Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Molecules ; 29(13)2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38999056

RESUMEN

Studies have shown that the incorporation of fluorine into materials can improve their properties, but C-F bonds are not readily formed in nature. Although some researchers have studied the reaction of fluorinating alkenes catalyzed by hypervalent iodine, far too little attention has been paid to its reaction mechanism. This study aimed to explore the mechanism of the hypervalent iodine-catalyzed 1,4-difluorination of dienes. We found that the catalyst is favorable for the activation of C1=C2 double bonds through halogen bonds, and then two HFs interact with one F atom in the catalyst via hydrogen bonds, resulting in the cleavage of I-F bonds and the formation of [F-H∙∙∙F]-. Subsequently, the catalyst interacts with C1, and the roaming [F-H···F]- attacks C4 from the opposite side of the catalyst. After the fluorination step is completed, the nucleophile F- substitutes the catalyst via the SN2 mechanism. Our calculations demonstrated that the interaction between HF and F- is favorable for the stabilization of the transition state within the fluorination process for which the presence of two HFs in the reaction is the best. We also observed that [F-H∙∙∙F]- attacking C4 from the opposite side of the catalyst is more advantageous than attacking from the same side. This study therefore offers a novel perspective on the mechanism of the hypervalent iodine-catalyzed fluoridation of dienes.

2.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(8): 936-940, 2024 Aug 10.
Artículo en Zh | MEDLINE | ID: mdl-39097275

RESUMEN

OBJECTIVE: To explore the clinical features and genetic etiology of a child with Char syndrome. METHODS: A child who was presented at the Department of Child Health, Henan Children's Hospital in February 2022 was selected as the study subject. Clinical data of the child was collected, and peripheral blood samples of the child and her parents were collected for the extraction of genomic DNA. Whole exome sequencing was carried out, and candidate variants were verified by Sanger sequencing and bioinformatic analysis. RESULTS: The child had mainly manifested facial dysmorphism, patent ductus arteriosus, growth retardation, curving of fifth fingers and middle toes. Whole exome sequencing revealed that she has harbored a heterozygous c.944A>C (p.Glu315Ala) variant of the TFAP2B gene, which was verified to be de novo by Sanger sequencing. Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG), the variant was rated to be likely pathogenic (PM1+PM2_Supporting+PM6+PP3). CONCLUSION: The heterozygous c.944A>C (p.Glu315Ala) variant of the TFAP2B gene probably underlay the Char syndrome in this child. Above finding has expanded the mutational and phenotypic spectra of the TFAP2B gene, which has facilitated early identification and diagnosis of Char syndrome.


Asunto(s)
Factor de Transcripción AP-2 , Humanos , Factor de Transcripción AP-2/genética , Femenino , Secuenciación del Exoma , Niño , Mutación , Conducto Arterioso Permeable/genética , Preescolar , Heterocigoto , Anomalías Múltiples , Cara/anomalías , Dedos/anomalías
3.
Molecules ; 28(9)2023 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-37175329

RESUMEN

Noncovalent sulfur interactions are ubiquitous and play important roles in medicinal chemistry and organic optoelectronic materials. Quantum chemical calculations predicted that the electrostatic potentials on the surface of the sulfur atom in organic molecules could be tuned through the through-space effects of suitable substituents. This makes it possible to design different types of noncovalent sulfur interactions. The theoretical design was further confirmed by X-ray crystallographic experiments. The sulfur atom acts as the halogen atom acceptor to form the halogen bond in the cocrystal between 2,5-bis(2-pyridyl)-1,3,4-thiadiazole and 1,4-diiodotetrafluorobenzene, whereas it acts as the chalcogen atom donor to form the chalcogen bond in the cocrystal between 2,5-bis(3-pyridyl)-1,3,4-thiadiazole and 1,3,5-trifluoro-2,4,6-triiodobenzene.

4.
Semin Cancer Biol ; 75: 136-152, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-32931952

RESUMEN

Hepatocellular carcinoma(HCC) is one of the most common forms of cancer, and accounts for a high proportion of cancer-associated deaths. Growing evidences have demonstrated that non- protein-coding regions of the genome could give rise to transcripts, termed noncoding RNA (ncRNA), that form novel functional layers of the cellular activity. ncRNAs are implicated in different molecular mechanisms and functions at transcriptional, translational and post-translational levels. An increasing number of studies have demonstrated a complex array of molecular and cellular functions of ncRNAs in different stages of the HCC tumorigenesis, either in an oncogenic or tumor-suppressive manner. As a result, several pre-clinical studies have highlighted the great potentials of ncRNAs as novel biomarkers for cancer diagnosis or therapeutics in targeting HCC progression. In this review, we briefly described the characteristics of several representative ncRNAs and summarized the latest findings of their roles and mechanisms in the development of HCC, in order to better understand the cancer biology and their potential clinical applications in this malignancy.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Carcinoma Hepatocelular/patología , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/patología , ARN Largo no Codificante/genética , Animales , Biomarcadores de Tumor/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo
5.
BMC Microbiol ; 22(1): 36, 2022 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-35093006

RESUMEN

The human gut is a reservoir of antibiotic resistance genes (ARGs). Even in the absence of antibiotics, ARGs are present in large quantities in faeces of adults, children and even newborns. However, where and when ARGs are acquired remains unclear, as does the types of ARGs acquired. Herein, we recruited 82 pairs of women and their caesarean section newborns. Conventional culture methods and quantitative PCR were employed to detect nine species and six ARG types in meconia, faeces from 3-day-old newborns, amniotic fluid, colostrum, and hospital ward air samples. Furthermore, ARG transfer was explored by tracking Staphylococcus epidermidis isolated from faeces of 3-day-old newborns, colostrum and ward air samples using multi-locus sequence typing (MLST). No ARGs or microorganisms were detected in meconia or amniotic fluid. One or more ARGs were detected in 90.2% of faeces from 3-day-old newborns, and the mecA gene exhibited the highest detection rate (45.1%). ARGs were detected in 85.4% of colostra consistent with ARGs in faeces from 3-day-old newborns. Some ARGs were detected in ward air, and might also be a source of ARGs in neonatal faeces. Isolation of S. epidermidis from neonatal faeces was consistent with antibiotic resistance and gene profiles for colostrum samples. Traceability analysis of S. epidermidis showed that ARGs in neonatal faeces mainly originated from colostrum, and partly from ward air. After birth, neonates born by caesarean section obtain a variety of ARGs mainly from colostrum, and partly from ward air.


Asunto(s)
Microbiología del Aire , Bacterias/efectos de los fármacos , Lactancia Materna/estadística & datos numéricos , Cesárea/estadística & datos numéricos , Farmacorresistencia Microbiana/genética , Tracto Gastrointestinal/efectos de los fármacos , Genes Bacterianos/genética , Leche Humana , Adulto , Antibacterianos/farmacología , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Técnicas de Tipificación Bacteriana , Heces/microbiología , Femenino , Tracto Gastrointestinal/microbiología , Hospitales , Humanos , Recién Nacido , Masculino , Madres/estadística & datos numéricos , Tipificación de Secuencias Multilocus , Embarazo
6.
Hepatology ; 71(1): 112-129, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31148184

RESUMEN

To identify hepatocellular carcinoma (HCC)-implicated long noncoding RNAs (lncRNAs), we performed an integrative omics analysis by integrating mRNA and lncRNA expression profiles in HCC tissues. We identified a collection of candidate HCC-implicated lncRNAs. Among them, we demonstrated that an lncRNA, which is named as p53-stabilizing and activating RNA (PSTAR), inhibits HCC cell proliferation and tumorigenicity through inducing p53-mediated cell cycle arrest. We further revealed that PSTAR can bind to heterogeneous nuclear ribonucleoprotein K (hnRNP K) and enhance its SUMOylation and thereby strengthen the interaction between hnRNP K and p53, which ultimately leads to the accumulation and transactivation of p53. PSTAR is down-regulated in HCC tissues, and the low PSTAR expression predicts poor prognosis in patients with HCC, especially those with wild-type p53. Conclusion: This study sheds light on the tumor suppressor role of lncRNA PSTAR, a modulator of the p53 pathway, in HCC.


Asunto(s)
Carcinoma Hepatocelular/etiología , Ribonucleoproteína Heterogénea-Nuclear Grupo K/fisiología , Neoplasias Hepáticas/etiología , ARN Largo no Codificante/fisiología , Sumoilación/fisiología , Proteína p53 Supresora de Tumor/fisiología , Humanos , Células Tumorales Cultivadas
7.
Phys Chem Chem Phys ; 23(1): 388-398, 2021 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-33315040

RESUMEN

Fluorophores and hydrogen bonding interactions play key roles in the fluorescence properties of bottom-up carbon dots. In this work, an excited-state intramolecular proton-transfer (ESIPT) active fluorophore, 5-chloro-6-ethoxy-4,7-dihydroxyisoindoline-1,3-dione (CEDD) and a non-ESIPT 7-cyano-5,8-dihydroxyquinoxaline-6-carboxamide (CDQC) are extracted from 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) based carbon dots. The enol form of CEDD shows a weak blue, small Stokes shift and short lifetime emission under the aprotic or alkali conditions, but the keto form exhibits a strong green, large Stokes shift and long lifetime emission in a protic or an acidic environment. Due to the lack of the ESIPT process, CDQC has no dual emission characteristics, but shows efficient solid-state emission. By virtue of the ESIPT ability of CEDD, multiple anti-counterfeiting methods are achieved by using hydrogen chloride, ammonia, and fluorescence lifetime imaging, as well as dimethyl sulfoxide as the encryption/decryption tools.

8.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 38(3): 247-250, 2021 Mar 10.
Artículo en Zh | MEDLINE | ID: mdl-33751534

RESUMEN

OBJECTIVE: To explore the genetic basis for a Chinese pedigree with suspected mitochondrial functional defects through combined next-generation sequencing (NGS), copy number variation sequencing (CNV-seq), and mitochondrial DNA (mtDNA) sequencing. METHODS: Clinical data of the proband and his family members were collected. The patient and his parents were subjected to family-trio whole-exome sequencing (WES), CNV-seq and mtDNA variant detection. Candidate variant was verified by Sanger sequencing. RESULTS: Trio-WES revealed that the proband has carried compound heterozygous variants of the NDUFS1 gene, including a paternally derived c.64C>T (p.R22X) nonsense variant and a maternally derived c.845A>G (p.N282S) missense variant. Both variants may cause loss of protein function. No variant that may cause the phenotype was identified by CNV-seq and mtDNA variant analysis. CONCLUSION: Children with suspected mitochondrial disorders may have no specific syndromes or laboratory findings. A comprehensive strategy including mtDNA testing may facilitate the diagnosis and early clinical interventions.


Asunto(s)
Variaciones en el Número de Copia de ADN , NADH Deshidrogenasa , Niño , China , Transporte de Electrón , Humanos , Mutación , NADH Deshidrogenasa/genética , Linaje
9.
J Comput Chem ; 40(28): 2473-2481, 2019 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-31281983

RESUMEN

We investigate the effects of the electronic structure of carbon atom on the organofluorine hydrogen bonds, C─F⋯H─F. Our results show that we can modulate the strength of organofluorine hydrogen bonds by adjusting the volume of fluorine atom in C─F via changing the electronic structure of adjacent carbon atoms. Different with the conventional hydrogen bonds, we found that instead of carbon rehybridization and hyperconjugative effects, the magnitude of fluorine atomic volume plays important roles in determining the strength of the C─F⋯H─F organofluorine hydrogen bonds. The lone pair electrons at both the proximal and the vicinal carbon dramatically reinforce the strength of C─F⋯H─F organofluorine hydrogen bond with its interaction energy in the range of about 15-25 kcal/mol, that is, the carbanion-mediated organofluorine hydrogen bond could be very strong. Due to the high electronegativity of fluorine atom, it easily attracts the excess electron from the proximal and vicinal carbon, which results in the increase of its volume and negative charge. The enhanced volume of fluorine atom gives rise to the large polarization energy, and its enhanced negative charge favors the large electrostatic interaction, both of which substantially contribute to making the organofluorine hydrogen bonds strong. © 2019 Wiley Periodicals, Inc.

10.
Molecules ; 24(1)2018 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-30577501

RESUMEN

Carbon bonding is a weak interaction, particularly when a neutral molecule acts as an electron donor. Thus, there is an interesting question of how to enhance carbon bonding. In this paper, we found that the ⁻OCH3 group at the exocyclic carbon of fulvene can form a moderate carbon bond with NH3 with an interaction energy of about -10 kJ/mol. The ⁻OSiH3 group engages in a stronger tetrel bond than does the ⁻OGeH3 group, while a reverse result is found for both ⁻OSiF3 and ⁻OGeF3 groups. The abnormal order in the former is mainly due to the stronger orbital interaction in the ⁻OSiH3 complex, which has a larger deformation energy. The cyano groups adjoined to the fulvene ring not only cause a change in the interaction type, from vdW interactions in the unsubstituted system of ⁻OCF3 to carbon bonding, but also greatly strengthen tetrel bonding. The formation of tetrel bonding has an enhancing effect on the aromaticity of the fulvene ring.


Asunto(s)
Ciclopentanos/química , Carbono/química , Enlace de Hidrógeno , Modelos Moleculares , Electricidad Estática
11.
Phys Chem Chem Phys ; 19(42): 28653-28665, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-29043307

RESUMEN

Recently, graphene nanodots (GNDs) have been frequently considered as inherently heterogeneous systems, leading to multicolor emission under a changeable excitation wavelength. However, an accurate picture of the GNDs and an exhaustive structure-property correlation are still lacking. Using a two dimensional photoluminescence excitation (2D-PLE) map, molecular orbital calculation, reduction level dependent PL analysis, absorption spectroscopy and time-resolved PL spectroscopy, three cases of quasi-molecular PL are determined in ethylenediamine (EDA) reduced GNDs, including the C[double bond, length as m-dash]O related electronic state, graphenol related electronic state and large π-conjugated domains. The graphenol structure is expected to be created via nucleophilic addition-elimination reactions between epoxide groups and EDA, contributing most to the blue-shifted and enhanced PL of GNDs. The multiple quasi-molecular PL provides deeper insights into the commonly called "excitation wavelength dependent PL". An effort is made to utilize the heterogeneous photoluminescence through phosphor-based light-emitting diodes employing reduced GNDs as a phosphor, which are capable of converting blue light into white light.

12.
Anal Bioanal Chem ; 408(20): 5527-35, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27251197

RESUMEN

An innovative and effective extraction procedure based on molecularly imprinted solid-phase extraction (MISPE) was developed for the isolation of gonyautoxins 2,3 (GTX2,3) from Alexandrium minutum sample. Molecularly imprinted polymer microspheres were prepared by suspension polymerization and and were employed as sorbents for the solid-phase extraction of GTX2,3. An off-line MISPE protocol was optimized. Subsequently, the extract samples from A. minutum were analyzed. The results showed that the interference matrices in the extract were obviously cleaned up by MISPE procedures. This outcome enabled the direct extraction of GTX2,3 in A. minutum samples with extraction efficiency as high as 83 %, rather significantly, without any need for a cleanup step prior to the extraction. Furthermore, computational approach also provided direct evidences of the high selective isolation of GTX2,3 from the microalgal extracts.


Asunto(s)
Materiales Biocompatibles/síntesis química , Dinoflagelados/química , Modelos Químicos , Imagen Molecular/métodos , Saxitoxina/análogos & derivados , Extracción en Fase Sólida/métodos , Simulación por Computador , Ensayo de Materiales , Saxitoxina/química , Saxitoxina/aislamiento & purificación
13.
J Chem Phys ; 145(22): 224310, 2016 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-27984914

RESUMEN

The complexes of XH3F⋯N3-/OCN-/SCN- (X = C, Si, Ge, and Sn) have been investigated at the MP2/aug-cc-pVTZ(PP) level. The σ-hole of X atom in XH3F acts as a Lewis acid forming a tetrel bond with pseudohalide anions. Interaction energies of these complexes vary from -8 to -50 kcal/mol, mainly depending on the nature of X and pseudohalide anions. Charge transfer from N/O/S lone pair to X-F and X-H σ* orbitals results in the stabilization of these complexes, and the former orbital interaction is responsible for the large elongation of X-F bond length and the remarkable red shift of its stretch vibration. The tetrel bond in the complexes of XH3F (X = Si, Ge, and Sn) exhibits a significant degree of covalency with XH3F distorted significantly in these complexes. A breakdown of the individual forces involved attributes the stability of the interaction to mainly electrostatic energy, with a relatively large contribution from polarization. The transition state structures that connect the two minima for CH3Br⋯N3- complex have been localized and characterized. The energetic, geometrical, and topological parameters of the complexes were analyzed in the different stages of the SN2 reaction N3- + CH3Br → Br- + CH3N3.

14.
J Chem Phys ; 144(11): 114306, 2016 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-27004875

RESUMEN

Selenium-gold interaction plays an important role in crystal materials, molecular self-assembly, and pharmacochemistry involving gold. In this paper, we unveiled the mechanism and nature of selenium-gold interaction by studying complexes F2CSe⋯AuY (Y = CN, F, Cl, Br, OH, and CH3). The results showed that the formation of selenium-gold interaction is mainly attributed to the charge transfer from the lone pair of Se atom to the Au-Y anti-bonding orbital. Energy decomposition analysis indicated that the polarization energy is nearly equivalent to or exceeds the electrostatic term in the selenium-gold interaction. Interestingly, the chalcogen-gold interaction becomes stronger with the increase of chalcogen atomic mass in F2CX⋯AuCN (X = O, S, Se, and Te). The cyclic ternary complexes are formed with the introduction of NH3 into F2CSe⋯AuY, in which selenium-gold interaction is weakened and selenium-nitrogen interaction is strengthened due to the synergistic effects.

15.
Arch Environ Contam Toxicol ; 70(3): 595-606, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26215542

RESUMEN

Bioaccessibility describes the fraction of contaminants released from the food matrix into the digestive tracts of humans, which is beneficial for improving the health risk assessment of contaminants. In this study, the bioaccessibilities of cadmium (Cd), copper (Cu), and zinc (Zn) in two severely contaminated green oyster (Crassostrea angulate) and blue oyster (Crassostrea hongkongensis) populations were investigated. A human health risk assessment of these metals was then performed based on bioaccessibility measurements. Among the three metals, the bioaccessibility was the highest for Cu (42-95%), and Cd and Zn had comparable bioaccessibility (13-58%). There was no major difference in the bioaccessibility between green and blue oysters. A significant correlation between the tissue Cu and Zn concentrations was found in these highly contaminated oysters. A health risk assessment showed that all three metals in both oyster species seriously exceeded the levels recommended by the United States Environmental Protection Agency. Thus, oysters from these locations, and the metals contained therein, presented quite high risks for human consumption, which should be a great cause of concern. A significant relationship was only found between metal bioaccessibility and its tissue concentration instead of between metal bioaccessibility and subcellular distribution. In addition, a significant relationship was only observed between metal health risks and its tissue concentration. The influence of metal bioaccessibilities on the health risks was limited. This may suggest that in the case of the colored oysters examined in this study, metal concentration instead of metal subcellular distribution could be the driving factor of the metal bioaccessibility, and metal concentration, instead of metal bioaccessibility, could be the driving factor of the metal health risks.


Asunto(s)
Cadmio/análisis , Cobre/análisis , Crassostrea/química , Monitoreo del Ambiente , Contaminantes Químicos del Agua/análisis , Zinc/análisis , Animales , Humanos , Mariscos
16.
Arch Environ Contam Toxicol ; 71(1): 133-45, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26498763

RESUMEN

Ready biodegradation is the primary biodegradability of a compound, which is used for discriminating whether a compound could be rapidly and readily biodegraded in the natural ecosystems in a short period and has been applied extensively in the environmental risk assessment of many chemicals. In this study, the effects of 24 molecular properties (including 2 physicochemical parameters, 10 geometrical parameters, 6 topological parameters, and 6 electronic parameters) on the ready biodegradation of 24 kinds of synthetic aromatic compounds were investigated using the OECD 301B CO2 Evolution test. The relationship between molecular properties and ready biodegradation of these aromatic compounds varied with molecular properties. A significant inverse correlation was found for the topological parameter TD, five geometrical parameters (Rad, CAA, CMA, CSEV, and N c), and the physicochemical parameter K ow, and a positive correlation for two topological parameters TC and TVC, whereas no significant correlation was observed for any of the electronic parameters. Based on the correlations between molecular properties and ready biodegradation of these aromatic compounds, the importance of molecular properties was demonstrated as follows: geometrical properties > topological properties > physicochemical properties > electronic properties. Our study first demonstrated the effects of molecular properties on ready biodegradation by a number of experiment data under the same experimental conditions, which should be taken into account to better guide the ready biodegradation tests and understand the mechanisms of the ready biodegradation of aromatic compounds.


Asunto(s)
Dióxido de Carbono/química , Hidrocarburos Aromáticos/química , Modelos Químicos , Biodegradación Ambiental , Ecosistema , Monitoreo del Ambiente , Organización para la Cooperación y el Desarrollo Económico , Medición de Riesgo
17.
Nano Lett ; 15(1): 586-95, 2015 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-25521257

RESUMEN

The inability to synthesize single-wall carbon nanotubes (SWCNTs) possessing uniform electronic properties and chirality represents the major impediment to their widespread applications. Recently, there is growing interest to explore and synthesize well-defined carbon nanostructures, including fullerenes, short nanotubes, and sidewalls of nanotubes, aiming for controlled synthesis of SWCNTs. One noticeable advantage of such processes is that no metal catalysts are used, and the produced nanotubes will be free of metal contamination. Many of these methods, however, suffer shortcomings of either low yield or poor controllability of nanotube uniformity. Here, we report a brand new approach to achieve high-efficiency metal-free growth of nearly pure SWCNT semiconductors, as supported by extensive spectroscopic characterization, electrical transport measurements, and density functional theory calculations. Our strategy combines bottom-up organic chemistry synthesis with vapor phase epitaxy elongation. We identify a strong correlation between the electronic properties of SWCNTs and their diameters in nanotube growth. This study not only provides material platforms for electronic applications of semiconducting SWCNTs but also contributes to fundamental understanding of the growth mechanism and controlled synthesis of SWCNTs.

18.
Molecules ; 21(2)2016 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-26861280

RESUMEN

A total of forty novel glycyrrhetinic acid (GA) derivatives were designed and synthesized. The cytotoxic activity of the novel compounds was tested against two human breast cancer cell lines (MCF-7, MDA-MB-231) in vitro by the MTT method. The evaluation results revealed that, in comparison with GA, compound 42 shows the most promising anticancer activity (IC50 1.88 ± 0.20 and 1.37 ± 0.18 µM for MCF-7 and MDA-MB-231, respectively) and merits further exploration as a new anticancer agent.


Asunto(s)
Antineoplásicos/síntesis química , Ácido Glicirretínico/análogos & derivados , Ácido Glicirretínico/síntesis química , Antineoplásicos/farmacología , Supervivencia Celular/efectos de los fármacos , Doxorrubicina/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Ácido Glicirretínico/farmacología , Humanos , Concentración 50 Inhibidora , Células MCF-7
19.
Yi Chuan ; 38(5): 363-90, 2016 05.
Artículo en Zh | MEDLINE | ID: mdl-27232486

RESUMEN

Steady progress has been achieved in the medical genetics in China in 2015, as numerous original researches were published in the world's leading journals. Chinese scientists have made significant contributions to various fields of medical genetics, such as pathogenicity of rare diseases, predisposition of common diseases, somatic mutations of cancer, new technologies and methods, disease-related microRNAs (miRNAs), disease-related long non-coding RNAs (lncRNAs), disease-related competing endogenous RNAs (ceRNAs), disease-related RNA splicing and molecular evolution. In these fields, Chinese scientists have gradually formed the tendency, from common variants to rare variants, from single omic analyses to multipleomics integration analyses, from genetic discovery to functional confirmation, from basic research to clinical application. Meanwhile, the findings of Chinese scientists have been drawn great attentions of international peers. This review aims to provide an overall picture of the front in Chinese medical genetics, and highlights the important findings and their research strategy.


Asunto(s)
Genética Médica , Metilación de ADN , Evolución Molecular , Predisposición Genética a la Enfermedad , Humanos , MicroARNs/fisiología , Mutación , Neoplasias/genética , Enfermedades Raras/genética
20.
J Am Chem Soc ; 137(29): 9281-8, 2015 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-26148208

RESUMEN

We present quantum chemical simulations demonstrating how single-walled carbon nanotubes (SWCNTs) form, or "nucleate", on the surface of Al2O3 nanoparticles during chemical vapor deposition (CVD) using CH4. SWCNT nucleation proceeds via the formation of extended polyyne chains that only interact with the catalyst surface at one or both ends. Consequently, SWCNT nucleation is not a surface-mediated process. We demonstrate that this unusual nucleation sequence is due to two factors. First, the π interaction between graphitic carbon and Al2O3 is extremely weak, such that graphitic carbon is expected to desorb at typical CVD temperatures. Second, hydrogen present at the catalyst surface actively passivates dangling carbon bonds, preventing a surface-mediated nucleation mechanism. The simulations reveal hydrogen's reactive chemical pathways during SWCNT nucleation and that the manner in which SWCNTs form on Al2O3 is fundamentally different from that observed using "traditional" transition metal catalysts.


Asunto(s)
Óxido de Aluminio/química , Metano/química , Simulación de Dinámica Molecular , Nanotubos de Carbono/química , Catálisis , Hidrógeno/química , Conformación Molecular , Nanopartículas/química , Teoría Cuántica , Silicio/química , Volatilización
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA