Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Anal Chem ; 96(16): 6131-6138, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38597518

RESUMEN

Herein, we present a new method for determining the Ca isotopic composition of geological samples. To eliminate matrix elements from Ca, a column chromatography method was developed using a N,N,N'N' tetraoctyl-1,5-diglycolamide (TODGA) resin. The Ca isotopic compositions were measured by a multiple collector inductively coupled plasma mass spectrometry (MC-ICP-MS) without collision cell equipment, especially that direct measurement to 44Ca/40Ca can be achieved. To mitigate the interference from 40Ar during 40Ca measurement, the cold plasma technique was used to suppress the Ar+ generation, resulting in a background Ar+ intensity of <300 mV, in contrast to the conventional hot plasma conditions, which typically yield thousands of volts for Ar+ intensities. Given the potential for a concentration mismatch between the sample and bracketed standard solutions to cause an intensive shift in measured Ca isotopic compositions, a correction for the [Ca] match is needed. To avoid matrix effects arising from residue matrix elements, it is crucial to limit the concentrations below 1% of Ca for most matrix elements (including Al, Mg, K, Na, and Sr) and below 1‰ for Fe. Notably, the tolerance of residue Sr is effectively improved compared to measurements with CC-MC-ICP-MS and traditional Hot-plasma-SSB-MC-ICP-MS methods with the conventional hot plasma technique, thereby lowering the complexity of column chemistry. The measured δ44/40Ca, δ44/42Ca, and ε40Ca values for eight reference materials agree well with previously reported values within analytical uncertainties. This method demonstrates long-term precision is better than 0.10‰ (two standard deviations) for both δ values (i.e., δ44/40Ca and δ44/42Ca). We anticipate that the proposed method will benefit the growth of the Ca isotope data set and foster an increase in the application of Ca isotope in Earth science studies.

2.
Int J Biol Macromol ; 252: 126485, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37625753

RESUMEN

Lignocellulose, as a kind of abundant natural resource, continuously developed to convert high value-added biological products is of great significance. Herein, we report a N-methylmorpholine-N-oxide (NMMO) solvent system to completely dissolve unbleached pulp to prepare a renewable lignin-containing cellulose film. The viscosity of the completely dissolved cellulose solution was measured using a high-pressure rotary rheometer. The shear viscosity exceeded 85 Pa·s at a shear rate of 1.62 s-1. It exhibited shear-thinning non-Newtonian fluid behavior with increasing shear rate. CF-WS had excellent tensile strength (>73 MPa), and exhibited unique optical properties of high transmittance in the visible region and high shielding performance in the ultraviolet region. When the thickness is only 0.016 mm, the UV shielding rate exceeds 75 % (λ < 380 nm). The structure of the bioplastic was revealed by SEM, XPS, and Raman spectroscopy. Directly dissolving lignocellulose in NMMO aqueous solution is expected to yield bioplastics with high strength and biodegradability. It is a potential substitute for petrochemical plastics and provides a possible way for the utilization of agricultural waste.


Asunto(s)
Triticum , Zea mays , Celulosa/química , Agua
3.
Environ Sci Technol ; 45(4): 1719-23, 2011 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-21210659

RESUMEN

Underground coal gasification is currently being considered as an economically and environmentally sustainable option for development and utilization of coal deposits not mineable by conventional methods. This emerging technology in combination with carbon capture and sorptive CO2 storage on the residual coke as well as free-gas CO2 storage in the cavities generated in the coal seams after gasification could provide a relevant contribution to the development of Clean Coal Technologies. Three hard coals of different rank from German mining districts were gasified in a laboratory-scale reactor (200 g of coal at 800 °C subjected to 10 L/min air for 200 min). High-pressure CO2 excess sorption isotherms determined before and after gasification revealed an increase of sorption capacity by up to 42%. Thus, physical sorption represents a feasible option for CO2 storage in underground gasification cavities.


Asunto(s)
Dióxido de Carbono , Carbón Mineral/clasificación , Aire , Contaminación del Aire/prevención & control , Carbono , Coque , Monitoreo del Ambiente , Gases , Minería , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA