Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Plant Cell ; 36(5): 2000-2020, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38299379

RESUMEN

The flower-infecting fungus Ustilaginoidea virens causes rice false smut, which is a severe emerging disease threatening rice (Oryza sativa) production worldwide. False smut not only reduces yield, but more importantly produces toxins on grains, posing a great threat to food safety. U. virens invades spikelets via the gap between the 2 bracts (lemma and palea) enclosing the floret and specifically infects the stamen and pistil. Molecular mechanisms for the U. virens-rice interaction are largely unknown. Here, we demonstrate that rice flowers predominantly employ chitin-triggered immunity against U. virens in the lemma and palea, rather than in the stamen and pistil. We identify a crucial U. virens virulence factor, named UvGH18.1, which carries glycoside hydrolase activity. Mechanistically, UvGH18.1 functions by binding to and hydrolyzing immune elicitor chitin and interacting with the chitin receptor CHITIN ELICITOR BINDING PROTEIN (OsCEBiP) and co-receptor CHITIN ELICITOR RECEPTOR KINASE1 (OsCERK1) to impair their chitin-induced dimerization, suppressing host immunity exerted at the lemma and palea for gaining access to the stamen and pistil. Conversely, pretreatment on spikelets with chitin induces a defense response in the lemma and palea, promoting resistance against U. virens. Collectively, our data uncover a mechanism for a U. virens virulence factor and the critical location of the host-pathogen interaction in flowers and provide a potential strategy to control rice false smut disease.


Asunto(s)
Quitina , Flores , Hypocreales , Oryza , Enfermedades de las Plantas , Oryza/microbiología , Oryza/metabolismo , Oryza/genética , Enfermedades de las Plantas/microbiología , Quitina/metabolismo , Flores/microbiología , Hypocreales/patogenicidad , Hypocreales/genética , Hypocreales/metabolismo , Transducción de Señal , Interacciones Huésped-Patógeno , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Virulencia , Factores de Virulencia/metabolismo , Factores de Virulencia/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética
2.
Plant Biotechnol J ; 22(1): 116-130, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37752622

RESUMEN

Arabidopsis RESISTANCE TO POWDERY MILDEW 8.1 (RPW8.1) is an important tool for engineering broad-spectrum disease resistance against multiple pathogens. Ectopic expression of RPW8.1 leads to enhanced disease resistance with cell death at leaves and compromised plant growth, implying a regulatory mechanism balancing RPW8.1-mediated resistance and growth. Here, we show that RPW8.1 constitutively enhances the expression of transcription factor WRKY51 and activates salicylic acid and ethylene signalling pathways; WRKY51 in turn suppresses RPW8.1 expression, forming a feedback regulation loop. RPW8.1 and WRKY51 are both induced by pathogen infection and pathogen-/microbe-associated molecular patterns. In ectopic expression of RPW8.1 background (R1Y4), overexpression of WRKY51 not only rescues the growth suppression and cell death caused by RPW8.1, but also suppresses RPW8.1-mediated broad-spectrum disease resistance and pattern-triggered immunity. Mechanistically, WRKY51 directly binds to and represses RPW8.1 promoter, thus limiting the expression amplitude of RPW8.1. Moreover, WRKY6, WRKY28 and WRKY41 play a role redundant to WRKY51 in the suppression of RPW8.1 expression and are constitutively upregulated in R1Y4 plants with WRKY51 being knocked out (wrky51 R1Y4) plants. Notably, WRKY51 has no significant effects on disease resistance or plant growth in wild type without RPW8.1, indicating a specific role in RPW8.1-mediated disease resistance. Altogether, our results reveal a regulatory circuit controlling the accumulation of RPW8.1 to an appropriate level to precisely balance growth and disease resistance during pathogen invasion.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Resistencia a la Enfermedad/genética , Retroalimentación , Arabidopsis/metabolismo , Muerte Celular , Enfermedades de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/genética
3.
New Phytol ; 238(1): 367-382, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36522832

RESUMEN

Arabidopsis RESISTANCE TO POWDERY MILDEW 8.2 (RPW8.2) is specifically induced by the powdery mildew (PM) fungus (Golovinomyces cichoracearum) in the infected epidermal cells to activate immunity. However, the mechanism of RPW8.2-induction is not well understood. Here, we identify a G. cichoracearum effector that interacts with RPW8.2, named Gc-RPW8.2 interacting protein 1 (GcR8IP1), by a yeast two-hybrid screen of an Arabidopsis cDNA library. GcR8IP1 is physically associated with RPW8.2 with its REALLY INTERESTING NEW GENE finger domain that is essential and sufficient for the association. GcR8IP1 was secreted and translocated into the nucleus of host cell infected with PM. Association of GcR8IP1 with RPW8.2 led to an increase in RPW8.2 in the nucleus. In turn, the nucleus-localized RPW8.2 promoted the activity of the RPW8.2 promoter, resulting in transcriptional self-amplification of RPW8.2 to boost immunity at infection sites. Additionally, ectopic expression or host-induced gene silencing of GcR8IP1 supported its role as a virulence factor in PM. Altogether, our results reveal a mechanism of RPW8.2-dependent defense strengthening via altered partitioning of RPW8.2 and transcriptional self-amplification triggered by a PM fungal effector, which exemplifies an atypical form of effector-triggered immunity.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Ascomicetos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Resistencia a la Enfermedad , Ascomicetos/fisiología , Enfermedades de las Plantas/microbiología
4.
Plant Biotechnol J ; 20(4): 646-659, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34726307

RESUMEN

MicroRNAs (miRNAs) play vital roles in plant development and defence responses against various stresses. Here, we show that blocking miR1871 improves rice resistance against Magnaporthe oryzae and enhances grain yield simultaneously. The transgenic lines overexpressing miR1871 (OX1871) exhibit compromised resistance, suppressed defence responses and reduced panicle number resulting in slightly decreased yield. In contrast, the transgenic lines blocking miR1871 (MIM1871) show improved resistance, enhanced defence responses and significantly increased panicle number leading to enhanced yield per plant. The RNA-seq assay and defence response assays reveal that blocking miR1871 resulted in the enhancement of PAMP-triggered immunity (PTI). Intriguingly, miR1871 suppresses the expression of LOC_Os06g22850, which encodes a microfibrillar-associated protein (MFAP1) locating nearby the cell wall and positively regulating PTI responses. The mutants of MFAP1 resemble the phenotype of OX1871. Conversely, the transgenic lines overexpressing MFAP1 (OXMFAP1) or overexpressing both MFAP1 and miR1871 (OXMFAP1/OX1871) resemble the resistance of MIM1871. The time-course experiment data reveal that the expression of miR1871 and MFAP1 in rice leaves, panicles and basal internode is dynamic during the whole growth period to manipulate the resistance and yield traits. Our results suggest that miR1871 regulates rice yield and immunity via MFAP1, and the miR8171-MFAP1 module could be used in rice breeding to improve both immunity and yield.


Asunto(s)
Magnaporthe , Oryza , Ascomicetos , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas/genética , Magnaporthe/fisiología , Oryza/metabolismo , Fitomejoramiento , Enfermedades de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
New Phytol ; 236(6): 2216-2232, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36101507

RESUMEN

Rice production is threatened by multiple pathogens. Breeding cultivars with broad-spectrum disease resistance is necessary to maintain and improve crop production. Previously we found that overexpression of miR160a enhanced rice blast disease resistance. However, it is unclear whether miR160a also regulates resistance against other pathogens, and what the downstream signaling pathways are. Here, we demonstrate that miR160a positively regulates broad-spectrum resistance against the causative agents of blast, leaf blight and sheath blight in rice. Mutations of miR160a-targeted Auxin Response Factors result in different alteration of resistance conferred by miR160a. miR160a enhances disease resistance partially by suppressing ARF8, as mutation of ARF8 in MIM160 background partially restores the compromised resistance resulting from MIM160. ARF8 protein binds directly to the promoter and suppresses the expression of WRKY45, which acts as a positive regulator of rice immunity. Mutation of WRKY45 compromises the enhanced blast resistance and bacterial leaf blight resistance conferred by arf8 mutant. Overall, our results reveal that a microRNA coordinates rice broad-spectrum disease resistance by suppressing multiple target genes that play different roles in disease resistance, and uncover a new regulatory pathway mediated by the miR160a-ARF8 module. These findings provide new resources to potentially improve disease resistance for breeding in rice.


Asunto(s)
Magnaporthe , Oryza , Resistencia a la Enfermedad/genética , Magnaporthe/metabolismo , Oryza/metabolismo , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo , Fitomejoramiento
6.
Plant Physiol ; 182(1): 272-286, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31628150

RESUMEN

Circular RNAs (circRNAs) play roles in various biological processes, but their functions in the rice (Oryza sativa) response to Magnaporthe oryzae remain elusive. Here, we demonstrate that circRNAs are involved in the rice-M. oryzae interaction using comparative circRNA-sequencing and transgenic approaches. We identified 2932 high-confidence circRNAs from young leaves of the blast-resistant accession International Rice Blast Line Pyricularia-Kanto51-m-Tsuyuake (IR25) and the blast-susceptible accession Lijiangxin Tuan Heigu (LTH) under M oryzae-infected or uninfected conditions; 636 were detected specifically upon M oryzae infection. The circRNAs in IR25 were significantly more diverse than those in LTH, especially under M. oryzae infection. Particularly, the number of circRNAs generated per parent gene was much higher in IR25 than in LTH and increased in IR25 but decreased in LTH upon M. oryzae infection. The higher diversity of circRNAs in IR25 was further associated with more frequent 3' and 5' alternative back-splicing and usage of complex splice sites. Moreover, a subset of circRNAs was differentially responsive to M oryzae in IR25 and LTH. We further confirmed that circR5g05160 promotes rice immunity against M oryzae Therefore, our data indicate that circRNA diversity is associated with different responses to M oryzae infection in rice and provide a starting point to investigate a new layer of regulation in the rice-M oryzae interaction.


Asunto(s)
Magnaporthe/patogenicidad , Oryza/microbiología , Enfermedades de las Plantas/microbiología , ARN Circular/genética , Regulación de la Expresión Génica de las Plantas/genética , Interacciones Huésped-Patógeno , Enfermedades de las Plantas/genética
7.
Environ Microbiol ; 22(2): 646-659, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31797523

RESUMEN

Rice false smut has emerged as a serious grain disease in rice production worldwide. The disease is characterized by the transformation of individual rice florets into false smut balls, which is caused by the fungal pathogen Ustilaginoidea virens. To date, little is known about the host factors required for false smut ball formation by U. virens. In this study, we identified histological determinants for the formation of false smut balls by inoculating U. virens into rice floral mutants defective with respect to individual floral parts. The results showed that U. virens could form mature false smut balls in rice floral mutants with defective pistils, but failed to develop false smut balls in the superwoman mutant lacking stamens, identifying that U. virens requires rice stamens to complete its infection cycle. Comparative transcriptome analysis indicated a list of candidate host genes that may facilitate nutrient acquisition by U. virens from the rice stamens, such as SWEET11, SWEET14 and SUT5, and genes involved in the biosynthesis of trehalose and raffinose family sugars. These data pinpoint rice stamens as the key target organ of U. virens infection and provide a valuable starting point for dissecting the molecular mechanism of false smut ball formation.


Asunto(s)
Flores/microbiología , Hypocreales/crecimiento & desarrollo , Oryza/microbiología , Hypocreales/genética , Hypocreales/metabolismo , Proteínas de Transporte de Membrana/genética , Enfermedades de las Plantas/microbiología , Rafinosa/biosíntesis , Transcriptoma/genética , Trehalosa/biosíntesis
8.
New Phytol ; 222(3): 1507-1522, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30632163

RESUMEN

miRNAs contribute to plant resistance against pathogens. Previously, we found that the function of miR398b in immunity in rice differs from that in Arabidopsis. However, the underlying mechanisms are unclear. In this study, we characterized the mutants of miR398b target genes and demonstrated that multiple superoxide dismutase genes contribute to miR398b-regulated rice immunity against the blast fungus Magnaporthe oryzae. Out of the four target genes of miR398b, mutations in Cu/Zn-Superoxidase Dismutase1 (CSD1), CSD2 and Os11g09780 (Superoxide DismutaseX, SODX) led to enhanced resistance to M. oryzae and increased hydrogen peroxide (H2 O2 ) accumulation. By contrast, mutations in Copper Chaperone for Superoxide Dismutase (CCSD) resulted in enhanced susceptibility. Biochemical studies revealed that csd1, csd2 and sodx displayed altered expression of CSDs and other superoxide dismutase (SOD) family members, leading to increased total SOD enzyme activity that positively contributed to higher H2 O2 production. By contrast, the ccsd mutant showed CSD protein deletion, resulting in decreased CSD and total SOD enzyme activity. Our results demonstrate the roles of different SODs in miR398b-regulated resistance to rice blast disease, and uncover an integrative regulatory network in which miR398b boosts total SOD activity to upregulate H2 O2 concentration and thereby improve disease resistance.


Asunto(s)
Resistencia a la Enfermedad , Peróxido de Hidrógeno/metabolismo , MicroARNs/metabolismo , Oryza/metabolismo , Enfermedades de las Plantas/microbiología , Superóxido Dismutasa/metabolismo , Regulación hacia Abajo , Regulación de la Expresión Génica de las Plantas , Magnaporthe , MicroARNs/genética , Modelos Biológicos , Mutación/genética , Oryza/genética , Oryza/microbiología , Especies Reactivas de Oxígeno/metabolismo
9.
Rice (N Y) ; 17(1): 1, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38170415

RESUMEN

Reactive oxygen species (ROS) act as a group of signaling molecules in rice functioning in regulation of development and stress responses. Respiratory burst oxidase homologues (Rbohs) are key enzymes in generation of ROS. However, the role of the nine Rboh family members was not fully understood in rice multiple disease resistance and yield traits. In this study, we constructed mutants of each Rboh genes and detected their requirement in rice multiple disease resistance and yield traits. Our results revealed that mutations of five Rboh genes (RbohA, RbohB, RbohE, RbohH, and RbohI) lead to compromised rice blast disease resistance in a disease nursery and lab conditions; mutations of five Rbohs (RbohA, RbohB, RbohC, RbohE, and RbohH) result in suppressed rice sheath blight resistance in a disease nursery and lab conditions; mutations of six Rbohs (RbohA, RbohB, RbohC, RbohE, RbohH and RbohI) lead to decreased rice leaf blight resistance in a paddy yard and ROS production induced by PAMPs and pathogen. Moreover, all Rboh genes participate in the regulation of rice yield traits, for all rboh mutants display one or more compromised yield traits, such as panicle number, grain number per panicle, seed setting rate, and grain weight, resulting in reduced yield per plant except rbohb and rbohf. Our results identified the Rboh family members involved in the regulation of rice resistance against multiple pathogens that caused the most serious diseases worldwide and provide theoretical supporting for breeding application of these Rbohs to coordinate rice disease resistance and yield traits.

10.
Nat Plants ; 9(2): 228-237, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36646829

RESUMEN

Crops with broad-spectrum resistance loci are highly desirable in agricultural production because these loci often confer resistance to most races of a pathogen or multiple pathogen species. Here we discover a natural allele of proteasome maturation factor in rice, UMP1R2115, that confers broad-spectrum resistance to Magnaporthe oryzae, Rhizoctonia solani, Ustilaginoidea virens and Xanthomonas oryzae pv. oryzae. Mechanistically, this allele increases proteasome abundance and activity to promote the degradation of reactive oxygen species-scavenging enzymes including peroxidase and catalase upon pathogen infection, leading to elevation of H2O2 accumulation for defence. In contrast, inhibition of proteasome function or overexpression of peroxidase/catalase-encoding genes compromises UMP1R2115-mediated resistance. More importantly, introduction of UMP1R2115 into a disease-susceptible rice variety does not penalize grain yield while promoting disease resistance. Our work thus uncovers a broad-spectrum resistance pathway integrating de-repression of plant immunity and provides a valuable genetic resource for breeding high-yield rice with multi-disease resistance.


Asunto(s)
Magnaporthe , Oryza , Resistencia a la Enfermedad/genética , Oryza/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Catalasa/genética , Catalasa/metabolismo , Alelos , Peróxido de Hidrógeno/metabolismo , Magnaporthe/metabolismo , Fitomejoramiento , Enfermedades de las Plantas , Regulación de la Expresión Génica de las Plantas
11.
Rice (N Y) ; 15(1): 40, 2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35876915

RESUMEN

Flower opening and stigma exertion are two critical traits for cross-pollination during seed production of hybrid rice (Oryza sativa L.). In this study, we demonstrate that the miR167d-ARFs module regulates stigma size and flower opening that is associated with the elongation of stamen filaments and the cell arrangement of lodicules. The overexpression of miR167d (OX167d) resulted in failed elongation of stamen filaments, increased stigma size, and morphological alteration of lodicule, resulting in cleistogamy. Blocking miR167d by target mimicry also led to a morphological alteration of the individual floral organs, including a reduction in stigma size and alteration of lodicule cell morphology, but did not show the cleistogamous phenotype. In addition, the four target genes of miR167d, namely ARF6, ARF12, ARF17, and ARF25, have overlapping functions in flower opening and stigma size. The loss-of-function of a single ARF gene did not influence the flower opening and stigma size, but arf12 single mutant showed a reduced plant height and aborted apical spikelets. However, mutation in ARF12 together with mutation in either ARF6, ARF17, or ARF25 led to the same defective phenotypes that were observed in OX167d, including the failed elongation of stamen filaments, increased stigma size, and morphological alteration of lodicule. These findings indicate that the appropriate expression of miR167d is crucial and the miR167d-ARFs module plays important roles in the regulation of flower opening and stigma size in rice.

12.
Front Plant Sci ; 13: 788876, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35498644

RESUMEN

Magnaporthe oryzae is the causative agent of rice blast, a devastating disease in rice worldwide. Based on the gene-for-gene paradigm, resistance (R) proteins can recognize their cognate avirulence (AVR) effectors to activate effector-triggered immunity. AVR genes have been demonstrated to evolve rapidly, leading to breakdown of the cognate resistance genes. Therefore, understanding the variation of AVR genes is essential to the deployment of resistant cultivars harboring the cognate R genes. In this study, we analyzed the nucleotide sequence polymorphisms of eight known AVR genes, namely, AVR-Pita1, AVR-Pii, AVR-Pia, AVR-Pik, AVR-Pizt, AVR-Pi9, AVR-Pib, and AVR-Pi54 in a total of 383 isolates from 13 prefectures in the Sichuan Basin. We detected the presence of AVR-Pik, AVR-Pi54, AVR-Pizt, AVR-Pi9, and AVR-Pib in the isolates of all the prefectures, but not AVR-Pita1, AVR-Pii, and AVR-Pia in at least seven prefectures, indicating loss of the three AVRs. We also detected insertions of Pot3, Mg-SINE, and indels in AVR-Pib, solo-LTR of Inago2 in AVR-Pizt, and gene duplications in AVR-Pik. Consistently, the isolates that did not harboring AVR-Pia were virulent to IRBLa-A, the monogenic line containing Pia, and the isolates with variants of AVR-Pib and AVR-Pizt were virulent to IRBLb-B and IRBLzt-t, the monogenic lines harboring Pib and Piz-t, respectively, indicating breakdown of resistance by the loss and variations of the avirulence genes. Therefore, the use of blast resistance genes should be alarmed by the loss and nature variations of avirulence genes in the blast fungal population in the Sichuan Basin.

13.
Mol Plant ; 15(11): 1790-1806, 2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36245122

RESUMEN

Grain formation is fundamental for crop yield but is vulnerable to abiotic and biotic stresses. Rice grain production is threatened by the false smut fungus Ustilaginoidea virens, which specifically infects rice floral organs, disrupting fertilization and seed formation. However, little is known about the molecular mechanisms of the U. virens-rice interaction and the genetic basis of floral resistance. Here, we report that U. virens secretes a cytoplasmic effector, UvCBP1, to facilitate infection of rice flowers. Mechanistically, UvCBP1 interacts with the rice scaffold protein OsRACK1A and competes its interaction with the reduced nicotinamide adenine dinucleotide phosphate oxidase OsRBOHB, leading to inhibition of reactive oxygen species (ROS) production. Although the analysis of natural variation revealed no OsRACK1A variants that could avoid being targeted by UvCBP1, expression levels of OsRACK1A are correlated with field resistance against U. virens in rice germplasm. Overproduction of OsRACK1A restores the OsRACK1A-OsRBOHB association and promotes OsRBOHB phosphorylation to enhance ROS production, conferring rice floral resistance to U. virens without yield penalty. Taken together, our findings reveal a new pathogenic mechanism mediated by an essential effector from a flower-specific pathogen and provide a valuable genetic resource for balancing disease resistance and crop yield.


Asunto(s)
Oryza , Oryza/genética , Oryza/microbiología , Especies Reactivas de Oxígeno , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Flores/genética , Flores/microbiología , Semillas
14.
Front Cell Dev Biol ; 9: 643979, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33659257

RESUMEN

Sepsis represents one of the most pressing problems in pediatrics, characterized by pathogenic bacteria invading the blood, growing and multiplying in the blood circulation, and ultimately causing severe infections. Most children with sepsis have a rapid disease onset and frequently exhibit sudden high fever or first chills. Here we performed comprehensive metabolomic profiling of plasma samples collected from pediatric sepsis patients to identify specific metabolic alterations associated with these patients (n = 84, designated as case subjects) as compared to healthy cohorts (n = 59, designated as control subjects). Diagnostic models were constructed using MetaboAnalyst, R packages, and multiple statistical methods, such as orthogonal partial least squares-discriminant analysis, principal component analysis, volcano plotting, and one-way ANOVA. Our study revealed a panel of metabolites responsible for the discrimination between case and control subjects with a high predictive value of prognosis. Moreover, significantly altered metabolites in sepsis survivors versus deceased patients (non-survivors) were identified as those involved in amino acids, fatty acids, and carbohydrates metabolism. Nine metabolites including organic acids and fatty acids were also identified with significantly higher abundance in sepsis patients with related microbes, implicating greater potentials to distinguish bacterial species using metabolomic analysis than blood culture. Pathway enrichment analysis further revealed that fatty acid metabolism might play an important role in the pathogenesis of sepsis.

15.
Rice (N Y) ; 14(1): 87, 2021 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-34674053

RESUMEN

microRNAs act as fine-tuners in the regulation of plant growth and resistance against biotic and abiotic stress. Here we demonstrate that rice miR1432 fine-tunes yield and blast disease resistance via different modules. Overexpression of miR1432 leads to compromised resistance and decreased yield, whereas blocking miR1432 using a target mimic of miR1432 results in enhanced resistance and yield. miR1432 suppresses the expression of LOC_Os03g59790, which encodes an EF-hand family protein 1 (OsEFH1). Overexpression of OsEFH1 leads to enhanced rice resistance but decreased grain yield. Further study revealed that miR1432 and OsEFH1 are differentially responsive to chitin, a fungus-derived pathogen/microbe-associated molecular pattern (PAMP/MAMP). Consistently, blocking miR1432 or overexpression of OsEFH1 improves chitin-triggered immunity responses. In contrast, overexpression of ACOT, another target gene regulating rice yield traits, has no significant effects on rice blast disease resistance. Altogether, these results indicate that miR1432 balances yield and resistance via different target genes, and blocking miR1432 can simultaneously improve yield and resistance.

16.
Front Plant Sci ; 12: 733245, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34421978

RESUMEN

Ustilaginoidea virens is a biotrophic fungal pathogen specifically colonizing rice floral organ and causes false smut disease of rice. This disease has emerged as a serious problem that hinders the application of high-yield rice cultivars, by reducing grain yield and quality as well as introducing mycotoxins. However, the pathogenic mechanisms of U. virens are still enigmatic. Here we demonstrate that U. virens employs a secreted protein UvCBP1 to manipulate plant immunity. In planta expression of UvCBP1 led to compromised chitin-induced defense responses in Arabidopsis and rice, including burst of reactive oxygen species (ROS), callose deposition, and expression of defense-related genes. In vitro-purified UvCBP1 protein competes with rice chitin receptor OsCEBiP to bind to free chitin, thus impairing chitin-triggered rice immunity. Moreover, UvCBP1 could significantly promote infection of U. virens in rice flowers. Our results uncover a mechanism of a floral fungus suppressing plant immunity and pinpoint a universal role of chitin-battlefield during plant-fungi interactions.

17.
Front Plant Sci ; 12: 729560, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34527014

RESUMEN

MicroRNAs fine-tune plant growth and resistance against multiple biotic and abiotic stresses. The trade-off between biomass and resistance can penalize crop yield. In this study, we have shown that rice miR530 regulates blast disease resistance, yield, and growth period. While the overexpression of miR530 results in compromised blast disease resistance, reduced grain yield, and late maturity, blocking miR530 using a target mimic (MIM530) leads to enhanced resistance, increased grain yield, and early maturity. Further study revealed that the accumulation of miR530 was decreased in both leaves and panicles along with the increase of age. Such expression patterns were accordant with the enhanced resistance from seedlings to adult plants, and the grain development from panicle formation to fully-filled seeds. Divergence analysis of miR530 precursor with upstream 1,000-bp promoter sequence in 11 rice species revealed that miR530 was diverse in Oryza sativa japonica and O. sativa indica group, which was consistent with the different accumulation of miR530 in japonica accessions and indica accessions. Altogether, our results indicate that miR530 coordinates rice resistance, yield, and maturity, thus providing a potential regulatory module for breeding programs aiming to improve yield and disease resistance.

18.
Front Plant Sci ; 9: 1999, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30693011

RESUMEN

Fitness cost is a common phenomenon in rice blast disease-resistance breeding. MiR396 is a highly conserved microRNA (miRNA) family targeting Growth Regulating Factor (OsGRF) genes. Mutation at the target site of miR396 in certain OsGRF gene or blocking miR396 expression leads to increased grain yield. Here we demonstrated that fitness cost can be trade-off in miR396-OsGRFs module via balancing growth and immunity against the blast fungus. The accumulation of miR396 isoforms was significantly increased in a susceptible accession, but fluctuated in a resistant accession upon infection of Magnaporthe oryzae. The transgenic lines over-expressing different miR396 isoforms were highly susceptible to M. oryzae. In contrast, overexpressing target mimicry of miR396 to block its function led to enhanced resistance to M. oryzae in addition to improved yield traits. Moreover, transgenic plants overexpressing OsGRF6, OsGRF7, OsGRF8, and OsGRF9 exhibited enhanced resistance to M. oryzae, but showed different alteration of growth. While overexpression of OsGRF7 led to defects in growth, overexpression of OsGRF6, OsGRF8, and OsGRF9 resulted in better or no significant change of yield traits. Collectively, our results indicate that miR396 negatively regulates rice blast disease- resistance via suppressing multiple OsGRFs, which in turn differentially control growth and yield. Therefore, miR396-OsGRFs could be a potential module to demolish fitness cost in rice blast disease-resistance breeding.

19.
Mol Plant Pathol ; 17(9): 1321-1330, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-26720072

RESUMEN

Villosiclava virens (Vv) is an ascomycete fungal pathogen that causes false smut disease in rice. Recent reports have revealed some interesting aspects of the enigmatic pathogen to address the question of why it specifically infects rice flowers and converts a grain into a false smut ball. Comparative and functional genomics have suggested specific adaptation of Vv in the colonization of rice flowers. Anatomical studies have disclosed that Vv specifically infects rice stamen filaments before heading and intercepts seed formation. In addition, Vv can occupy the whole inner space of a spikelet embracing all floral organs and activate the rice grain-filling network, presumably for nutrient acquisition to support the development of the false smut ball. This profile provides a general overview of the rice false smut pathogen, and summarizes advances in the Vv life cycle, genomics and genetics, and the molecular Vv-rice interaction. Current understandings of the Vv-rice pathosystem indicate that it is a unique and interesting system which can enrich the study of plant-pathogen interactions. Taxonomy: Ustilaginoidea virens is the anamorph form of the pathogen (Kingdom Fungi; Phylum Ascomycota; Class Ascomycetes; Subclass Incertae sedis; Order Incertae sedis; Family Incertae sedis; Genus Ustilaginoidea). The teleomorph form is Villosiclava virens (Kingdom Fungi; Phylum Ascomycota; Class Ascomycetes; Subclass Sordariomycetes; Order Hypocreales; Family Clavicipitaceae; Genus Villosiclava). Disease symptoms: The only visible symptom is the replacement of rice grains by ball-shaped fungal mycelia, namely false smut balls. When maturing, the false smut ball is covered with powdery chlamydospores, and the colour changes to yellowish, yellowish orange, green, olive green and, finally, to greenish black. Sclerotia are often formed on the false smut balls in autumn. Identification and detection: Vv conidia are round to elliptical, measuring 3-5 µm in diameter. Chlamydospores are ornamented with prominent irregularly curved spines, which are 200-500 nm in length. The sclerotia are black, horseshoe-shaped and irregular oblong or flat, ranging from 2 to 20 mm. Nested polymerase chain reaction (PCR) and quantitative PCR have been developed to specifically detect Vv presence in rice tissues and other biotic and abiotic samples in fields. Host range: Rice is the primary host for Vv. Natural infection by Vv has been found on several paddy field weeds, including Digitaria marginata, Panicum trypheron, Echinochloa crusgalli and Imperata cylindrica. However, the occurrence of infection in these potential alternative hosts is very rare. Life cycle: Vv infects rice spikelets at the late rice booting stage, and produces false smut balls covered with dark-green chlamydospores. Occasionally, sclerotia form on the surface of false smut balls in late autumn when the temperature fluctuates greatly between day and night. Both chlamydospores and sclerotia may serve as primary infection sources. Rainfall at the rice booting stage is a major environmental factor resulting in epidemics of rice false smut disease. Disease control: The use of fungicides is the major approach for the control of Vv. Several fungicides, such as cuproxat SC, copper oxychloride, tebuconazole, propiconazole, difenoconazole and validamycin, are often applied. However, the employment of resistant rice cultivars and genes has been limited, because of the poor understanding of rice resistance to Vv. Useful websites: Villosiclava virens genome sequence: http://www.ncbi.nlm.nih.gov/Traces/wgs/?val=JHTR01#contigs.


Asunto(s)
Ascomicetos/fisiología , Flores/microbiología , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Ascomicetos/genética , Genómica , Interacciones Huésped-Patógeno/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA