Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Br J Anaesth ; 132(2): 334-342, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38044237

RESUMEN

BACKGROUND: Delayed emergence from general anaesthesia poses a significant perioperative safety hazard. Subanaesthetic doses of ketamine not only deepen anaesthesia but also accelerate recovery from isoflurane anaesthesia; however, the mechanisms underlying this phenomenon remain elusive. Esketamine exhibits a more potent receptor affinity and fewer adverse effects than ketamine and exhibits shorter recovery times after brief periods of anaesthesia. As the paraventricular thalamus (PVT) plays a pivotal role in regulating wakefulness, we studied its role in the emergence process during combined esketamine and isoflurane anaesthesia. METHODS: The righting reflex and cortical electroencephalography were used as measures of consciousness in mice during isoflurane anaesthesia with coadministration of esketamine. The expression of c-Fos was used to determine neuronal activity changes in PVT neurones after esketamine administration. The effect of esketamine combined with isoflurane anaesthesia on PVT glutamatergic (PVTGlu) neuronal activity was monitored by fibre photometry, and chemogenetic technology was used to manipulate PVTGlu neuronal activity. RESULTS: A low dose of esketamine (5 mg kg-1) accelerated emergence from isoflurane general anaesthesia (474 [30] s vs 544 [39] s, P=0.001). Esketamine (5 mg kg-1) increased PVT c-Fos expression (508 [198] vs 258 [87], P=0.009) and enhanced the population activity of PVTGlu neurones (0.03 [1.7]% vs 6.9 [3.4]%, P=0.002) during isoflurane anaesthesia (1.9 [5.7]% vs -5.1 [5.3]%, P=0.016) and emergence (6.1 [6.2]% vs -1.1 [5.0]%, P=0.022). Chemogenetic suppression of PVTGlu neurones abolished the arousal-promoting effects of esketamine (459 [33] s vs 596 [33] s, P<0.001). CONCLUSIONS: Our results suggest that esketamine promotes recovery from isoflurane anaesthesia by activating PVTGlu neurones. This mechanism could explain the rapid arousability exhibited upon treatment with a low dose of esketamine.


Asunto(s)
Anestésicos por Inhalación , Isoflurano , Ketamina , Tálamo , Animales , Ratones , Anestesia General , Anestésicos por Inhalación/farmacología , Isoflurano/farmacología , Ketamina/farmacología , Tálamo/efectos de los fármacos
2.
Plant Methods ; 19(1): 11, 2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36732764

RESUMEN

BACKGROUND: Crop breeding based on root system architecture (RSA) optimization is an essential factor for improving crop production in developing countries. Identification, evaluation, and selection of root traits of soil-grown crops require innovations that enable high-throughput and accurate quantification of three-dimensional (3D) RSA of crops over developmental time. RESULTS: We proposed an automated imaging system and 3D imaging data processing pipeline to quantify the 3D RSA of soil-grown individual plants across seedlings to the mature stage. A multi-view automated imaging system composed of a rotary table and an imaging arm with 12 cameras mounted with a combination of fan-shaped and vertical distribution was developed to obtain 3D image data of roots grown on a customized root support mesh. A 3D imaging data processing pipeline was developed to quantify the 3D RSA based on the point cloud generated from multi-view images. The global architecture of root systems can be quantified automatically. Detailed analysis of the reconstructed 3D root model also allowed us to investigate the Spatio-temporal distribution of roots. A method combining horizontal slicing and iterative erosion and dilation was developed to automatically segment different root types, and identify local root traits (e.g., length, diameter of the main root, and length, diameter, initial angle, and the number of nodal roots or lateral roots). One maize (Zea mays L.) cultivar and two rapeseed (Brassica napus L.) cultivars at different growth stages were selected to test the performance of the automated imaging system and 3D imaging data processing pipeline. CONCLUSIONS: The results demonstrated the capabilities of the proposed imaging and analytical system for high-throughput phenotyping of root traits for both monocotyledons and dicotyledons across growth stages. The proposed system offers a potential tool to further explore the 3D RSA for improving root traits and agronomic qualities of crops.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA