Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Opt Express ; 31(20): 32373-32382, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37859042

RESUMEN

Synchronised ultrafast soliton lasers have attracted great research interest in recent decades. However, there is a lack of comprehensive understanding regarding the buildup mechanism of synchronised pulses. Here, we report a dynamic analysis of independent and synchronised solitons buildup mechanisms in synchronised ultrafast soliton lasers. The laser comprises an erbium-doped fibre cavity and a thulium-doped fibre cavity bridged with a common arm. Pulses operating at two different wavelengths formed in the cavities are synchronised by cross-phase modulation-induced soliton correlation in the common fibre arm. We find that the whole buildup process of the thulium-doped fibre laser successively undergoes five different stages: continuous wave, relaxation oscillation, quasi-mode-locking, continuous wave mode-locking and synchronised mode-locking. It is found that the starting time of the synchronised solitons is mainly determined by the meeting time of dual-color solitons. Our results will further deepen the understanding of dual-color synchronised lasers and enrich the study of complex nonlinear system dynamics.

2.
Opt Lett ; 48(10): 2619-2622, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37186723

RESUMEN

Synchronized lasers working at different wavelengths are of great significance for numerous applications, such as high-energy femtosecond pulse emission, Raman microscopy, and precise timing distribution. Here, we report synchronized triple-wavelength fiber lasers working at 1, 1.55, and 1.9 µm, respectively, by combining the coupling and injection configurations. The laser system consists of three fiber resonators gained by ytterbium-doped fiber, erbium-doped fiber, and thulium-doped fiber, respectively. Ultrafast optical pulses formed in these resonators are obtained by passive mode-locking with the use of a carbon-nanotube saturable absorber. A maximum cavity mismatch of ∼1.4 mm is reached by the synchronized triple-wavelength fiber lasers in the synchronization regime by finely tuning the variable optical delay lines incorporated in the fiber cavities. In addition, we investigate the synchronization characteristics of a non-polarization-maintaining fiber laser in an injection configuration. Our results provide a new, to the best of our knowledge, perspective on multi-color synchronized ultrafast lasers with broad spectral coverage, high compactness, and a tunable repetition rate.

3.
Opt Lett ; 43(15): 3497-3500, 2018 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-30067694

RESUMEN

We report the synchronization of two actively Q-switched fiber lasers operating at 1.5 µm and 2 µm with a shared broadband graphene electro-optic modulator. Two graphene monolayer sheets separated with a high-kHfO2 dielectric layer are configured to enable broadband light modulation. The graphene electro-optic modulator is shared by two optical fiber laser cavities (i.e., an erbium-doped fiber laser cavity and a thulium/holmium-codoped fiber laser cavity) to actively Q-switch the two lasers, resulting in stable synchronized pulses at 1.5 µm and 2 µm with a repetition rate ranging from 46 kHz to 56 kHz.

4.
Opt Express ; 25(18): 21037-21048, 2017 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-29041513

RESUMEN

In this paper, we report a 946nm double Q-switched laser side pumped by an 808-nm pulse laser diode (LD). A layered tungsten diselenide (WSe2) saturable absorber (SA) together with an MgO doped LiNbO3 electro-optic (EO) modulator is applied to double Q-switch the Nd: YAG laser, producing trains of nanosecond-duration pulses with 500 Hz repetition rate. Such WSe2 saturable absorbers are fabricated by chemical vapor deposition (CVD) in a hot wall chamber and then embedded into a resonant mirror. The achieved pulse energy of double Q-switched laser at 946 nm is approximately 2.63 mJ with 10.8 ns pulse width and the peak power is round 244 kW, corresponding to the beam quality factors of M2x = 3.846,M2y = 3.861. Monolayer WSe2 nanosheets applied in the experiment would be a promising SA for passive Q-switching operation.

5.
Appl Opt ; 56(23): 6427-6431, 2017 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-29047931

RESUMEN

We demonstrate a passively Q-switched ytterbium-doped fiber laser based on black phosphorus (BP) flakes covered microfiber. The BP saturable absorber is fabricated by sandwiching a microfiber between two pieces of polydimethylsiloxane supported BP flakes film, which is prepared by the mechanical exfoliation method. In this case the BP flakes can be well protected from the action of air and moisture. By incorporating BP flakes covered microfiber into a ytterbium-doped ring fiber laser, stable and reliable Q-switched operation at 1064 nm can be realized via interaction between few-layers BP flakes and the evanescent field of the laser. The laser allows Q-switched pulse generation with a repetition rate in the range of 26-76 kHz and a pulse duration in the range of 5.5-2.0 µs, by varying the pump power from 38 mW to 100 mW.

6.
Nanoscale ; 14(26): 9459-9465, 2022 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-35735657

RESUMEN

During the last few decades, photonic integrated circuits have increased dramatically, facilitating many high-performance applications, such as on-chip sensing, data processing, and inter-chip communications. The currently dominating material platforms (i.e., silicon, silicon nitride, lithium niobate, and indium phosphide), which have exhibited great application successes, however, suffer from their own disadvantages, such as the indirect bandgap of silicon for efficient light emission, and the compatibility challenges of indium phosphide with the silicon industry. Here, we report a new dielectric platform using nanostructured bulk van der Waals materials. On-chip light propagation, emission, and detection are demonstrated by taking advantage of different van der Waals materials. Low-loss passive waveguides with MoS2 and on-chip light sources and photodetectors with InSe have been realised. Our proof-of-concept demonstration of passive and active on-chip photonic components endorses van der Waals materials for offering a new dielectric platform with a large material-selection degree of freedom and unique properties toward close-to-atomic scale manufacture of on-chip photonic and optoelectronic devices.

7.
ACS Nano ; 16(1): 568-576, 2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-34985864

RESUMEN

van der Waals (vdW) heterostructures based on two-dimensional (2D) semiconducting materials have been extensively studied for functional applications, and most of the reported devices work with sole mechanism. The emerging metallic 2D materials provide us new options for building functional vdW heterostructures via rational band engineering design. Here, we investigate the vdW semiconductor/metal heterostructure built with 2D semiconducting InSe and metallic 1T-phase NbTe2, whose electron affinity χInSe and work function ΦNbTe2 almost exactly align. Electrical characterization verifies exceptional diode-like rectification ratio of >103 for the InSe/NbTe2 heterostructure device. Further photocurrent mappings reveal the switchable photoresponse mechanisms of this heterostructure or, in other words, the alternative roles that metallic NbTe2 plays. Specifically, this heterostructure device works in a photovoltaic manner under reverse bias, whereas it turns to phototransistor with InSe channel and NbTe2 electrode under high forward bias. The switchable photoresponse mechanisms originate from the band alignment at the interface, where the band bending could be readily adjusted by the bias voltage. In addition, a conceptual optoelectronic logic gate is proposed based on the exclusive working mechanisms. Finally, the photodetection performance of this heterostructure is represented by an ultrahigh responsivity of ∼84 A/W to 532 nm laser. Our results demonstrate the valuable application of 2D metals in functional devices, as well as the potential of implementing photovoltaic device and phototransistor with single vdW heterostructure.

8.
Sci Adv ; 8(49): eabq8246, 2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36490340

RESUMEN

The ever-growing demand for faster and more efficient data transfer and processing has brought optical computation strategies to the forefront of research in next-generation computing. Here, we report a universal computing approach with the chirality degree of freedom. By exploiting the crystal symmetry-enabled well-known chiral selection rules, we demonstrate the viability of the concept in bulk silica crystals and atomically thin semiconductors and create ultrafast (<100-fs) all-optical chirality logic gates (XNOR, NOR, AND, XOR, OR, and NAND) and a half adder. We also validate the unique advantages of chirality gates by realizing multiple gates with simultaneous operation in a single device and electrical control. Our first demonstrations of logic gates using chiral selection rules suggest that optical chirality could provide a powerful degree of freedom for future optical computing.

9.
Nanoscale ; 13(21): 9873-9880, 2021 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-34036962

RESUMEN

Recently, graphene electro-optical modulators have emerged as a viable alternative to the conventional modulators due to their broadband operation, ultrafast responsivity, small footprint, and low energy consumption. Here, we report scalable graphene electro-optical modulators for all-fibre pulsed laser applications. An actively Q-switched all-fibre laser is demonstrated with a scalable graphene electro-optical modulator for the first time, which is different from the previously reported work that typically implemented graphene electro-optical modulators in a free-space optical system. Our electrically modulated actively Q-switched fibre laser outputs at the centre wavelength of ∼1961.9 nm, the tunable repetition rate of 56.5 to 62.5 kHz, the maximum pulse energy of ∼80 nJ, and the signal-to-noise ratio of ∼46.6 dB. This work demonstrates that the scalable all-fibre integrated graphene electro-optical modulator approach is promising for producing pulsed fibre lasers at 2 µm with high performance and easy integration which are useful in various applications such as medical treatment, material processing, and spectroscopy.

10.
ACS Appl Mater Interfaces ; 13(49): 58927-58935, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34855351

RESUMEN

Graphene-based van der Waals heterostructures are promising building blocks for broadband photodetection because of the gapless nature of graphene. However, their performance is mostly limited by the inevitable trade-off between low dark current and photocurrent generation. Here, we demonstrate a hybrid photodetection mode based on the photogating effect coupled with the photovoltaic effect via tunable quantum tunneling through the unique graphene/Bi2Se3 heterointerface. The tunneling junction formed between the semimetallic graphene and the topologically insulating Bi2Se3 exhibits asymmetric rectifying and hysteretic current-voltage characteristics, which significantly suppresses the dark current and enhances the photocurrent. The photocurrent-to-dark current ratio increases by about a factor of 10 with the electrical tuning of tunneling resistance for efficient light detection covering the major photonic spectral band from the visible to the mid-infrared ranges. Our findings provide a novel concept of using tunable quantum tunneling for highly sensitive broadband photodetection in mixed-dimensional van der Waals heterostructures.

11.
Sci Rep ; 8(1): 2738, 2018 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-29426938

RESUMEN

Ultrafast lasers with tunable parameters in wavelength and time domains are the choice of light source for various applications such as spectroscopy and communication. Here, we report a wavelength and pulse-duration tunable mode-locked Erbium doped fiber laser with single wall carbon nanotube-based saturable absorber. An intra-cavity tunable filter is employed to continuously tune the output wavelength for 34 nm (from 1525 nm to 1559 nm) and pulse duration from 545 fs to 6.1 ps, respectively. Our results provide a novel light source for various applications requiring variable wavelength or pulse duration.

12.
Sci Rep ; 5: 15899, 2015 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-26514090

RESUMEN

Black phosphorus (BP) has recently been rediscovered as a new and interesting two-dimensional material due to its unique electronic and optical properties. Here, we study the linear and nonlinear optical properties of BP flakes. We observe that both the linear and nonlinear optical properties are anisotropic and can be tuned by the film thickness in BP, completely different from other typical two-dimensional layered materials (e.g., graphene and the most studied transition metal dichalcogenides). We then use the nonlinear optical properties of BP for ultrafast (pulse duration down to ~786 fs in mode-locking) and large-energy (pulse energy up to >18 nJ in Q-switching) pulse generation in fiber lasers at the near-infrared telecommunication band ~1.5 µm. We observe that the output of our BP based pulsed lasers is linearly polarized (with a degree-of-polarization ~98% in mode-locking, >99% in Q-switching, respectively) due to the anisotropic optical property of BP. Our results underscore the relatively large optical nonlinearity of BP with unique polarization and thickness dependence, and its potential for polarized optical pulse generation, paving the way to BP based nonlinear and ultrafast photonic applications (e.g., ultrafast all-optical polarization switches/modulators, frequency converters etc.).

13.
Nanoscale ; 7(25): 11199-205, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26060940

RESUMEN

We introduce a simple approach to fabricate an aligned carbon nanotube (ACNT) device for broadband polarization control in fiber laser systems. The ACNT device was fabricated by pulling from as-fabricated vertically-aligned carbon nanotube arrays. Their anisotropic properties are confirmed with various microscopy techniques. The device was then integrated into fiber laser systems (at two technologically important wavelengths of 1 and 1.5 µm) for polarization control. We obtained a linearly-polarized light output with the maximum extinction ratio of ∼12 dB. The output polarization direction could be fully controlled by the ACNT alignment direction in both lasers. To the best of our knowledge, this is the first time that the ACNT device is applied to polarization control in laser systems. Our results exhibit that the ACNT device is a simple, low-cost, and broadband polarizer to control laser polarization dynamics, for various photonic applications (such as material processing, polarization diversity detection in communications etc.), where linear polarization control is necessary.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA