex outcomes. Furthermore, by integrating tissue-specific data, we highlight the etiological importance of appetite regulation in the effect of adiposity on leptin levels. Funding: This work was supported by the Integrative Epidemiology Unit, which receives funding from the UK Medical Research Council and the University of Bristol (MC_UU_00011/1).


Asunto(s)
Adiposidad , Leptina , Adulto , Niño , Humanos , Persona de Mediana Edad , Leptina/genética , Adiposidad/genética , Estudios Longitudinales , Análisis de la Aleatorización Mendeliana , Obesidad
8.
iScience ; 26(12): 108356, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38047089

RESUMEN

Evaluating the long-term consequences of childhood lifestyle factors on asthma risk can be exceptionally challenging in epidemiology given that cases are typically diagnosed at various timepoints throughout the lifecourse. In this study, we used human genetic data to evaluate the effects of childhood and adulthood adiposity on risk of pediatric (n = 13,962 cases) and adult-onset asthma (n = 26,582 cases) with a common set of controls (n = 300,671) using a technique known as lifecourse Mendelian randomization. We found that childhood adiposity directly increases risk of pediatric asthma (OR = 1.20, 95% CI = 1.03-1.37, p = 0.03), but limited evidence that it has an effect on adult-onset asthma after accounting for adiposity during adulthood (OR = 1.05, 95% CI = 0.93-1.17, p = 0.39). Conversely, there was strong evidence that adulthood adiposity increases asthma risk in midlife (OR = 1.37, 95% CI = 1.28-1.46, P = 7 × 10-12). These findings suggest that childhood and adulthood adiposity are independent risk factors for asthma at each of their corresponding timepoints in the lifecourse.

9.
Nat Commun ; 9(1): 2983, 2018 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-30061675

RESUMEN

Esophageal adenocarcinoma (EAC) incidence is increasing while 5-year survival rates remain less than 15%. A lack of experimental models has hampered progress. We have generated clinically annotated EAC organoid cultures that recapitulate the morphology, genomic, and transcriptomic landscape of the primary tumor including point mutations, copy number alterations, and mutational signatures. Karyotyping of organoid cultures has confirmed polyclonality reflecting the clonal architecture of the primary tumor. Furthermore, subclones underwent clonal selection associated with driver gene status. Medium throughput drug sensitivity testing demonstrates the potential of targeting receptor tyrosine kinases and downstream mediators. EAC organoid cultures provide a pre-clinical tool for studies of clonal evolution and precision therapeutics.


Asunto(s)
Adenocarcinoma/tratamiento farmacológico , Evolución Clonal , Neoplasias Esofágicas/tratamiento farmacológico , Organoides/química , Proteínas Tirosina Quinasas Receptoras/genética , Adenocarcinoma/metabolismo , Anciano , Anciano de 80 o más Años , Variaciones en el Número de Copia de ADN , Análisis Mutacional de ADN , Ensayos de Selección de Medicamentos Antitumorales , Neoplasias Esofágicas/metabolismo , Femenino , Humanos , Concentración 50 Inhibidora , Cariotipificación , Masculino , Persona de Mediana Edad , Mutación , Medicina de Precisión , Análisis de Secuencia de ARN , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA