Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 266: 115589, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37839191

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) pollution in soil is a pervasive environmental issue worldwide. Although biochar has the potential to immobilize PAHs in soils, there remains a study gap in the use of systematic analyses to assess the effectiveness of biochar for PAH removal and the factors that affect biochar. Hence, a meta-analysis utilizing 56 published studies was aimed to assess the impact of biochar on the PAH content, soil physicochemical properties, and microbial diversity in PAH-contaminated soils and to elucidate what factors impact the capability of biochar to alter PAH persistence. With biochar application, soil Ctot PAH concentrations were significantly reduced (15.4%), while the levels of Cfree PAHs and Cbioacc PAHs were reduced by 55.6% and 46.5%, respectively. Additionally, biochar improved the physicochemical properties of PAH-contaminated soil and increased the diversity of microorganisms. Particularly, the relative abundance of PAH degraders increased significantly (43.7%), which indicated that PAH biodegradation was significantly enhanced. Soil physicochemical properties and biochar production conditions are indispensable for the study of the PAH persistence. The overall findings revealed that the pyrolysis of woody biochar at 300-500 °C was beneficial for reducing the PAH persistence in acidic, coarse, or fine and high soil organic matter content (>20 g/kg) soils.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Hidrocarburos Policíclicos Aromáticos/análisis , Suelo/química , Contaminantes del Suelo/análisis , Carbón Orgánico/química , Biodegradación Ambiental , Microbiología del Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA