Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Acta Pharmacol Sin ; 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698214

RESUMEN

The retinoic acid receptor-related orphan receptor γ (RORγ) is regarded as an attractive therapeutic target for the treatment of prostate cancer. Herein, we report the identification, optimization, and evaluation of 1,2,3,4-tetrahydroquinoline derivatives as novel RORγ inverse agonists, starting from high throughput screening using a thermal stability shift assay (TSA). The representative compounds 13e (designated as XY039) and 14a (designated as XY077) effectively inhibited the RORγ transcriptional activity and exhibited excellent selectivity against other nuclear receptor subtypes. The structural basis for their inhibitory potency was elucidated through the crystallographic study of RORγ LBD complex with 13e. Both 13e and 14a demonstrated reasonable antiproliferative activity, potently inhibited colony formation and the expression of AR, AR regulated genes, and other oncogene in AR positive prostate cancer cell lines. Moreover, 13e and 14a effectively suppressed tumor growth in a 22Rv1 xenograft tumor model in mice. This work provides new and valuable lead compounds for further development of drugs against prostate cancer.

2.
Opt Express ; 30(4): 4886-4894, 2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35209461

RESUMEN

Linear polarization rotators have been widely used in optical systems. Commonly used polarization rotators are still beset by strong dispersion and thus restricted spectral bandwidth of operation. This leads to the development of achromatic or broadband alternatives, but most of them incorporate multiple waveplates for retardation compensation, which comes at the cost of increased complexity and reduced flexibility in operation and system design. Here, we demonstrate a single-element achromatic polarization rotator based on a thin film of dual-frequency chiral liquid crystal. The angle of polarization rotation is electrically tunable from 0° to 180° with low dispersion (±3°) in the entire visible spectrum, and a high degree of linear polarization (>95%) at the output.

3.
Opt Express ; 30(4): 5255-5264, 2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35209492

RESUMEN

In this study, a twisted nematic mode polymer-stabilized liquid crystal (TN mode PSLC) integrated with a crossed polarizer was used to create a transparent waveguide display. When a voltage was applied, the PSLC scattered the waveguide light with a high polarization selectivity such that no substantial loss of the outgoing light intensity was observed after integrating the polarizer. However, with a crossed polarizer, in the ON state, the background light was not only scattered but also absorbed by the analyzer. Using this device configuration, with a 12 µm cell gap and 7% monomer concentration, we successfully realized a normally transparent waveguide display. The contrast ratio of the waveguide outgoing light was 26 and that of the undesired background reached 90. This device can display images due to waveguide edge-lit light scattering and simultaneously block the background information to improve the image quality.

4.
Nat Mater ; 19(1): 94-101, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31659291

RESUMEN

Natural self-assembled three-dimensional photonic crystals such as blue-phase liquid crystals typically assume cubic lattice structures. Nonetheless, blue-phase liquid crystals with distinct crystal symmetries and thus band structures will be advantageous for optical applications. Here we use repetitive electrical pulses to reconfigure blue-phase liquid crystals into stable orthorhombic and tetragonal lattices. This approach, termed repetitively applied field, allows the system to relax between each pulse, gradually transforming the initial cubic lattice into various intermediate metastable states until a stable non-cubic crystal is achieved. We show that this technique is suitable for engineering non-cubic lattices with tailored photonic bandgaps, associated dispersion and band structure across the entire visible spectrum in blue-phase liquid crystals with distinct composition and initial crystal orientation. These field-free blue-phase liquid crystals exhibit large electro-optic responses and can be polymer-stabilized to have a wide operating temperature range and submillisecond response speed, which are promising properties for information display, electro-optics, nonlinear optics, microlasers and biosensing applications.

5.
Opt Express ; 27(8): 10580-10585, 2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-31052914

RESUMEN

We propose an optically rewritable dynamic phase grating based on polymer-templated azo liquid crystal in a blue-phase structure. The grating consists of alternating blue-phase and light-induced isotropic-phase regions, patterned by ultraviolet illumination. In the field-off state, the grating is hidden (showing no diffraction), due to index matching between the two phases. An index change is induced in the blue-phase regions when an external voltage is applied, while the refractive index of the isotropic-phase regions remains the same. The resulting periodic index modulation causes the grating to diffract light. The diffraction efficiency is independent of incident polarization, and the electro-optic response is in the sub-millisecond scale. Enabled by the reversible photoisomerism of the azobenzene, we demonstrate optical-patterning, -erasure, and re-patterning of a single liquid-crystal cell into different grating geometries.

6.
Opt Express ; 27(8): 10806-10812, 2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-31052933

RESUMEN

Two photoalignment-based methods to achieve orientational control of optical diffractions by cholesteric liquid crystal (CLC) fingerprint gratings are proposed and demonstrated. A trace of methyl red in the CLC host can effectively induce surface alignment upon linearly polarized green exposure and enable optically rewritable alignment. An effective rotation of the photo-aligned CLC grating is attained by changing the surface alignment axis. Using axially symmetric photoalignment, electrically tunable radial and concentric gratings are also realized. 1D grating diffraction is produced by operating off-axis and can be rotated by mechanically moving the axially symmetric grating. Such optical gratings have great potential for practical use in vibration detection, multi-directional optical modulations, and beam steering.

7.
Opt Express ; 26(13): 17009-17014, 2018 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-30119517

RESUMEN

This work demonstrates a variable optical attenuator (VOA) using dynamic scattering mode (DSM) in ion-doped liquid crystals with negative dielectric anisotropy. The mechanism of attenuation comes from optical scattering, which is generated by the electrically induced instability of undulation of LC textures. Electric fields are applied to switch the initial transparent state of the designed VOA to scattering states, varying the transmittance. The electric field also changes the size of the scattering domain from the LC texture and causes the designed device to exhibit an ultra-broadband selective operation in a visible to mid-IR spectral range. Furthermore, the VOA can selectively block one visible or mid-IR wavelength of light while letting other light pass. Such a VOA has many superior optical switching properties, such as high on/off contrast, insensitivity to polarization, and spectral selectivity; therefore, it has the potential to be used in practical optical systems.

8.
Opt Express ; 26(2): 781-789, 2018 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-29401958

RESUMEN

We report the design, fabrication, and characterization of an optically switchable polarizing beam splitter with a prism/azobenzene liquid crystal/prism hybrid structure. The beam splitter can operate in the polarization-splitting mode and the non-splitting mode. The switching between the modes is realized by the photoisomerization-induced phase transitions in the azobenzene liquid crystal, featuring all-optical control, bistability, and fast response. Such an active polarization-handling element is highly desirable as it not only simplifies and compacts sophisticated optical systems but also increases the degree of freedom in optical circuit design.

9.
Opt Express ; 25(14): 16123-16129, 2017 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-28789120

RESUMEN

This work proposes a mid-infrared polarization rotator that incorporates a twisted nematic liquid crystal (TNLC) cell with a photo-controllable alignment layer. The TNLC device with a sufficient phase retardation can act as an achromic polarization rotation device over a wide wavelengths range and thus can rotate the polarization of a mid-IR laser beam. The photo-alignment technique enables TNLCs with arbitrary twisting angles to be generated by the use of visible polarized addressing light to control the directors of the photo-alignment layer. Therefore, arbitrary rotation angles of the polarization axis of a linearly polarized mid-IR laser beam can be realized. Moreover, the rewritable property and reliability of this polarization rotator are experimentally verified. The flexibility of polarization control for broadband mid-IR opens up a large range of potential mid-IR applications.

10.
Opt Express ; 24(20): 22892-22898, 2016 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-27828356

RESUMEN

This work proposes a tunable reflective guided-mode resonant (GMR) filter that incorporates a 90° twisted nematic liquid crystal (TNLC). The GMR grating acts as an optical resonator that reflects strongly at the resonance wavelength and as an alignment layer for LC. The 90° TNLC functions as an achromic polarization rotator that alters the polarization of incident light. The resonance wavelength and reflectance of such a filter can be controlled by setting the angle of incidence and driving the 90° TNLC, respectively. The designed filter exhibits a very large spectral shift in resonance wavelength from 710 to 430 nm, which covers the entire visible spectrum. The transmittance can be tuned to within 10 V at various resonance wavelengths. The hybrid GMR - LC filter is compact, has a simple design, and is easy to fabricated. It can therefore be used in practical applications.

11.
Opt Express ; 22(10): 12133-8, 2014 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-24921333

RESUMEN

A light-activated optical phase switch was developed, exploiting the conversion between left-handed and right-handed twisted nematic liquid crystals. Theoretical and experimental analyses revealed that the handedness inversion of the twisted nematic film altered the optical phase of the output waves by π. Herein, the competition between the helical twisting powers of the two reverse-handed chiral dopants determines the handedness of the twisted nematic film. The photo-responsibility and the bistability are attributed to the azobenzene chromophores in one of the chiral additives.

12.
Appl Opt ; 53(22): E33-7, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-25090351

RESUMEN

An electrically activated bistable light shutter that exploits polymer-stabilized cholesteric liquid crystal film was developed. Under double-sided three-terminal electrode driving, the device can be bistable and switched between focal conic and homeotropic textures with a uniform in-plane and vertical electrical field. The transparent state with a transmittance of 80% and the opaque/scattering state with a transmittance of 13% can be realized without any optical compensation film, and each can be simply switched to the other by applying a pulse voltage. Also, gray-scale selection can be performed by varying the applied voltage. The designed energy-saving bistable light shutter can be utilized to preserve privacy and control illumination and the flow of energy.

13.
Materials (Basel) ; 13(18)2020 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-32957577

RESUMEN

Dimming and scattering control are two of the major features of smart windows, which provide adjustable sunlight intensity and protect the privacy of people in a building. A hybrid photo- and electrical-controllable smart window that exploits salt and photochromic dichroic dye-doped cholesteric liquid crystal was developed. The photochromic dichroic dye causes a change in transmittance from high to low upon exposure to sunlight. When the light source is removed, the smart window returns from colored to colorless. The salt-doped cholesteric liquid crystal can be bi-stably switched from transparent into the scattering state by a low-frequency voltage pulse and switched back to its transparent state by a high-frequency voltage pulse. In its operating mode, an LC smart window can be passively dimmed by sunlight and the haze can be actively controlled by applying an electrical field to it; it therefore exhibits four optical states-transparent, scattering, dark clear, and dark opaque. Each state is stable in the absence of an applied voltage. This smart window can automatically dim when the sunlight gets stronger, and according to user needs, actively adjust the haze to achieve privacy protection.

14.
Hu Li Za Zhi ; 56(4): 53-61, 2009 Aug.
Artículo en Zh | MEDLINE | ID: mdl-19634099

RESUMEN

This project was designed to improve the low validity rate for nurses responsible to operate single door autoclave sterilizers in the operating room. By investigating the current status, we found that the nursing staff validity rate of cognition on the autoclave sterilizer was 85%, and the practice operating check validity rate was only 80%. Such was due to a lack of in-service education. Problems with operation included: 1. Unsafe behaviors - not following standard procedure, lacking relevant operating knowledge and absence of a check form; 2. Unsafe environment - the conveying steam piping was typically not covered and lacked operation marks. Recommended improvement measures included: 1. holding in-service education; 2. generating an operation procedure flow chart; 3. implementing obstacle eliminating procedures; 4. covering piping to prevent fire and burns; 5. performing regular checks to ensure all procedures are followed. Following intervention, nursing staff cognition rose from 85% to 100%, while the operation validity rate rose from 80% to 100%. These changes ensure a safer operating room environment, and helps facilities move toward a zero accident rate in the healthcare environment.


Asunto(s)
Personal de Enfermería en Hospital , Enfermería de Quirófano , Esterilización/instrumentación , Humanos , Capacitación en Servicio
15.
Nat Commun ; 8(1): 727, 2017 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-28959009

RESUMEN

Although there have been intense efforts to fabricate large three-dimensional photonic crystals in order to realize their full potential, the technologies developed so far are still beset with various material processing and cost issues. Conventional top-down fabrications are costly and time-consuming, whereas natural self-assembly and bottom-up fabrications often result in high defect density and limited dimensions. Here we report the fabrication of extraordinarily large monocrystalline photonic crystals by controlling the self-assembly processes which occur in unique phases of liquid crystals that exhibit three-dimensional photonic-crystalline properties called liquid-crystal blue phases. In particular, we have developed a gradient-temperature technique that enables three-dimensional photonic crystals to grow to lateral dimensions of ~1 cm (~30,000 of unit cells) and thickness of ~100 µm (~ 300 unit cells). These giant single crystals exhibit extraordinarily sharp photonic bandgaps with high reflectivity, long-range periodicity in all dimensions and well-defined lattice orientation.Conventional fabrication approaches for large-size three-dimensional photonic crystals are problematic. By properly controlling the self-assembly processes, the authors report the fabrication of monocrystalline blue phase liquid crystals that exhibit three-dimensional photonic-crystalline properties.

16.
Sci Rep ; 6: 30873, 2016 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-27491391

RESUMEN

In this paper, we show that anisotropic photosensitive nematic liquid crystals (PNLC) made by incorporating anisotropic absorbing dyes are promising candidates for constructing all-optical elements by virtue of the extraordinarily large optical nonlinearity of the nematic host. In particular, we have demonstrated several room-temperature 'prototype' PNLC-based all-optical devices such as optical diode, optical transistor and all primary logic gate operations (OR, AND, NOT) based on such optical transistor. Owing to the anisotropic absorption property and the optical activity of the twist alignment nematic cell, spatially non-reciprocal transmission response can be obtained within a sizeable optical isolation region of ~210 mW. Exploiting the same mechanisms, a tri-terminal configuration as an all-optical analogue of a bipolar junction transistor is fabricated. Its ability to be switched by an optical field enables us to realize an all-optical transistor and demonstrate cascadability, signal fan-out, logic restoration, and various logical gate operations such as OR, AND and NOT. Due to the possibility of synthesizing anisotropic dyes and wide ranging choice of liquid crystals nonlinear optical mechanisms, these all-optical operations can be optimized to have much lower thresholds and faster response speeds. The demonstrated capabilities of these devices have shown great potential in all-optical control system and photonic integrated circuits.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA