Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Bioorg Med Chem ; 107: 117751, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38762979

RESUMEN

In previous studies, we developed anti-trypanosome tubulin inhibitors with promising in vitro selectivity and activity against Human African Trypanosomiasis (HAT). However, for such agents, oral activity is crucial. This study focused on further optimizing these compounds to enhance their ligand efficiency, aiming to reduce bulkiness and hydrophobicity, which should improve solubility and, consequently, oral bioavailability. Using Trypanosoma brucei brucei cells as the parasite model and human normal kidney cells and mouse macrophage cells as the host model, we evaluated 30 new analogs synthesized through combinatorial chemistry. These analogs have fewer aromatic moieties and lower molecular weights than their predecessors. Several new analogs demonstrated IC50s in the low micromolar range, effectively inhibiting trypanosome cell growth without harming mammalian cells at the same concentration. We conducted a detailed structure-activity relationship (SAR) analysis and a docking study to assess the compounds' binding affinity to trypanosome tubulin homolog. The results revealed a correlation between binding energy and anti-Trypanosoma activity. Importantly, compound 7 displayed significant oral activity, effectively inhibiting trypanosome cell proliferation in mice.


Asunto(s)
Tripanocidas , Trypanosoma brucei brucei , Animales , Trypanosoma brucei brucei/efectos de los fármacos , Tripanocidas/farmacología , Tripanocidas/síntesis química , Tripanocidas/química , Relación Estructura-Actividad , Ratones , Humanos , Administración Oral , Proliferación Celular/efectos de los fármacos , Estructura Molecular , Simulación del Acoplamiento Molecular , Tubulina (Proteína)/metabolismo , Pruebas de Sensibilidad Parasitaria , Relación Dosis-Respuesta a Droga , Moduladores de Tubulina/farmacología , Moduladores de Tubulina/síntesis química , Moduladores de Tubulina/química , Tripanosomiasis Africana/tratamiento farmacológico
2.
Cell ; 137(1): 99-109, 2009 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-19345190

RESUMEN

Trypanosoma brucei expresses variant surface glycoprotein (VSG) genes in a strictly monoallelic fashion in its mammalian hosts, but it is unclear how this important virulence mechanism is enforced. Telomere position effect, an epigenetic phenomenon, has been proposed to play a critical role in VSG regulation, yet no telomeric protein has been identified whose disruption led to VSG derepression. We now identify tbRAP1 as an intrinsic component of the T. brucei telomere complex and a major regulator for silencing VSG expression sites (ESs). Knockdown of tbRAP1 led to derepression of all VSGs in silent ESs, but not VSGs located elsewhere, and resulted in stronger derepression of genes located within 10 kb from telomeres than genes located further upstream. This graduated silencing pattern suggests that telomere integrity plays a key role in tbRAP1-dependent silencing and VSG regulation.


Asunto(s)
Silenciador del Gen , Proteínas Protozoarias/metabolismo , Telómero/metabolismo , Glicoproteínas Variantes de Superficie de Trypanosoma/genética , Proteínas de Unión al GTP rap1/metabolismo , Secuencia de Aminoácidos , Animales , Datos de Secuencia Molecular , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Trypanosoma brucei brucei/genética , Proteínas de Unión al GTP rap1/química , Proteínas de Unión al GTP rap1/genética
3.
Nucleic Acids Res ; 50(4): 2036-2050, 2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-35061898

RESUMEN

Trypanosoma brucei causes human African trypanosomiasis and sequentially expresses distinct VSGs, its major surface antigen, to achieve host immune evasion. VSGs are monoallelically expressed from subtelomeric loci, and telomere proteins regulate VSG monoallelic expression and VSG switching. T. brucei telomerase is essential for telomere maintenance, but no regulators of telomerase have been identified. T. brucei appears to lack OB fold-containing telomere-specific ssDNA binding factors that are critical for coordinating telomere G- and C-strand syntheses in higher eukaryotes. We identify POLIE as a telomere protein essential for telomere integrity. POLIE-depleted cells have more frequent VSG gene conversion-mediated VSG switching and an increased amount of telomeric circles (T-circles), indicating that POLIE suppresses DNA recombination at the telomere/subtelomere. POLIE-depletion elongates telomere 3' overhangs dramatically, indicating that POLIE is essential for coordinating DNA syntheses of the two telomere strands. POLIE depletion increases the level of telomerase-dependent telomere G-strand extension, identifying POLIE as the first T. brucei telomere protein that suppresses telomerase. Furthermore, depletion of POLIE results in an elevated telomeric C-circle level, suggesting that the telomere C-strand experiences replication stress and that POLIE may promote telomere C-strand synthesis. Therefore, T. brucei uses a novel mechanism to coordinate the telomere G- and C-strand DNA syntheses.


Asunto(s)
Telomerasa , Telómero , Trypanosoma/metabolismo , ADN/metabolismo , Humanos , Telomerasa/genética , Telomerasa/metabolismo , Telómero/genética , Telómero/metabolismo , Trypanosoma/genética , Glicoproteínas Variantes de Superficie de Trypanosoma/genética
4.
Nucleic Acids Res ; 49(21): 12445-12466, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34850114

RESUMEN

Telomerase is a unique ribonucleoprotein (RNP) reverse transcriptase that utilizes its cognate RNA molecule as a template for telomere DNA repeat synthesis. Telomerase contains the reverse transcriptase protein, TERT and the template RNA, TR, as its core components. The 5'-half of TR forms a highly conserved catalytic core comprising of the template region and adjacent domains necessary for telomere synthesis. However, how telomerase RNA folding takes place in vivo has not been fully understood due to low abundance of the native RNP. Here, using unicellular pathogen Trypanosoma brucei as a model, we reveal important regional folding information of the native telomerase RNA core domains, i.e. TR template, template boundary element, template proximal helix and Helix IV (eCR4-CR5) domain. For this purpose, we uniquely combined in-cell probing with targeted high-throughput RNA sequencing and mutational mapping under three conditions: in vivo (in WT and TERT-/- cells), in an immunopurified catalytically active telomerase RNP complex and ex vivo (deproteinized). We discover that TR forms at least two different conformers with distinct folding topologies in the insect and mammalian developmental stages of T. brucei. Also, TERT does not significantly affect the RNA folding in vivo, suggesting that the telomerase RNA in T. brucei exists in a conformationally preorganized stable structure. Our observed differences in RNA (TR) folding at two distinct developmental stages of T. brucei suggest that important conformational changes are a key component of T. brucei development.


Asunto(s)
Dominio Catalítico , Proteínas Protozoarias/genética , ARN Protozoario/genética , ARN/genética , Telomerasa/genética , Trypanosoma brucei brucei/genética , Secuencia de Bases , Biocatálisis , Pruebas de Enzimas/métodos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Mutación , Conformación de Ácido Nucleico , Unión Proteica , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , ARN/química , ARN/metabolismo , Pliegue del ARN , ARN Protozoario/química , ARN Protozoario/metabolismo , Telomerasa/química , Telomerasa/metabolismo , Termodinámica , Trypanosoma brucei brucei/metabolismo
5.
Nucleic Acids Res ; 49(10): 5637-5653, 2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-34048580

RESUMEN

Telomere repeat-containing RNA (TERRA) has been identified in multiple organisms including Trypanosoma brucei, a protozoan parasite that causes human African trypanosomiasis. T. brucei regularly switches its major surface antigen, VSG, to evade the host immune response. VSG is expressed exclusively from subtelomeric expression sites, and we have shown that telomere proteins play important roles in the regulation of VSG silencing and switching. In this study, we identify several unique features of TERRA and telomere biology in T. brucei. First, the number of TERRA foci is cell cycle-regulated and influenced by TbTRF, the duplex telomere DNA binding factor in T. brucei. Second, TERRA is transcribed by RNA polymerase I mainly from a single telomere downstream of the active VSG. Third, TbTRF binds TERRA through its C-terminal Myb domain, which also has the duplex DNA binding activity, in a sequence-specific manner and suppresses the TERRA level without affecting its half-life. Finally, levels of the telomeric R-loop and telomere DNA damage were increased upon TbTRF depletion. Overexpression of an ectopic allele of RNase H1 that resolves the R-loop structure in TbTRF RNAi cells can partially suppress these phenotypes, revealing an underlying mechanism of how TbTRF helps maintain telomere integrity.


Asunto(s)
ARN Largo no Codificante/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Telómero/metabolismo , Trypanosoma brucei brucei/genética , Tripanosomiasis Africana/parasitología , Glicoproteínas Variantes de Superficie de Trypanosoma/metabolismo
6.
Bioorg Med Chem ; 61: 116740, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35396128

RESUMEN

Human African trypanosomiasis is caused by a protozoan parasite Trypanosoma brucei majorly infecting people living in sub-Saharan Africa. Current limited available treatments suffer from drug resistance, severe adverse effects, low efficacy, and costly administrative procedures in African countries with limited medical resources. Therefore, there is always a perpetual demand for advanced drug development and invention of new strategies to combat the disease. Previous work in our lab generated a library of sulfonamide analogs as selective tubulin inhibitors, based on the structural difference between mammalian and trypanosome tubulin proteins. Further lead derivatization was performed in the current study and generated 25 potential drug candidates to improve the drug efficacy and uptake by selectively targeting the parasite's P2 membrane transporter protein with imidamide moiety. One of the newly synthesized analogs, compound 25 with a di-imidamide moiety, has shown greater potency with an IC50 of 1 nM to selectively inhibit the growth of trypanosome cells without affecting the viability of mammalian cells. Western blot analyses reveal that the compound suppressed tubulin polymerization in T. brucei cells. A detailed structure-activity relationship (SAR) was summarized that will be used to guide future lead optimization.


Asunto(s)
Tripanocidas , Trypanosoma brucei brucei , Tripanosomiasis Africana , Animales , Humanos , Mamíferos/metabolismo , Tripanosomiasis Africana/tratamiento farmacológico , Tripanosomiasis Africana/parasitología , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/farmacología
7.
BMC Genomics ; 22(1): 288, 2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-33882826

RESUMEN

BACKGROUND: Preweaned rumen development is vital for animal health and efficient fermentation. In this study, we integrated ruminal transcriptomic and metagenomic data to explore the dynamics of rumen functions, microbial colonization, and their functional interactions during the first 8 weeks of life in goats. RESULTS: The dynamic rumen transcriptomic and microbial profiles both exhibited two distinct phases during early rumen development. The differentially expressed genes of the rumen transcriptome between the two phases showed that the immune-related response was enriched in the first phase and nutrient-related metabolism was enriched in the second phase, whereas the differentially expressed genes of the rumen microbiome were enriched in bacteriocin biosynthesis and glycolysis/gluconeogenesis activities. The developmental shift in the rumen transcriptome (at d 21) was earlier than the feed stimulus (at d 25) and the shift in the rumen microbiome (at d 42). Additionally, 15 temporal dynamic rumen gene modules and 20 microbial modules were revealed by coexpression network analysis. Functional correlations between the rumen and its microbiome were primarily involved in rumen pH homeostasis, nitrogen metabolism and the immune response. Rumen gene modules associated with the microbial alpha diversity index were also enriched in the immune response process. CONCLUSIONS: The present study touched the critical developmental process of rumen functions, microbial colonization and their functional interactions during preweaned development. Taken together, these results demonstrated that rumen development at the first phase is more likely a programmed process rather than stimulation from feed and the microbiome, while the shift of rumen metagenomes was likely regulated by both the diet and host. The intensive functional correlations between rumen genes and the microbiome demonstrated that synergistic processes occurred between them during early rumen development.


Asunto(s)
Microbiota , Rumen , Alimentación Animal/análisis , Animales , Dieta , Cabras/genética , Metagenoma , Microbiota/genética
8.
Biomed Chromatogr ; 35(10): e5169, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33978959

RESUMEN

Previously compound 12 showed great anti-trypanosome activity without toxicity in an in vivo study. In the current study, a sensitive and rapid high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method was developed and validated to investigate its pharmacokinetics in mouse plasma. A protein precipitation method was applied to extract the compound, and it was then separated using a Kinetex C18 column with mobile phase consisting of acetonitrile-0.1% formic acid water (50:50, v/v) at a flow rate of 300 µl/min. The analytes were detected with the multiple reaction monitoring in negative electrospray ionization source for quantitative response of the compounds. Compound 12 was detected at m/z 477.0 → 367.2, while the internal standard compound 14 was detected at m/z 499.2 → 268.2. Inter- and intra-day precision was <5.22 and 2.79% respectively, while the accuracy range was within ±9.65%. The method was successfully applied to evaluate the pharmacokinetics of compound 12 in mouse plasma with two formulations (20% Cremophor EL or sesame oil) and drug administration routes (oral and intraperitoneal injection). We observed a better drug serum concentration with the Cremophor formulation, and the two different drug administration routes did not show significant differences from the drug distribution.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas en Tándem/métodos , Tripanocidas , Administración Oral , Animales , Glicerol/análogos & derivados , Inyecciones Intraperitoneales , Modelos Lineales , Masculino , Ratones , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Aceite de Sésamo , Tripanocidas/administración & dosificación , Tripanocidas/sangre , Tripanocidas/química , Tripanocidas/farmacocinética
9.
Bioorg Med Chem ; 27(8): 1517-1528, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30833159

RESUMEN

Previously synthesized tubulin inhibitors showed promising in vitro selectivity and activity against Human African Trypanosomiasis. Current aim is to improve the ligand efficiency and reduce overall hydrophobicity of the compounds, by lead optimization. Via combinatorial chemistry, 60 new analogs were synthesized. For biological assay Trypanosoma brucei brucei Lister 427 cell line were used as the parasite model and for the host model human embryonic kidney cell line HEK-293 and mouse macrophage cell line RAW 264.7 were used to test efficacy. Of the newly synthesized compounds 5, 39, 40, and 57 exhibited IC50s below 5 µM inhibiting the growth of trypanosome cells and not harming the mammalian cells at equipotent concentration. Comparably, the newly synthesized compounds have a reduced amount of aromatic moieties resulting in a decrease in molecular weight. Due to importance of tubulin polymerization during protozoan life cycle its activity was assessed by western blot analyses. Our results indicated that compound 5 had a profound effect on tubulin function. A detailed structure activity relationship (SAR) was summarized that will be used to guide future lead optimization.


Asunto(s)
Tripanocidas/química , Tripanocidas/farmacología , Trypanosoma brucei brucei/efectos de los fármacos , Moduladores de Tubulina/química , Moduladores de Tubulina/farmacología , Animales , Diseño de Fármacos , Descubrimiento de Drogas , Células HEK293 , Humanos , Ratones , Células RAW 264.7 , Tripanosomiasis Africana/tratamiento farmacológico
10.
Nucleic Acids Res ; 45(10): 5785-5796, 2017 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-28334836

RESUMEN

Trypanosoma brucei causes human African trypanosomiasis and regularly switches its major surface antigen, VSG, thereby evading the host's immune response. VSGs are monoallelically expressed from subtelomeric expression sites (ESs), and VSG switching exploits subtelomere plasticity. However, subtelomere integrity is essential for T. brucei viability. The telomeric transcript, TERRA, was detected in T. brucei previously. We now show that the active ES-adjacent telomere is transcribed. We find that TbRAP1, a telomere protein essential for VSG silencing, suppresses VSG gene conversion-mediated switching. Importantly, TbRAP1 depletion increases the TERRA level, which appears to result from longer read-through into the telomere downstream of the active ES. Depletion of TbRAP1 also results in more telomeric RNA:DNA hybrids and more double strand breaks (DSBs) at telomeres and subtelomeres. In TbRAP1-depleted cells, expression of excessive TbRNaseH1, which cleaves the RNA strand of the RNA:DNA hybrid, brought telomeric RNA:DNA hybrids, telomeric/subtelomeric DSBs and VSG switching frequency back to WT levels. Therefore, TbRAP1-regulated appropriate levels of TERRA and telomeric RNA:DNA hybrid are fundamental to subtelomere/telomere integrity. Our study revealed for the first time an important role of a long, non-coding RNA in antigenic variation and demonstrated a link between telomeric silencing and subtelomere/telomere integrity through TbRAP1-regulated telomere transcription.


Asunto(s)
ADN Protozoario/genética , ARN Largo no Codificante/genética , ARN Protozoario/genética , Telómero/química , Trypanosoma brucei brucei/genética , Glicoproteínas Variantes de Superficie de Trypanosoma/genética , Proteínas de Unión al GTP rap1/genética , Emparejamiento Base , Roturas del ADN de Doble Cadena , ADN Protozoario/metabolismo , Hibridación de Ácido Nucleico , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , ARN Largo no Codificante/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Protozoario/metabolismo , Ribonucleasa H/genética , Ribonucleasa H/metabolismo , Telómero/metabolismo , Transcripción Genética , Trypanosoma brucei brucei/metabolismo , Glicoproteínas Variantes de Superficie de Trypanosoma/metabolismo , Proteínas de Unión al GTP rap1/metabolismo
11.
Anaerobe ; 59: 118-125, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31228671

RESUMEN

The rumen contains a highly complex microbial ecosystem that plays an important role in converting solar energy in plants into nutrients for ruminants and generates animal food products, such as meat and milk for humans. Therefore, understanding the effect of the dietary concentrate to forage (C:F) ratio on ruminal microbiota is of great significance for the growth and development of ruminants. In this study, changes in the ruminal bacterial and anaerobic fungal populations of Shaanbei white-cashmere (SWC) goats that were reared under different dietary C:F ratios were evaluated by high-throughput sequencing analysis. It was found that dietary C:F ratio has a significant impact on the composition of the ruminal bacteria in SWC goats. The levels of Actinobacteria and Proteobacteria were significantly increased (P < 0.05), whereas the level of Bacteroidetes was significantly decreased when the proportion of dietary concentrate was increased (P < 0.05); as the proportion of dietary concentrate increased, Prevotella, Selenomonas, and Treponema were significantly increased (P < 0.05), whereas Oscillospira and Succiniclasticum were significantly reduced (P < 0.05). Furthermore, different dietary C:F ratios significantly affected the composition of anaerobic fungi in SWC goats. As the proportion of dietary concentrate increased, Ascomycota, Basidiomycota, and Zygomycota were significantly increased (P < 0.05), while Neocallimastigomycota was significantly reduced (P < 0.05); the levels of Alternaria, Aspergillus, Neocallimastix, Orpinomyces, Piromyces, and Stachybotrys were significantly increased, while those of Candida, Penicillium, and Trichosporon were significantly decreased when the proportion of dietary concentrate increased (P < 0.05). These findings will help us to better understand the changes in ruminal bacterial and anaerobic fungal populations of SWC goats under different dietary C:F ratios, which could provide a theoretical basis for microecological regulation of SWC goats.


Asunto(s)
Bacterias Anaerobias/clasificación , Biota/efectos de los fármacos , Dieta/métodos , Hongos/clasificación , Cabras/microbiología , Rumen/microbiología , Anaerobiosis , Animales , Bacterias Anaerobias/aislamiento & purificación , Femenino , Hongos/aislamiento & purificación
12.
Bioorg Med Chem ; 25(12): 3215-3222, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28428042

RESUMEN

African trypanosomiasis is still a threat to human health due to the severe side-effects of current drugs. We identified selective tubulin inhibitors that showed the promise to the treatment of this disease, which was based on the tubulin protein structural difference between mammalian and trypanosome cells. Further lead optimization was performed in the current study to improve the efficiency of the drug candidates. We used Trypanosoma brucei brucei cells as the parasite model, and human normal kidney cells and mouse macrophage cells as the host model to evaluate the compounds. One new analog showed great potency with an IC50 of 70nM to inhibit the growth of trypanosome cells and did not affect the viability of mammalian cells. Western blot analyses reveal that the compound decreased tubulin polymerization in T. brucei cells. A detailed structure activity relationship (SAR) was summarized that will be used to guide future lead optimization.


Asunto(s)
Tripanocidas/química , Tripanocidas/farmacología , Trypanosoma brucei brucei/efectos de los fármacos , Tripanosomiasis Africana/tratamiento farmacológico , Moduladores de Tubulina/química , Moduladores de Tubulina/farmacología , Animales , Línea Celular , Células HEK293 , Humanos , Ratones , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/metabolismo , Tripanocidas/síntesis química , Trypanosoma brucei brucei/metabolismo , Tripanosomiasis Africana/parasitología , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/síntesis química
13.
Eukaryot Cell ; 14(3): 196-205, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25576484

RESUMEN

Human-infecting microbial pathogens all face a serious problem of elimination by the host immune response. Antigenic variation is an effective immune evasion mechanism where the pathogen regularly switches its major surface antigen. In many cases, the major surface antigen is encoded by genes from the same gene family, and its expression is strictly monoallelic. Among pathogens that undergo antigenic variation, Trypanosoma brucei (a kinetoplastid), which causes human African trypanosomiasis, Plasmodium falciparum (an apicomplexan), which causes malaria, Pneumocystis jirovecii (a fungus), which causes pneumonia, and Borrelia burgdorferi (a bacterium), which causes Lyme disease, also express their major surface antigens from loci next to the telomere. Except for Plasmodium, DNA recombination-mediated gene conversion is a major pathway for surface antigen switching in these pathogens. In the last decade, more sophisticated molecular and genetic tools have been developed in T. brucei, and our knowledge of functions of DNA recombination in antigenic variation has been greatly advanced. VSG is the major surface antigen in T. brucei. In subtelomeric VSG expression sites (ESs), VSG genes invariably are flanked by a long stretch of upstream 70-bp repeats. Recent studies have shown that DNA double-strand breaks (DSBs), particularly those in 70-bp repeats in the active ES, are a natural potent trigger for antigenic variation in T. brucei. In addition, telomere proteins can influence VSG switching by reducing the DSB amount at subtelomeric regions. These findings will be summarized and their implications will be discussed in this review.


Asunto(s)
Antígenos de Protozoos/genética , Roturas del ADN de Doble Cadena , Telómero/genética , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/inmunología
14.
Nucleic Acids Res ; 42(20): 12899-911, 2014 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-25313155

RESUMEN

Trypanosoma brucei causes human African trypanosomiasis and regularly switches its major surface antigen, VSG, in the bloodstream of its mammalian host to evade the host immune response. VSGs are expressed exclusively from subtelomeric loci, and we have previously shown that telomere proteins TbTIF2 and TbRAP1 play important roles in VSG switching and VSG silencing regulation, respectively. We now discover that the telomere duplex DNA-binding factor, TbTRF, also plays a critical role in VSG switching regulation, as a transient depletion of TbTRF leads to significantly more VSG switching events. We solved the NMR structure of the DNA-binding Myb domain of TbTRF, which folds into a canonical helix-loop-helix structure that is conserved to the Myb domains of mammalian TRF proteins. The TbTRF Myb domain tolerates well the bulky J base in T. brucei telomere DNA, and the DNA-binding affinity of TbTRF is not affected by the presence of J both in vitro and in vivo. In addition, we find that point mutations in TbTRF Myb that significantly reduced its in vivo telomere DNA-binding affinity also led to significantly increased VSG switching frequencies, indicating that the telomere DNA-binding activity is critical for TbTRF's role in VSG switching regulation.


Asunto(s)
Variación Antigénica , Proteínas Protozoarias/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Telómero/metabolismo , Trypanosoma brucei brucei/inmunología , Glicoproteínas Variantes de Superficie de Trypanosoma/inmunología , ADN/metabolismo , Secuencias Hélice-Giro-Hélice , Mutación , Unión Proteica , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , Proteínas de Unión a Telómeros/química , Proteínas de Unión a Telómeros/genética , Trypanosoma brucei brucei/genética
15.
Nucleic Acids Res ; 41(16): 7673-82, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23804762

RESUMEN

Trypanosoma brucei causes human African trypanosomiasis and regularly switches its major surface antigen variant surface glycoprotein (VSG) to evade mammalian host immune responses at the bloodstream form (BF) stage. Monoallelic expression of BF Expression Site (BES)-linked VSGs and silencing of metacyclic VSGs (mVSGs) in BF cells are essential for antigenic variation, whereas silencing of both BES-linked and mVSGs in the procyclic form (PF) cells is important for cell survival in the midgut of its insect vector. We have previously shown that silencing BES-linked VSGs in BF cells depends on TbRAP1. We now show that TbRAP1 silences both BES-linked and mVSGs at both BF and PF stages. The strength of TbRAP1-mediated BES-linked VSG silencing is stronger in the PF cells than that in BF cells. In addition, Formaldehyde-Assisted Isolation of Regulatory Elements analysis and MNase digestion demonstrated that depletion of TbRAP1 in PF cells led to a chromatin structure change, which is significantly stronger at the subtelomeric VSG loci than at chromosome internal loci. On the contrary, no significant chromatin structure changes were detected on depletion of TbRAP1 in BF cells. Our observations indicate that TbRAP1 helps to determine the chromatin structure at the insect stage, which likely contributes to its strong silencing effect on VSGs.


Asunto(s)
Cromatina/química , Silenciador del Gen , Proteínas Protozoarias/fisiología , Trypanosoma brucei brucei/genética , Glicoproteínas Variantes de Superficie de Trypanosoma/genética , ARN Mensajero/metabolismo , Telómero , Trypanosoma brucei brucei/crecimiento & desarrollo , Trypanosoma brucei brucei/metabolismo , Glicoproteínas Variantes de Superficie de Trypanosoma/metabolismo
16.
Mol Microbiol ; 87(1): 196-210, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23216794

RESUMEN

Binding of the Origin Recognition Complex (ORC) to replication origins is essential for initiation of DNA replication, but ORC has non-essential functions outside of DNA replication, including in heterochromatic gene silencing and telomere maintenance. Trypanosoma brucei, a protozoan parasite that causes human African trypanosomiasis, uses antigenic variation as a major virulence mechanism to evade the host's immune attack by expressing its major surface antigen, the Variant Surface Glycoprotein (VSG), in a monoallelic manner. An Orc1/Cdc6 homologue has been identified in T. brucei, but its role in DNA replication has not been directly confirmed and its potential involvement in VSG repression or switching has not been thoroughly investigated. In this study, we show that TbOrc1 is essential for nuclear DNA replication in mammalian-infectious bloodstream and tsetse procyclic forms (BF and PF). Depletion of TbOrc1 resulted in derepression of telomere-linked silent VSGs in both BF and PF, and increased VSG switching particularly through the in situ transcriptional switching mechanism. TbOrc1 associates with telomere repeats but appears to do so independently of two known T. brucei telomere proteins, TbRAP1 and TbTRF. We conclude that TbOrc1 has conserved functions in DNA replication and is also required to control telomere-linked VSG expression and VSG switching.


Asunto(s)
Silenciador del Gen , Complejo de Reconocimiento del Origen/genética , Trypanosoma brucei brucei/genética , Glicoproteínas Variantes de Superficie de Trypanosoma/genética , Variación Antigénica , Replicación del ADN , ADN Protozoario/biosíntesis , ADN Protozoario/genética , Genes Protozoarios , Glicoproteínas de Membrana/genética , Complejo de Reconocimiento del Origen/metabolismo , Regiones Promotoras Genéticas , Trypanosoma brucei brucei/metabolismo
17.
Biomolecules ; 14(1)2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38254667

RESUMEN

Although located at the chromosome end, telomeres are an essential chromosome component that helps maintain genome integrity and chromosome stability from protozoa to mammals. The role of telomere proteins in chromosome end protection is conserved, where they suppress various DNA damage response machineries and block nucleolytic degradation of the natural chromosome ends, although the detailed underlying mechanisms are not identical. In addition, the specialized telomere structure exerts a repressive epigenetic effect on expression of genes located at subtelomeres in a number of eukaryotic organisms. This so-called telomeric silencing also affects virulence of a number of microbial pathogens that undergo antigenic variation/phenotypic switching. Telomere proteins, particularly the RAP1 homologs, have been shown to be a key player for telomeric silencing. RAP1 homologs also suppress the expression of Telomere Repeat-containing RNA (TERRA), which is linked to their roles in telomere stability maintenance. The functions of RAP1s in suppressing telomere recombination are largely conserved from kinetoplastids to mammals. However, the underlying mechanisms of RAP1-mediated telomeric silencing have many species-specific features. In this review, I will focus on Trypanosoma brucei RAP1's functions in suppressing telomeric/subtelomeric DNA recombination and in the regulation of monoallelic expression of subtelomere-located major surface antigen genes. Common and unique mechanisms will be compared among RAP1 homologs, and their implications will be discussed.


Asunto(s)
ARN Largo no Codificante , Telómero , Animales , Telómero/genética , Epigenómica , Eucariontes , Mamíferos
18.
Chem Asian J ; 19(9): e202301130, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38445562

RESUMEN

With the demand of develop outstanding-performance energetic materials, 1-(dinitromethyl)-4,4',5,5'-tetranitro-1H,1'H-2,2'-biimidazole (DNM-TNBI) emerged as a great contender (D: 9102 m ⋅ s-1; P: 37.6 GPa). However, the relatively poor thermal stability (Td: 142 °C) limits its practical application. In this study, DNM-TNBI as a host molecule to synthesize two new energetic open-framework materials by effectively coordinated with different cations. Their supramolecular structures were investigated and indicated that [DNM-TNBI2 -][2NH4 +] and [DNM-TNBI2 -][2K+] can be classified as a new energetic hydrogen-bonded ammonium framework (EHAF) and an energetic metal organic framework (EMOF). Meanwhile, their thermal stabilities are higher than that of DNM-TNBI and have satisfactory detonation performance ([DNM-TNBI2 -][2NH4 +], D: 8050 m ⋅ s-1, P: 26.4 GPa; [DNM-TNBI2 -][2K+], D: 8301 m ⋅ s-1, P: 30.8 GPa).

19.
Animals (Basel) ; 14(7)2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38612237

RESUMEN

The aim of this study was to investigate if the supplementation of folic acid and taurine can relieve the adverse effects of different levels of heat stress (HS) on growth performance, physiological indices, antioxidative capacity, immunity, rumen fermentation and microbiota. A total of 24 Dorper × Hu crossbred lambs (27.51 ± 0.96 kg) were divided into four groups: control group (C, 25 °C), moderate HS group (MHS, 35 °C), severe HS group (SHS, 40 °C), and the treatment group, under severe HS (RHS, 40 °C, 4 and 40 mg/kg BW/d coated folic acid and taurine, respectively). Results showed that, compared with Group C, HS significantly decreased the ADG of lambs (p < 0.05), and the ADG in the RHS group was markedly higher than in the MHS and SHS group (p < 0.05). HS had significant detrimental effects on physiological indices, antioxidative indices and immune status on the 4th day (p < 0.05). The physiological indices, such as RR and ST, increased significantly (p < 0.05) with the HS level and were significantly decreased in the RHS group, compared to the SHS group (p < 0.05). HS induced the significant increase of MDA, TNF-α, and IL-ß, and the decrease of T-AOC, SOD, GPx, IL-10, IL-13, IgA, IgG, and IgM (p < 0.05). However, there was a significant improvement in these indices after the supplementation of folic acid and taurine under HS. Moreover, there were a significant increase in Quinella and Succinivibrio, and an evident decrease of the genera Rikenellaceae_RC9_gut_group and Asteroleplasma under HS (p < 0.05). The LEfSe analysis showed that the genera Butyrivibrio, Eubacterium_ventriosum_group, and f_Bifidobacteriaceae were enriched in the MHS, SHS and RHS groups, respectively. Correlated analysis indicated that the genus Rikenellaceae_RC9_gut_group was positively associated with MDA, while it was negatively involved in IL-10, IgA, IgM, and SOD (p < 0.05); The genus Anaeroplasma was positively associated with the propionate and valerate, while the genus Succinivibrio was negatively involved in TNF-α (p < 0.05). In conclusion, folic acid and taurine may alleviate the adverse effects of HS on antioxidant capacity, immunomodulation, and rumen fermentation of lambs by inducing changes in the microbiome that improve animal growth performance.

20.
Int J Nurs Stud ; 153: 104728, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38461798

RESUMEN

BACKGROUND: Colorectal cancer is the leading cause of cancer-related death worldwide. Colonoscopy is widely used as a screening test for detecting colorectal cancer in many countries. However, there is little evidence regarding the uptake and diagnostic yields of colonoscopy in population-based screening programs in countries with limited medical resources. OBJECTIVE: We reported the uptake of colonoscopy and the detection of colorectal lesions and explored related factors based on a colorectal cancer screening program in China. DESIGN: Individuals aged 45-74 years who were asymptomatic for colorectal cancer and had no history of colorectal cancer were recruited. An established risk score system was used to identify individuals at high risk for colorectal cancer, and they were subsequently recommended for colonoscopy. SETTING: A population-based, prospective cohort study was implemented in 169 communities, 14 districts of Chongqing, Southwest China. PARTICIPANTS: A total of 288,150 eligible participants were recruited from November 2013 to June 2021, and 41,315 participants were identified to be at high risk of colorectal cancer. METHODS: Generalized linear mixed model was used to explore the individual and community structural characteristics associated with uptake of colonoscopy. Additionally, the detection rate of colorectal lesions under colonoscopy screening was also reported, and their associated factors were explored. RESULTS: 7859 subjects underwent colonoscopy, with an uptake rate of 19.02 % (95 % CI 18.64 %-19.40 %). Lower uptake rates were associated with older age, lower education, more physical activity, and structural characteristics, including residing in developing areas (OR 0.73, 95 % CI 0.69-0.78), residing more than 5 km from screening hospital (5-10 km: OR 0.85, 95 % CI 0.79-0.91; >10 km: OR 0.85, 95 % CI 0.80-0.91), and not being exposed to social media publicity (OR 0.63, 95 % CI 0.53-0.75). Overall, 8 colorectal cancers (0.10 %), 423 advanced adenomas (5.38 %), 820 nonadvanced adenomas (10.43 %), and 684 hyperplastic polyps (8.70 %) were detected, with an adenoma detection rate of 15.92 %. Several factors, including older age, male, current smoking and a family history of colorectal cancer, were positively related to colorectal neoplasms. CONCLUSIONS: The uptake of colonoscopy for colorectal cancer screening was not optimal among a socioeconomically diverse high-risk population. The screening strategy should attempt to ensure equitable access to screening according to regional characteristics, and enhance the uptake of colonoscopy by recommended multifaceted interventions, which focus on individuals with poor compliance, select a closer screening hospital, and strengthen social media publicity at the structural level.


Asunto(s)
Colonoscopía , Neoplasias Colorrectales , Detección Precoz del Cáncer , Humanos , China/epidemiología , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/epidemiología , Persona de Mediana Edad , Colonoscopía/estadística & datos numéricos , Anciano , Estudios Prospectivos , Masculino , Femenino , Detección Precoz del Cáncer/estadística & datos numéricos , Tamizaje Masivo/estadística & datos numéricos , Tamizaje Masivo/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA