Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nanotechnology ; 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38964289

RESUMEN

Liver cancer, which is well-known to us as one of human most prevalent malignancies across the globe, poses a significant risk to live condition and life safety of individuals in every region of the planet. It has been shown that immune checkpoint treatment may enhance survival benefits and make a significant contribution to patient prognosis, which makes it a promising and popular therapeutic option for treating liver cancer at the current time. However, there are only a very few numbers of patients who can benefit from the treatment and there also exist adverse events such as toxic effects and so on, which is still required further research and discussion. Fortunately, the clustered regularly interspaced short palindromic repeat/CRISPR-associated nuclease 9 (CRISPR/Cas9) provides a potential strategy for immunotherapy and immune checkpoint therapy of liver cancer. In this review, we focus on elucidating the fundamentals of the recently developed CRISPR/Cas9 technology as well as the present-day landscape of immune checkpoint treatment which pertains to liver cancer. What's more, we aim to explore the molecular mechanism of immune checkpoint treatment in liver cancer based on CRISPR/Cas9 technology. At last, its encouraging and powerful potential in the future application of the clinic is discussed, along with the issues that already exist and the difficulties that must be overcome. To sum it all up, our ultimate goal is to create a fresh knowledge that we can utilize this new CRISPR/Cas9 technology for the current popular immune checkpoint therapy to overcome the treatment issues of liver cancer. .

2.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33649225

RESUMEN

We recently reported that HIV-1 cores that retained >94% of their capsid (CA) protein entered the nucleus and disassembled (uncoated) near their integration site <1.5 h before integration. However, whether the nuclear capsids lost their integrity by rupturing or a small loss of CA before capsid disassembly was unclear. Here, we utilized a previously reported vector in which green fluorescent protein is inserted in HIV-1 Gag (iGFP); proteolytic processing efficiently releases GFP, some of which remains trapped inside capsids and serves as a fluid phase content marker that is released when the capsids lose their integrity. We found that nuclear capsids retained their integrity until shortly before integration and lost their GFP content marker ∼1 to 3 min before loss of capsid-associated mRuby-tagged cleavage and polyadenylation specificity factor 6 (mRuby-CPSF6). In contrast, loss of GFP fused to CA and mRuby-CPSF6 occurred simultaneously, indicating that viral cores retain their integrity until just minutes before uncoating. Our results indicate that HIV-1 evolved to retain its capsid integrity and maintain a separation between macromolecules in the viral core and the nuclear environment until uncoating occurs just before integration. These observations imply that intact HIV-1 capsids are imported through nuclear pores; that reverse transcription occurs in an intact capsid; and that interactions between the preintegration complex and LEDGF/p75, and possibly other host factors that facilitate integration, must occur during the short time period between loss of capsid integrity and integration.


Asunto(s)
VIH-1/metabolismo , Nucleocápside/metabolismo , Internalización del Virus , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo , Línea Celular , VIH-1/genética , Humanos , Nucleocápside/genética , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/genética
3.
J Environ Manage ; 351: 119773, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38113789

RESUMEN

In this work, industrial Kambara reactor desulphurization slag (KR slag) was indirectly carbonated. The effects of leaching time, leaching temperature, leaching agent types, and leaching agent concentration on the leaching ratio of calcium from KR slag were investigated. Subsequently, precipitated calcium carbonate (PCC) was synthesized by bubbling CO2 gas (flow rate of 15 mL/min) into 400 mL leaching solutions at 40 °C for 120 min with magnetic stirring at 300 rpm. It is found that calcium in KR slag can be selectively extracted using a diluted solution of ammonium acetate (CH3COONH4) or ammonium chloride (NH4Cl), while ammonium sulfate ((NH4)2SO4) solution is not suitable as leaching agent due to the formation of slightly soluble calcium sulfate (CaSO4). The leaching ratio of calcium is improved by extending the leaching time or increasing the leaching solvent concentration. However, leaching temperature has little effect on calcium extraction. After carbonating the NH4Cl- and CH3COONH4-leachate for 120 min, calcite and vaterite type PCC with a purity of 99% is synthesized. Each gram of KR slag can produce 0.794 g and 0.803 g PCC using NH4Cl and CH3COONH4 leaching agents respectively. Calculations show that 349.6 kg CO2 is captured by per ton of KR slag. The CO2 capture capacity of KR slag is significantly higher compared with previously studied materials.


Asunto(s)
Carbonato de Calcio , Dióxido de Carbono , Residuos Industriales/análisis , Calcio , Carbonatos , Acero
4.
BMC Musculoskelet Disord ; 24(1): 603, 2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37488540

RESUMEN

BACKGROUND: Tension band wiring (TBW) is a common surgical intervention for olecranon fractures. However, high rate of complications such as loss of reduction, skin irritation, and migration of the K-wires were reported up to 80%. Ding's screw tension band wiring (DSTBW) is a new TBW technique that has shown positive results in the treatment of other fracture types. The objective of this study was to evaluate the stability of DSTBW in the treatment of olecranon fractures by finite element analysis. METHOD: We used Ding's screw tension band fixation (DSTBW) and K-wire tension band fixation (TBW) to establish a finite element model to simulate and fix olecranon fractures. The stress distribution, opening angle, twisting angle, and pullout strength of K-wires or screws were analyzed and compared. RESULTS: The maximum von Mises stress was observed on the internal fixation for 90° elbow motion in both groups. The von Mises value of the screw in DSTBW was 241.2 MPa, and the von Mises value of k-wire in TBW was 405.0 MPa. Opening angle: TBW was 0.730° and DSTBW was 0.741° at 45° flexion; TBW was 0.679° and DSTBW was 0.693° at 90° flexion. Twisting angle: TBW was 0.146° and DSTBW was 0.180° at 45° flexion; TBW was 0.111° and DSTBW was 0.134° at 90° flexion. The pullout strength of DSTBW was significantly higher than that of TBW. Maximum pullout strength of Ding's screw was 2179.1 N, maximum pullout strength of K-wire was 263.6 N. CONCLUSION: DSTBW technology provides stable fixation for olecranon fractures, reducing the risk of internal fixation migration and failure.


Asunto(s)
Fracturas Óseas , Fractura de Olécranon , Fracturas del Cúbito , Humanos , Análisis de Elementos Finitos , Tornillos Óseos
5.
Proc Natl Acad Sci U S A ; 117(10): 5486-5493, 2020 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-32094182

RESUMEN

HIV-1 capsid core disassembly (uncoating) must occur before integration of viral genomic DNA into the host chromosomes, yet remarkably, the timing and cellular location of uncoating is unknown. Previous studies have proposed that intact viral cores are too large to fit through nuclear pores and uncoating occurs in the cytoplasm in coordination with reverse transcription or at the nuclear envelope during nuclear import. The capsid protein (CA) content of the infectious viral cores is not well defined because methods for directly labeling and quantifying the CA in viral cores have been unavailable. In addition, it has been difficult to identify the infectious virions because only one of ∼50 virions in infected cells leads to productive infection. Here, we developed methods to analyze HIV-1 uncoating by direct labeling of CA with GFP and to identify infectious virions by tracking viral cores in living infected cells through viral DNA integration and proviral DNA transcription. Astonishingly, our results show that intact (or nearly intact) viral cores enter the nucleus through a mechanism involving interactions with host protein cleavage and polyadenylation specificity factor 6 (CPSF6), complete reverse transcription in the nucleus before uncoating, and uncoat <1.5 h before integration near (<1.5 µm) their genomic integration sites. These results fundamentally change our current understanding of HIV-1 postentry replication events including mechanisms of nuclear import, uncoating, reverse transcription, integration, and evasion of innate immunity.


Asunto(s)
Proteínas de la Cápside/análisis , Núcleo Celular/virología , Infecciones por VIH/virología , VIH-1/fisiología , Integración Viral , Desencapsidación Viral , Transporte Activo de Núcleo Celular , Proteínas de la Cápside/metabolismo , Proteínas Fluorescentes Verdes/análisis , Humanos , Poro Nuclear/metabolismo , Proteolisis , Replicación Viral , Factores de Escisión y Poliadenilación de ARNm/metabolismo
6.
BMC Genomics ; 23(1): 96, 2022 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-35114949

RESUMEN

BACKGROUND: Mitogen-activated protein kinases (MAPKs) plays essential roles in the development, hormone regulation and abiotic stress response of plants. Nevertheless, a comprehensive study on MAPK family members has thus far not been performed in Tartary buckwheat. RESULTS: Here, we identified 16 FtMAPKs in the Fagopyrum tataricum genome. Phylogenetic analysis showed that the FtMAPK family members could be classified into Groups A, B, C and D, in which A, B and C members contain a Thr-Glu-Tyr (TEY) signature motif and Group D members contain a Thr-Asp-Tyr (TDY) signature motif. Promoter cis-acting elements showed that most ProFtMAPks contain light response elements, hormone response elements and abiotic stress response elements, and several ProFtMAPks have MYB-binding sites, which may be involved in the regulation of flavonoid biosynthesis-related enzyme gene expression. Synteny analysis indicated that FtMAPKs have a variety of biological functions. Protein interaction prediction suggested that MAPKs can interact with proteins involved in development and stress resistance. Correlation analysis further confirmed that most of the FtMAPK genes and transcription factors involved in the stress response have the same expression pattern. The transient transformation of FtMAPK1 significantly increased the antioxidant enzymes activity in Tartary buckwheat leaves. In addition, we also found that FtMAPK1 can respond to salt stress by up-regulating the transcription abundance of downstream genes. CONCLUSIONS: A total of 16 MAPKs were identified in Tartary buckwheat, and the members of the MAPK family containing the TDY motif were found to have expanded. The same subfamily members have relatively conserved gene structures and similar protein motifs. Tissue-specific expression indicated that the expression of all FtMAPK genes varied widely in the roots, stems, leaves and flowers. Most FtMAPKs can regulate the expression of other transcription factors and participate in the abiotic stress response. Our findings comprehensively revealed the FtMAPK gene family and laid a theoretical foundation for the functional characterization of FtMAPKs.


Asunto(s)
Fagopyrum , Fagopyrum/genética , Fagopyrum/metabolismo , Regulación de la Expresión Génica de las Plantas , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
7.
Physiol Plant ; 174(5): e13781, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36121384

RESUMEN

Drought and high salinity affect plant growth, development, yield, and quality. MYB transcription factors (TFs) in plants play an indispensable regulatory role in resisting adverse stress. In this study, screening and functional validation of the TF FtMYB30, which can respond extensively to abiotic stress and abscisic acid (ABA), was achieved in Tartary buckwheat. FtMYB30, one of the SG22 (sub-group 22) family of R2R3-MYB TFs, localized in the nucleus and had transcriptional activation activity. Under drought and salt stress, FtMYB30 overexpression reduced the oxidative damage in transgenic plants by increasing the activity of proline content and antioxidant enzymes and significantly upregulate the expression of RD29A, RD29B, and Cu/ZnSOD, thereby enhancing drought/salt tolerance in transgenic Arabidopsis. Additionally, overexpression of FtMYB30 can reduce the sensitivity of transgenic plants to ABA. Moreover, AtRCAR1/2/3 and AtMPK6 directly interact with the FtMYB30 TF, possibly through the crosstalk between MAPKs (mitogen-activated protein kinases) and the ABA signaling pathway. Taken together, these results suggest that FtMYB30, as a positive regulator, mediates plant tolerance to salt and drought through an ABA-dependent signaling pathway.


Asunto(s)
Arabidopsis , Fagopyrum , Ácido Abscísico/farmacología , Ácido Abscísico/metabolismo , Sequías , Tolerancia a la Sal/genética , Arabidopsis/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Fagopyrum/genética , Fagopyrum/metabolismo , Antioxidantes/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Estrés Fisiológico/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Prolina/metabolismo , Regulación de la Expresión Génica de las Plantas
8.
Int J Mol Sci ; 23(5)2022 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-35269917

RESUMEN

Anthocyanins and proanthocyanidins (PAs) are vital secondary metabolites in Tartary buckwheat because of their antioxidant capacities and radical scavenging functions. It has been demonstrated that R2R3-MYB transcription factors (TFs) are essential regulators of anthocyanin and PA biosynthesis in many plants. However, their regulatory mechanisms in Tartary buckwheat remain to be clarified. Here, we confirmed the role of FtMYB3 in anthocyanin and PA biosynthesis. FtMYB3, which belongs to the subgroup 4 R2R3 family was predominantly expressed in roots. The transcriptional expression of FtMYB3 increased significantly under hormone treatment with SA and MeJA and abiotic stresses including drought, salt, and cold at the seedling stage. Functional analyses showed that FtMYB3 negatively regulated anthocyanin and PA biosynthesis, primarily via downregulating the expression of the DFR, ANS, BAN, and TT13 in transgenic Arabidopsis thaliana, which may depend on the interaction between FtMYB3 and FtbHLH/FtWD40. Altogether, this study reveals that FtMYB3 is a negative regulatory transcription factor for anthocyanin and PA biosynthesis in Tartary buckwheat.


Asunto(s)
Arabidopsis , Fagopyrum , Antocianinas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Fagopyrum/genética , Fagopyrum/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes myb , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Factores de Transcripción/metabolismo
9.
Int J Mol Sci ; 23(23)2022 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-36499172

RESUMEN

Abiotic stresses such as drought and salinity are major environmental factors limiting plant productivity. Autophagy-related genes are extensively involved in plant growth, development, and adverse stress responses, which have not yet been characterized in Tartary buckwheat (Fagopyrum tataricum, TB). In this study, we verified that drought stress could induce autophagy in TB roots. Next, 49 FtATGs in the whole genome of TB were identified. All FtATGs were randomly distributed in 8 known chromosomes, while 11 FtATGs were predictably segmental repeats. As the core component of autophagy, there were 8 FtATG8s with similar gene structures in TB, while FtATG8s showed high expression at the transcription level under drought and salt stresses. The cis-acting element analysis identified that all FtATG8 promoters contain light-responsive and MYB-binding elements. FtATG8s showed a cell-wide protein interaction network and strongly correlated with distinct stress-associated transcription factors. Furthermore, overexpression of FtATG8a and FtATG8f enhanced the antioxidant enzyme activities of TB under adverse stresses. Remarkably, FtATG8a and FtATG8f may be vital candidates functioning in stress resistance in TB. This study prominently aids in understanding the biological role of FtATG genes in TB.


Asunto(s)
Fagopyrum , Fagopyrum/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Filogenia , Genes de Plantas
10.
Int J Mol Sci ; 23(23)2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36498877

RESUMEN

Tartary buckwheat (Fagopyrum tataricum Gaertn.) is a coarse cereal with strongly abiotic resistance. The MYB family plays a regulatory role in plant growth, development, and responses to biotic and abiotic stresses. However, the characteristics and regulatory mechanisms of MYB transcription factors in Tartary buckwheat remain unclarified. Here, this study cloned the FtMYB22 gene from Tartary buckwheat, and investigated its involvement in responding to individual water deficit and salt stress in Arabidopsis. Sequence analysis highlighted that the N-termini of FtMYB22 contained two highly conserved SANT domains and one conserved domain from the SG20 subfamily. Nucleus-localized FtMYB22 did not have individual transcriptional activation activity. Water deficiency and salt stress induced the high expression of the GUS gene, which was driven by the promoter of FtMYB22. Yeast stress experiments showed that the overexpression of FtMYB22 significantly reduced the growth activity of transgenic yeast under water deficit or salt stress. Consistently, the overexpression of FtMYB22 reduced the salt and water deficit stress resistance of the transgenic plants. In addition, physiological parameters showed that transgenic plants had lower proline and antioxidant enzyme activity under stress conditions. Compared to the wild-type (WT), transgenic plants accumulated more malondialdehyde (MDA), H2O2, and O2−; they also showed higher ion permeability and water loss rates of detached leaves under stress treatments. Notably, FtMYB22 was involved in plant stress resistance through an ABA-dependent pathway. Under stress conditions, the expression of RD29A, RD29B, PP2CA, KIN1, COR15A, and other genes in response to plant stress in transgenic lines was significantly lower than that in the WT (p < 0.05). Furthermore, yeast two-hybrid assay showed that there was a significant interaction between FtMYB22 and the ABA receptor protein RCAR1/2, which functioned in the ABA signal pathway. Altogether, FtMYB22, as a negative regulator, inhibited a variety of physiological and biochemical reactions, affected gene expression and stomatal closure in transgenic plants through the ABA-dependent pathway, and reduced the tolerance of transgenic Arabidopsis to water deficiency and salt stress. Based on these fundamental verifications, further studies would shed light on the hormone signal response mechanism of FtMYB22.


Asunto(s)
Fagopyrum , Proteínas de Plantas , Factores de Transcripción , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Sequías , Regulación de la Expresión Génica de las Plantas , Peróxido de Hidrógeno/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae/metabolismo , Estrés Fisiológico/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Agua/metabolismo , Fagopyrum/genética
11.
J Mol Evol ; 89(4-5): 269-286, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33760965

RESUMEN

Key enzymes play a vital role in plant growth and development. However, the evolutionary relationships between genes encoding key enzymes in the metabolic pathway of Tartary buckwheat flavonoids are poorly understood. Based on the published Tartary buckwheat genome sequence and related Tartary buckwheat transcriptome data, 48 key enzyme-encoding genes involved in flavonoid metabolism were screened from the Tartary buckwheat genome in this study; the chromosome localization, gene structure and promoter elements of these enzyme-encoding gene were also investigated. Gene structure analysis revealed relatively conserved 5' exon sequences among the 48 genes, indicating that the structural diversity of key enzyme-encoding genes is low in Tartary buckwheat. Through promoter analysis, these key enzyme-encoding genes were found to contain a large number of light-response elements and hormone-response elements. In addition, some genes could bind MYB transcription factors, participating in the regulation of flavonoid biosynthesis. The transcription level of the 48 key enzyme-encoding gene varied greatly among tissues. In this study, we identified 48 key enzyme-encoding genes involved in flavonoid metabolic pathways, and elucidated the structure, evolution and tissue-specific expression patterns of these genes. These results lay a foundation for further understanding the functional characteristics and evolutionary relationships of key enzyme-encoding genes involved in the flavonoid metabolic pathway in Tartary buckwheat.


Asunto(s)
Fagopyrum , Fagopyrum/genética , Fagopyrum/metabolismo , Flavonoides , Regulación de la Expresión Génica de las Plantas , Redes y Vías Metabólicas/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
12.
J Nanobiotechnology ; 19(1): 421, 2021 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-34906155

RESUMEN

BACKGROUND: Cancer-associated fibroblasts (CAFs), as an important component of stroma, not only supply the "soils" to promote tumor invasion and metastasis, but also form a physical barrier to hinder the penetration of therapeutic agents. Based on this, the combinational strategy that action on both tumor cells and CAFs simultaneously would be a promising approach for improving the antitumor effect. RESULTS: In this study, the novel multifunctional liposomes (IRI-RGD/R9-sLip) were designed, which integrated the advantages including IRI and scFv co-loading, different targets, RGD mediated active targeting, R9 promoting cell efficient permeation and lysosomal escape. As expected, IRI-RGD/R9-sLip showed enhanced cytotoxicity in different cell models, effectively increased the accumulation in tumor sites, as well as exhibited deep permeation ability both in vitro and in vivo. Notably, IRI-RGD/R9-sLip not only exhibited superior in vivo anti-tumor effect in both CAFs-free and CAFs-abundant bearing mice models, but also presented excellent anti-metastasis efficiency in lung metastasis model. CONCLUSION: In a word, the novel combinational strategy by coaction on both "seeds" and "soils" of the tumor provides a new approach for cancer therapy, and the prepared liposomes could efficiently improve the antitumor effect with promising clinical application prospects.


Asunto(s)
Fibroblastos Asociados al Cáncer/efectos de los fármacos , Neoplasias Colorrectales/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Irinotecán , Liposomas , Animales , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Técnicas de Cocultivo , Neoplasias Colorrectales/patología , Femenino , Irinotecán/química , Irinotecán/farmacocinética , Irinotecán/farmacología , Liposomas/química , Liposomas/farmacocinética , Liposomas/farmacología , Ratones , Ratones Endogámicos BALB C , Células 3T3 NIH , Anticuerpos de Cadena Única/química , Anticuerpos de Cadena Única/farmacocinética
13.
Plant Mol Biol ; 104(3): 309-325, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32833148

RESUMEN

KEY MESSAGE: FtMYB18 plays a role in the repression of anthocyanins and proanthocyanidins accumulation by strongly down-regulating the CHS and DFR genes in Tartary buckwheat, and the C5 motif plays an important role in this process. Anthocyanins and proanthocyanidins (PAs) are important flavonoids in Tartary buckwheat (Fagopyrum tataricum Gaertn.), which provides various vibrant color and stronge abiotic stress resistance. Their synthesis is generally regulated by MYB transcription factors at transcription level. However, the negative regulations of MYB and their effects on flavonol metabolism are poorly understood. A SG4-like MYB subfamily TF, FtMYB18, containing C5 motif was identified from Tartary buckwheat. The expression of FtMYB18 was not only showed a negative correlation with anthocyanins and PAs content but also strongly respond to MeJA and ABA. As far as the transgenic lines with FtMYB18 overexpression, anthocyanins and PAs accumulations were decreased through down-regulating expression levels of NtCHS and NtDFR in tobacco, AtDFR and AtTT12 in Arabidopsis, FtCHS, FtDFR and FtANS in Tartary buckwheat hairy roots, respectively. However, FtMYB18 showed no effect on the FLS gene expression and the metabolites content in flavonol synthesis branch. The further molecular interaction analysis indicated FtMYB18 could mediate the inhibition of anthocyanins and PAs synthesis by forming MBW transcriptional complex with FtTT8 and FtTTG1, or MYB-JAZ complex with FtJAZ1/-3/-4/-7. Importantly, in FtMYB18 mutant lines with C5 motif deletion (FtMYB18-C), both of anthocyanins and PAs accumulations had recovered to the similar level as that in wild type, which was attributed to the weakened MBW complex activity or the deficient molecular interaction between FtMYB18ΔC5 with FtJAZ3/-4. The results showed that FtMYB18 could suppress anthocyanins and PAs synthesis at transcription level through the specific interaction of C5 motif with other proteins in Tartary buckwheat.


Asunto(s)
Antocianinas/biosíntesis , Fagopyrum/metabolismo , Proteínas de Plantas/metabolismo , Proantocianidinas/biosíntesis , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Arabidopsis , Fagopyrum/genética , Flavonoides/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Estrés Fisiológico , Nicotiana/genética , Factores de Transcripción/química
14.
Planta ; 252(5): 81, 2020 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-33037484

RESUMEN

MAIN CONCLUSION: Ferrous iron can promote the development of glandular trichomes and increase the content of blinin, which depends on CbHO-1 expression. Conyza blinii (C. blinii) is a unique Chinese herbal medicine that grows in Sichuan Province, China. Because the habitat of C. blinii is an iron ore mining area with abundant iron content, this species can be used as one of the best materials to study the mechanism of plant tolerance to iron. In this study, C. blinii was treated with ferrous-EDTA solutions at different concentrations, and it was found that the tolerance value of C. blinii to iron was 200 µM. Under this concentration, the plant height, root length, biomass, and iron content of C. blinii increased to the maximum values, and the effect was dependent on the upregulated expression of CbHO-1. At the same time, under ferrous iron, the photosynthetic capacity and capitate glandular trichome density of C. blinii also significantly increased, providing precursors and sites for the synthesis of blinin, thus significantly increasing the content of blinin. These processes were also dependent on the high expression of CbHO-1. Correlation analysis showed that there were strong positive correlations between iron content, capitate glandular trichome density, CbHO-1 gene expression, and blinin content. This study explored the effects of ferrous iron on the physiology and biochemistry of C. blinii, greatly improving our understanding of the mechanism of iron tolerance in C. blinii.


Asunto(s)
Conyza , Hierro , Tricomas , Regulación hacia Arriba , China , Conyza/anatomía & histología , Conyza/efectos de los fármacos , Conyza/genética , Conyza/metabolismo , Hierro/farmacología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Tricomas/efectos de los fármacos , Tricomas/genética , Tricomas/metabolismo , Regulación hacia Arriba/efectos de los fármacos
15.
Int J Mol Sci ; 21(3)2020 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-32046219

RESUMEN

bZIP transcription factors have been reported to be involved in many different biological processes in plants. The ABA (abscisic acid)-dependent AREB/ABF-SnRK2 pathway has been shown to play a key role in the response to osmotic stress in model plants. In this study, a novel bZIP gene, FtbZIP5, was isolated from tartary buckwheat, and its role in the response to drought and salt stress was characterized by transgenic Arabidopsis. We found that FtbZIP5 has transcriptional activation activity, which is located in the nucleus and specifically binds to ABRE elements. It can be induced by exposure to PEG6000, salt and ABA in tartary buckwheat. The ectopic expression of FtbZIP5 reduced the sensitivity of transgenic plants to drought and high salt levels and reduced the oxidative damage in plants by regulating the antioxidant system at a physiological level. In addition, we found that, under drought and salt stress, the expression levels of several ABA-dependent stress response genes (RD29A, RD29B, RAB18, RD26, RD20 and COR15) in the transgenic plants increased significantly compared with their expression levels in the wild type plants. Ectopic expression of FtbZIP5 in Arabidopsis can partially complement the function of the ABA-insensitive mutant abi5-1 (abscisic acid-insensitive 5-1). Moreover, we screened FtSnRK2.6, which might phosphorylate FtbZIP5, in a yeast two-hybrid experiment. Taken together, these results suggest that FtbZIP5, as a positive regulator, mediates plant tolerance to salt and drought through ABA-dependent signaling pathways.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Proteínas de Plantas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Tolerancia a la Sal , Transgenes , Arabidopsis , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Fagopyrum/genética , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Transcriptoma
16.
BMC Genomics ; 20(1): 871, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31730445

RESUMEN

BACKGROUND: Heat shock transcription factor (Hsfs) is widely found in eukaryotes and prokaryotes. Hsfs can not only help organisms resist high temperature, but also participate in the regulation of plant growth and development (such as involved in the regulation of seed maturity and affects the root length of plants). The Hsf gene was first isolated from yeast and then gradually found in plants and sequenced, such as Arabidopsis thaliana, rice, maize. Tartary buckwheat is a rutin-rich crop, and its nutritional value and medicinal value are receiving more and more attention. However, there are few studies on the Hsf genes in Tartary buckwheat. With the whole genome sequence of Tartary buckwheat, we can effectively study the Hsf gene family in Tartary buckwheat. RESULTS: According to the study, 29 Hsf genes of Tartary buckwheat (FtHsf) were identified and renamed according to location of FtHsf genes on chromosome after removing a redundant gene. Therefore, only 29 FtHsf genes truly had the functional characteristics of the FtHsf family. The 29 FtHsf genes were located on 8 chromosomes of Tartary buckwheat, and we found gene duplication events in the FtHsf gene family, which may promote the expansion of the FtHsf gene family. Then, the motif compositions and the evolutionary relationship of FtHsf proteins and the gene structures, cis-acting elements in the promoter, synteny analysis of FtHsf genes were discussed in detail. What's more, we found that the transcription levels of FtHsf in different tissues and fruit development stages were significantly different by quantitative real-time PCR (qRT-PCR), implied that FtHsf may differ in function. CONCLUSIONS: In this study, only 29 Hsf genes were identified in Tartary buckwheat. Meanwhile, we also classified the FtHsf genes, and studied their structure, evolutionary relationship and the expression pattern. This series of studies has certain reference value for the study of the specific functional characteristics of Tartary buckwheat Hsf genes and to improve the yield and quality of Tartary buckwheat in the future.


Asunto(s)
Fagopyrum/genética , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Factores de Transcripción del Choque Térmico/genética , Filogenia , Proteínas de Plantas/genética , Secuencia de Aminoácidos , Evolución Biológica , Mapeo Cromosómico , Fagopyrum/clasificación , Fagopyrum/crecimiento & desarrollo , Fagopyrum/metabolismo , Duplicación de Gen , Regulación del Desarrollo de la Expresión Génica , Factores de Transcripción del Choque Térmico/clasificación , Factores de Transcripción del Choque Térmico/metabolismo , Proteínas de Plantas/clasificación , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Sintenía , Transcripción Genética
17.
BMC Genomics ; 20(1): 113, 2019 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-30727951

RESUMEN

BACKGROUND: The NAC (NAM, ATAF1/2, and CUC2) transcription factor family represents a group of large plant-specific transcriptional regulators, participating in plant development and response to external stress. However, there is no comprehensive study on the NAC genes of Tartary buckwheat (Fagopyrum tataricum), a large group of extensively cultivated medicinal and edible plants. The recently published Tartary buckwheat genome permits us to explore all the FtNAC genes on a genome-wide basis. RESULTS: In the present study, 80 NAC (FtNAC) genes of Tartary buckwheat were obtained and named uniformly according to their distribution on chromosomes. Phylogenetic analysis of NAC proteins in both Tartary buckwheat and Arabidopsis showed that the FtNAC proteins are widely distributed in 15 subgroups with one subgroup unclassified. Gene structure analysis found that multitudinous FtNAC genes contained three exons, indicating that the structural diversity in Tartary buckwheat NAC genes is relatively low. Some duplication genes of FtNAC have a conserved structure that was different from others, indicating that these genes may have a variety of functions. By observing gene expression, we found that FtNAC genes showed abundant differences in expression levels in various tissues and at different stages of fruit development. CONCLUSIONS: In this research, 80 NAC genes were identified in Tartary buckwheat, and their phylogenetic relationships, gene structures, duplication, global expression and potential roles in Tartary buckwheat development were studied. Comprehensive analysis will be useful for a follow-up study of functional characteristics of FtNAC genes and for the development of high-quality Tartary buckwheat varieties.


Asunto(s)
Evolución Molecular , Fagopyrum/metabolismo , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes/genética , Análisis de Secuencia de ADN , Factores de Transcripción/genética , Fagopyrum/genética , Fagopyrum/fisiología , Perfilación de la Expresión Génica , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiología , Análisis de Secuencia de ARN , Factores de Transcripción/metabolismo , Factores de Transcripción/fisiología
18.
BMC Genomics ; 20(1): 483, 2019 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-31185893

RESUMEN

BACKGROUND: In reported plants, the bZIP family is one of the largest transcription factor families. bZIP genes play roles in the light signal, seed maturation, flower development, cell elongation, seed accumulation protein, abiotic and biological stress and other biological processes. While, no detailed identification and genome-wide analysis of bZIP family genes in Fagopyum talaricum (tartary buckwheat) has previously been published. The recently reported genome sequence of tartary buckwheat provides theoretical basis for us to study and discuss the characteristics and expression of bZIP genes in tartary buckwheat based on the whole genome. RESULTS: In this study, 96 FtbZIP genes named from FtbZIP1 to FtbZIP96 were identified and divided into 11 subfamilies according to their genetic relationship with 70 bZIPs of A. thaliana. FtbZIP genes are not evenly distributed on the chromosomes, and we found tandem and segmental duplication events of FtbZIP genes on 8 tartary buckwheat chromosomes. According to the results of gene and motif composition, FtbZIP located in the same group contained analogous intron/exon organizations and motif composition. By qRT-PCR, we quantified the expression of FtbZIP members in stem, root, leaf, fruit, and flower and during fruit development. Exogenous ABA treatment increased the weight of tartary buckwheat fruit and changed the expressions of FtbZIP genes in group A. CONCLUSIONS: Through our study, we identified 96 FtbZIP genes in tartary buckwheat and synthetically further analyzed the structure composition, evolution analysis and expression pattern of FtbZIP proteins. The expression pattern indicates that FtbZIP is important in the course of plant growth and development of tartary buckwheat. Through comprehensively analyzing fruit weight and FtbZIP genes expression after ABA treatment and endogenous ABA content of tartary buckwheat fruit, ABA may regulate downstream gene expression by regulating the expression of FtPinG0003523300.01 and FtPinG0003196200.01, thus indirectly affecting the fruit development of tartary buckwheat. This will help us to further study the function of FtbZIP genes in the tartary buckwheat growth and improve the fruit of tartary buckwheat.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Evolución Molecular , Fagopyrum/genética , Perfilación de la Expresión Génica , Genómica , Filogenia , Cromosomas de las Plantas/genética , Secuencia Conservada , Fagopyrum/crecimiento & desarrollo , Frutas/crecimiento & desarrollo , Duplicación de Gen , Genoma de Planta/genética , Motivos de Nucleótidos , Especificidad de Órganos
19.
BMC Plant Biol ; 19(1): 299, 2019 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-31286919

RESUMEN

BACKGROUND: SPL (SQUAMOSA promoter binding protein-like) is a class of plant-specific transcription factors that play important roles in many growth and developmental processes, including shoot and inflorescence branching, embryonic development, signal transduction, leaf initiation, phase transition, and flower and fruit development. The SPL gene family has been identified and characterized in many species but has not been well studied in tartary buckwheat, which is an important edible and medicinal crop. RESULTS: In this study, 24 Fagopyrum tataricum SPL (FtSPL) genes were identified and renamed according to the chromosomal distribution of the FtSPL genes. According to the amino acid sequence of the SBP domain and gene structure, the SPL genes were divided into eight groups (group I to group VII) by phylogenetic tree analysis. A total of 10 motifs were detected in the tartary buckwheat SPL genes. The expression patterns of 23 SPL genes in different tissues and fruits at different developmental stages (green fruit stage, discoloration stage and initial maturity stage) were determined by quantitative real-time polymerase chain reaction (qRT-PCR). CONCLUSIONS: The tartary buckwheat genome contained 24 SPL genes, and most of the genes were expressed in different tissues. qRT-PCR showed that FtSPLs played important roles in the growth and development of tartary buckwheat, and genes that might regulate flower and fruit development were preliminarily identified. This work provides a comprehensive understanding of the SBP-box gene family in tartary buckwheat and lays a significant foundation for further studies on the functional characteristics of FtSPL genes and improvement of tartary buckwheat crops.


Asunto(s)
Fagopyrum/genética , Estudio de Asociación del Genoma Completo , Familia de Multigenes , Proteínas de Plantas/genética , Factores de Transcripción/genética , Fagopyrum/crecimiento & desarrollo , Fagopyrum/metabolismo , Frutas/genética , Frutas/crecimiento & desarrollo , Perfilación de la Expresión Génica , Filogenia , Proteínas de Plantas/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Factores de Transcripción/metabolismo
20.
BMC Plant Biol ; 19(1): 344, 2019 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-31390980

RESUMEN

BACKGROUND: In the study, the trihelix family, also referred to as GT factors, is one of the transcription factor families. Trihelix genes play roles in the light response, seed maturation, leaf development, abiotic and biological stress and other biological activities. However, the trihelix family in tartary buckwheat (Fagopyrum tataricum), an important usable medicinal crop, has not yet been thoroughly studied. The genome of tartary buckwheat has recently been reported and provides a theoretical basis for our research on the characteristics and expression of trihelix genes in tartary buckwheat based at the whole level. RESULTS: In the present study, a total of 31 FtTH genes were identified based on the buckwheat genome. They were named from FtTH1 to FtTH31 and grouped into 5 groups (GT-1, GT-2, SH4, GTγ and SIP1). FtTH genes are not evenly distributed on the chromosomes, and we found segmental duplication events of FtTH genes on tartary buckwheat chromosomes. According to the results of gene and motif composition, FtTH located in the same group contained analogous intron/exon organizations and motif organizations. qRT-PCR showed that FtTH family members have multiple expression patterns in stems, roots, leaves, fruits, and flowers and during fruit development. CONCLUSIONS: Through our study, we identified 31 FtTH genes in tartary buckwheat and synthetically further analyzed the evolution and expression pattern of FtTH proteins. The structure and motif organizations of most genes are conserved in each subfamily, suggesting that they may be functionally conserved. The FtTH characteristics of the gene expression patterns indicate functional diversity in the time and space in the tartary buckwheat life process. Based on the discussion and analysis of FtTH gene function, we screened some genes closely related to the growth and development of tartary buckwheat. This will help us to further study the function of FtTH genes through experimental exploration in tartary buckwheat growth and improve the fruit of tartary buckwheat.


Asunto(s)
Fagopyrum/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Mapeo Cromosómico , Evolución Molecular , Fagopyrum/metabolismo , Duplicación de Gen , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Genoma de Planta , Filogenia , Proteínas de Plantas/genética , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA