Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nanotechnology ; 33(13)2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-34905734

RESUMEN

The variation behaviors of the morphology, transmission, and sheet resistance of the surface Ag/AgO nano-network (NNW) structures fabricated under different illumination conditions and with different Ag deposition thicknesses and thermal annealing temperatures in forming initial Ag nanoparticles (NPs) are studied. Generally, an NNW structure with a smaller mesh size or a denser branch distribution has a lower transmission and a lower sheet resistance level. Under the fabrication condition of a broader illumination spectrum, a lower thermal annealing temperature, or a thicker Ag deposition, we can obtain an NNW structure of a smaller mesh size. The mesh size of an NNW structure is basically controlled by the seed density of Brownian tree (BT) at the beginning of light illumination. A BT seed can be formed through a stronger local localized surface plasmon resonance for accelerating Ag oxidation in a certain region. Once an Ag/AgO BT seed is formed, the surrounding Ag NPs are reorganized to form the branches of a BT. Multiple BTs are connected to form a large-area NNW structure, which can serve as a transparent conductor. Under the fabrication conditions of a broader illumination spectrum, 3 nm Ag deposition, and 100 °C thermal annealing, we can implement an NNW structure to achieve ∼1.15µm in mesh size, ∼90 Ω sq-1in sheet resistance, and 93%-77% in transmittance within the wavelength range between 370 and 700 nm.

2.
Nanotechnology ; 32(29)2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-33848997

RESUMEN

Rhodamine 6G (R6G) molecules linked CdZnSeS/ZnS green-emitting quantum dots (QDs) are self-assembled onto Ag nanoparticles (NPs) for studying the surface plasmon (SP) coupling effect on the Förster resonance energy transfer (FRET) process from QD into R6G. SP coupling can enhance the emission efficiency of QD such that FRET has to compete with QD emission for transferring energy into R6G. It is found that FRET efficiency is reduced under the SP coupling condition. Although R6G emission efficiency can also be enhanced through SP coupling when it is directly linked onto Ag NP, the enhancement decreases when R6G is linked onto QD and then the QD-R6G complex is self-assembled onto Ag NP. In particular, R6G emission efficiency can be reduced through SP coupling when the number of R6G molecules linked onto a QD is high. A rate-equation model is built for resembling the measured photoluminescence decay profiles and providing us with more detailed explanations for the observed FRET and SP coupling behaviors.

3.
Sci Technol Adv Mater ; 9(4): 045005, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27878033

RESUMEN

Dynamically vulcanized EPDM/PP (ethylene-propylene-diene/polypropylene) elastomers reinforced with various amounts of organoclay were prepared using octylphenol-formaldehyde resin and stannous chloride dehydrate as vulcanizing agents. The effects of organoclay on vulcanization characteristics, rheological behavior, morphology, thermal stability and thermomechanical properties were studied. Experimental results showed that organoclay affected neither the vulcanization process nor the degree of vulcanization chemically. X-ray analysis revealed that these organoclay-filled thermoplastic vulcanizates (TPVs) were intercalated. With respect to the mechanical properties, organoclay increased both the strength and degree of elongation of TPVs. The morphological observation of fractured surfaces suggested that organoclay acted as a nucleating agent in TPVs, improving their mechanical properties. However, adding organoclay reduced the thermal stability of TPVs by decomposing the swelling agents in the organoclay.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA