Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 499
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 17(5): 495-504, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27019227

RESUMEN

Aberrant nucleic acids generated during viral replication are the main trigger for antiviral immunity, and mutations that disrupt nucleic acid metabolism can lead to autoinflammatory disorders. Here we investigated the etiology of X-linked reticulate pigmentary disorder (XLPDR), a primary immunodeficiency with autoinflammatory features. We discovered that XLPDR is caused by an intronic mutation that disrupts the expression of POLA1, which encodes the catalytic subunit of DNA polymerase-α. Unexpectedly, POLA1 deficiency resulted in increased production of type I interferons. This enzyme is necessary for the synthesis of RNA:DNA primers during DNA replication and, strikingly, we found that POLA1 is also required for the synthesis of cytosolic RNA:DNA, which directly modulates interferon activation. Together this work identifies POLA1 as a critical regulator of the type I interferon response.


Asunto(s)
ADN Polimerasa I/metabolismo , ADN/biosíntesis , Interferón Tipo I/metabolismo , ARN/biosíntesis , Secuencia de Bases , Células Cultivadas , Citosol/metabolismo , ADN/genética , ADN Polimerasa I/genética , Salud de la Familia , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , Perfilación de la Expresión Génica , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Enfermedades Genéticas Ligadas al Cromosoma X/metabolismo , Células HEK293 , Células HeLa , Humanos , Immunoblotting , Masculino , Microscopía Confocal , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Linaje , Trastornos de la Pigmentación/genética , Trastornos de la Pigmentación/metabolismo , ARN/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
2.
Nat Immunol ; 16(9): 927-32, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26193080

RESUMEN

Natural killer (NK) cells have traditionally been considered nonspecific components of innate immunity, but recent studies have shown features of antigen-specific memory in mouse NK cells. However, it has remained unclear whether this phenomenon also exists in primates. We found that splenic and hepatic NK cells from SHIV(SF162P3)-infected and SIV(mac251)-infected macaques specifically lysed Gag- and Env-pulsed dendritic cells in an NKG2-dependent fashion, in contrast to NK cells from uninfected macaques. Moreover, splenic and hepatic NK cells from Ad26-vaccinated macaques efficiently lysed antigen-matched but not antigen-mismatched targets 5 years after vaccination. These data demonstrate that robust, durable, antigen-specific NK cell memory can be induced in primates after both infection and vaccination, and this finding could be important for the development of vaccines against HIV-1 and other pathogens.


Asunto(s)
Células Dendríticas/inmunología , VIH-1/inmunología , Células Asesinas Naturales/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Virus de la Inmunodeficiencia de los Simios/inmunología , Vacunas contra el SIDA/inmunología , Animales , Memoria Inmunológica , Células Asesinas Naturales/metabolismo , Hígado/citología , Hígado/inmunología , Macaca mulatta , Receptores Similares a Lectina de Células NK/metabolismo , Bazo/citología , Bazo/inmunología
3.
J Neurosci ; 43(13): 2381-2397, 2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-36813576

RESUMEN

The mechanisms of many diseases, including central nervous system disorders, are regulated by circadian rhythms. The development of brain disorders such as depression, autism, and stroke is strongly associated with circadian cycles. Previous studies have shown that cerebral infarct volume is smaller at night (active phase) than during the day (inactive phase) in ischemic stroke rodent models. However, the underlying mechanisms remain unclear. Increasing evidence suggests that glutamate systems and autophagy play important roles in the pathogenesis of stroke. Here, we report that GluA1 expression was decreased and autophagic activity was increased in active-phase male mouse models of stroke compared with the inactive-phase models. In the active-phase model, induction of autophagy decreased the infarct volume, whereas inhibition of autophagy increased the infarct volume. Meanwhile, GluA1 expression was decreased following activation of autophagy and increased following inhibition of autophagy. We used Tat-GluA1 to uncouple p62, an autophagic adapter, from GluA1 and found that this blocked the degradation of GluA1, an effect similar to that of inhibition of autophagy in the active-phase model. We also demonstrated that knock-out of the circadian rhythm gene Per1 abolished the circadian rhythmicity of the volume of infarction and also abolished GluA1 expression and autophagic activity in wild-type (WT) mice. Our results suggest an underlying mechanism by which the circadian rhythm participates in the autophagy-dependent regulation of GluA1 expression, which influences the volume of infarction in stroke.SIGNIFICANCE STATEMENT Circadian rhythms affect the pathophysiological mechanisms of disease. Previous studies suggested that circadian rhythms affect the infarct volume in stroke, but the underlying mechanisms remain largely unknown. Here, we demonstrate that the smaller infarct volume after middle cerebral artery occlusion/reperfusion (MCAO/R) during the active phase is related to lower GluA1 expression and activation of autophagy. The decrease in GluA1 expression during the active phase is mediated by the p62-GluA1 interaction, followed by direct autophagic degradation. In short, GluA1 is the substrate of autophagic degradation, which mainly occurs after MCAO/R during the active phase but not the inactive phase.


Asunto(s)
Isquemia Encefálica , Daño por Reperfusión , Accidente Cerebrovascular , Masculino , Ratones , Animales , Daño por Reperfusión/metabolismo , Isquemia Encefálica/metabolismo , Accidente Cerebrovascular/patología , Infarto de la Arteria Cerebral Media/patología , Ritmo Circadiano , Autofagia/fisiología
4.
Neurobiol Dis ; 194: 106468, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38460801

RESUMEN

Intracerebral hemorrhage (ICH) is a subtype of stroke marked by elevated mortality and disability rates. Recently, mounting evidence suggests a significant role of ferroptosis in the pathogenesis of ICH. Through a combination of bioinformatics analysis and basic experiments, our goal is to identify the primary cell types and key molecules implicated in ferroptosis post-ICH. This aims to propel the advancement of ferroptosis research, offering potential therapeutic targets for ICH treatment. Our study reveals pronounced ferroptosis in microglia and identifies the target gene, cathepsin B (Ctsb), by analyzing differentially expressed genes following ICH. Ctsb, a cysteine protease primarily located in lysosomes, becomes a focal point in our investigation. Utilizing in vitro and in vivo models, we explore the correlation between Ctsb and ferroptosis in microglia post-ICH. Results demonstrate that ICH and hemin-induced ferroptosis in microglia coincide with elevated levels and activity of Ctsb protein. Effective alleviation of ferroptosis in microglia after ICH is achieved through the inhibition of Ctsb protease activity and protein levels using inhibitors and shRNA. Additionally, a notable increase in m6A methylation levels of Ctsb mRNA post-ICH is observed, suggesting a pivotal role of m6A methylation in regulating Ctsb translation. These research insights deepen our comprehension of the molecular pathways involved in ferroptosis after ICH, underscoring the potential of Ctsb as a promising target for mitigating brain damage resulting from ICH.


Asunto(s)
Lesiones Encefálicas , Catepsina B , Ferroptosis , Microglía , Humanos , Lesiones Encefálicas/metabolismo , Catepsina B/genética , Catepsina B/metabolismo , Hemorragia Cerebral/patología , Microglía/metabolismo , Animales , Ratones
5.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(1): 75-80, 2024 Jan 10.
Artículo en Zh | MEDLINE | ID: mdl-38171563

RESUMEN

OBJECTIVE: To analyze the clinical data and genetic characteristics of a child with CLN1 neuronal ceroid lipofuscinosis in conjunct with Hereditary hyperferritinemia cataract syndrome (HHCS). METHODS: A child who was admitted to the PICU of the First Affiliated Hospital of Zhengzhou University in November 2020 was selected as the study subject. Clinical data of the child was collected. Genetic testing was carried out for the child, and the result was analyzed in the light of literature review to explore the clinical and genetic characteristics to facilitate early identification. RESULTS: The patient, a 3-year-old male, had mainly presented with visual impairment, progressive cognitive and motor regression, and epilepsy. Cranial magnetic resonance imaging revealed deepened sulci in bilateral cerebral hemispheres, and delayed myelination. The activity of palmitoyl protein thioesterase was low (8.4 nmol/g/min, reference range: 132.2 ~ 301.4 nmol/g/min), whilst serum ferritin was increased (2417.70 ng/mL, reference range: 30 ~ 400 ng/ml). Fundoscopy has revealed retinal pigment degeneration. Whole exome sequencing revealed that he has harbored c.280A>C and c.124-124+3delG compound heterozygous variants of the PPT1 gene, which were respectively inherited from his father and mother. Neither variant has been reported previously. The child has also harbored a heterozygous c.-160A>G variant of the FTL gene, which was inherited from his father. Based on the clinical phenotype and results of genetic testing, the child was diagnosed as CLN1 and HHCS. CONCLUSION: The compound heterozygous variants of the PPT1 gene probably underlay the disorders in this child. For children with CLN1 and rapidly progressing visual impairment, ophthalmological examination should be recommended, and detailed family history should be taken For those suspected for HHCS, genetic testing should be performed to confirm the diagnosis.


Asunto(s)
Catarata , Lipofuscinosis Ceroideas Neuronales , Preescolar , Humanos , Masculino , Catarata/genética , Pruebas Genéticas , Mutación , Lipofuscinosis Ceroideas Neuronales/diagnóstico , Lipofuscinosis Ceroideas Neuronales/genética , Lipofuscinosis Ceroideas Neuronales/patología , Trastornos de la Visión/genética
6.
J Neurosci ; 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35654605

RESUMEN

Cerebral ischemia-reperfusion injury in ischemic penumbra is accountable for poor outcome of ischemic stroke patients receiving recanalization therapy. Compelling evidence previously demonstrated a dual role of autophagy in stroke. This study aimed to understand the traits of autophagy in the ischemic penumbra and the potential mechanism that switches the dual role of autophagy. We found that autophagy induction by rapamycin and lithium carbonate performed before ischemia reduced neurological deficits and infarction, while autophagy induction after reperfusion had the opposite effect in the male murine middle cerebral artery occlusion/reperfusion model, both of which were eliminated in mice lacking autophagy (Atg7flox/flox; Nestin-Cre). Autophagic flux determination showed that reperfusion led to a blockage of axonal autophagosome retrograde transport in neurons, which then led to autophagic flux damage. Then, we found that ischemia-reperfusion induced changes in the protein levels of Sec22b and Ykt6 in neurons, two autophagosome transport-related factors, in which Sec22b significantly increased and Ykt6 significantly decreased. In the absence of exogenous autophagy induction, Sec22b knockdown and Ykt6 overexpression significantly alleviated autophagic flux damage, infarction, and neurological deficits in neurons or murine exposed to cerebral ischemia-reperfusion in an autophagy-dependent manner. Furthermore, Sec22b knockdown and Ykt6 overexpression switched the outcome of rapamycin post-treatment from deterioration to neuroprotection. Thus, Sec22b and Ykt6 play key roles in neuronal autophagic flux, and modest regulation of Sec22b and Ykt6 may help to reverse the failure of targeting autophagy induction to improve the prognosis of ischemic stroke.Significance Statement:The highly polarized architecture of neurons with neurites presents challenges for material transport, such as autophagosomes, which form at the neurite tip and need to be transported to the cell soma for degradation. Here, we demonstrate that Sec22b and Ykt6 act as autophagosome porters and play an important role in maintaining the integrity of neuronal autophagic flux. Ischemia-reperfusion-induced excess Sec22b and loss of Ykt6 in neurons lead to axonal autophagosome retrograde trafficking failure, autophagic flux damage, and finally neuronal injury. Facilitated axonal autophagosome retrograde transport by Sec22b knockdown and Ykt6 overexpression may reduce ischemia-reperfusion-induced neuron injury and extend the therapeutic window of pharmacological autophagy induction for neuroprotection.

7.
Clin Infect Dis ; 76(3): e416-e425, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35607802

RESUMEN

BACKGROUND: Patterns of shedding replication-competent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in severe or critical COVID-19 are not well characterized. We investigated the duration of replication-competent SARS-CoV-2 shedding in upper and lower airway specimens from patients with severe or critical coronavirus disease 2019 (COVID-19). METHODS: We enrolled patients with active or recent severe or critical COVID-19 who were admitted to a tertiary care hospital intensive care unit (ICU) or long-term acute care hospital (LTACH) because of COVID-19. Respiratory specimens were collected at predefined intervals and tested for SARS-CoV-2 using viral culture and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Clinical and epidemiologic metadata were reviewed. RESULTS: We collected 529 respiratory specimens from 78 patients. Replication-competent virus was detected in 4 of 11 (36.3%) immunocompromised patients up to 45 days after symptom onset and in 1 of 67 (1.5%) immunocompetent patients 10 days after symptom onset (P = .001). All culture-positive patients were in the ICU cohort and had persistent or recurrent symptoms of COVID-19. Median time from symptom onset to first specimen collection was 15 days (range, 6-45) for ICU patients and 58.5 days (range, 34-139) for LTACH patients. SARS-CoV-2 RNA was detected in 40 of 50 (80%) ICU patients and 7 of 28 (25%) LTACH patients. CONCLUSIONS: Immunocompromise and persistent or recurrent symptoms were associated with shedding of replication-competent SARS-CoV-2, supporting the need for improving respiratory symptoms in addition to time as criteria for discontinuation of transmission-based precautions. Our results suggest that the period of potential infectiousness among immunocompetent patients with severe or critical COVID-19 may be similar to that reported for patients with milder disease.


Asunto(s)
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2/genética , ARN Viral/genética , Sistema Respiratorio , Manejo de Especímenes , Esparcimiento de Virus
8.
BMC Genomics ; 24(1): 640, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37875805

RESUMEN

BACKGROUND: The study was conducted to find out the candidate microRNA (miRNA) and genes that associated with sperm motility of Yili goose through small RNA sequencing of testicular tissue of Yili goose, and provide a theoretical basis for the study of the regulation mechanism of sperm motility of Yili goose gander. RESULTS: In this study, five male geese with high sperm motility and five male geese with low sperm motility were slaughtered to obtain their testis tissues for small RNA sequencing, and biological information methods were used for data analysis. The results showed that a total of 1575 known miRNAs and 68 novel miRNAs were identified in the testis tissue of Yili goose, and 71 differentially expressed miRNAs and 660 differentially expressed genes were screened. GO functional analysis showed that miRNAs target genes were mainly involved in the binding, kinase activity, structural constituent of cytoskeleton and intermediate filament cytoskeleton. KEGG functional analysis showed that miRNAs target genes were significantly enriched in arginine and proline metabolism, glycolysis / gluconeogenesis, fructose and mannose metabolism and beta-Alanine metabolism and other pathways. miRNAs-mRNAs interaction network suggests miR-140/miR-140-3p/miR-140-3p-NKAIN3, let-7d-BTG1 and miR-145-5p/miR -145a-5p-CLEC2E may play an important role in testis development and spermatogenesis. CONCLUSIONS: The results of this study suggest that the sperm motility of Yili goose may be regulated by different miRNAs, and the target genes are significantly enriched in pathways related to sperm metabolism, indicating that miRNAs affect the sperm motility of Yili goose by regulating the metabolic process of sperm and the expression of related genes. This study can provide a reference for revealing the regulation mechanism of Yili goose sperm motility at the molecular level.


Asunto(s)
MicroARNs , Animales , Masculino , MicroARNs/genética , MicroARNs/metabolismo , Testículo/metabolismo , Gansos/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Motilidad Espermática , Semen/metabolismo , Perfilación de la Expresión Génica
9.
BMC Genomics ; 24(1): 704, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37993775

RESUMEN

BACKGROUND: Eggshell speckle phenotype is an important trait in poultry production because they affect eggshell quality. However, the genetic architecture of speckled eggshells remains unclear. In this study, we determined the heritability of eggshell speckles and conducted a genome-wide association study (GWAS) on purebred Rhode Island Red (RIR) hens at 28 weeks to detect potential genomic loci and candidate genes associated with eggshell speckles. RESULTS: The heritability of eggshell speckles was 0.35 at 28 weeks, and the speckle level is not related to other eggshell quality traits in terms of phenotypic correlation. We detected 311 SNPs (6 significantly, and 305 suggestively associated) and 39 candidate genes associated with eggshell speckles. Based on the pathway analysis, the 39 candidate genes were mainly involved in alpha-linolenic acid metabolism, linoleic acid metabolism, ether lipid metabolism, GnRH signaling pathway, vascular smooth muscle contraction, and MAPK signaling pathway. Ultimately, ten genes, LOC423226, SPTBN5, EHD4, LOC77155, TYRO3, ITPKA, DLL4, PLA2G4B, PLA2G4EL5, and PLA2G4EL6 were considered the most promising genes associated with eggshell speckles that were implicated in immunoregulation, calcium transport, and phospholipid metabolism, while its function in laying hens requires further studies. CONCLUSIONS: This study provides new insights into understanding the genetic basis of eggshell speckles and has practical application value for the genetic improvement of eggshell quality.


Asunto(s)
Cáscara de Huevo , Estudio de Asociación del Genoma Completo , Animales , Femenino , Cáscara de Huevo/metabolismo , Pollos/genética , Genoma , Fenotipo
10.
J Neurochem ; 164(1): 94-114, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36424866

RESUMEN

Necroptosis-mediated cell death is an important mechanism in intracerebral hemorrhage (ICH)-induced secondary brain injury (SBI). Our previous study has demonstrated that receptor-interacting protein 1 (RIP1) mediated necroptosis in SBI after ICH. However, further mechanisms, such as the roles of receptor-interacting protein 3 (RIP3), mixed lineage kinase domain-like protein (MLKL), and Ca2+ /calmodulin-dependent protein kinase II (CaMK II), remain unclear. We hypothesized that RIP3, MLKL, and CaMK II might participate in necroptosis after ICH, including their phosphorylation. The ICH model was induced by autologous blood injection. First, we found the activation of necroptosis after ICH in brain tissues surrounding the hematoma (propidium iodide staining). Meanwhile, the phosphorylation and expression of RIP3, MLKL, and CaMK II were differently up-regulated (western blotting and immunofluorescent staining). The specific inhibitors could suppress RIP3, MLKL, and CaMK II (GSK'872 for RIP3, necrosulfonamide for MLKL, and KN-93 for CaMK II). We found the necroptosis surrounding the hematoma and the concrete interactions in RIP3-MLKL/RIP3-CaMK II also both decreased after the specific intervention (co-immunoprecipitation). Then we conducted the short-/long-term neurobehavioral tests, and the rats with specific inhibition mostly had better performance. We also found less blood-brain barrier (BBB) injury, and less neuron loss (Nissl staining) in intervention groups, which supported the neurobehavioral tests. Besides, oxidative stress and inflammation were also alleviated with intervention, which had significant less reactive oxygen species (ROS), tumor necrosis factor (TNF)-α, lactate dehydrogenase (LDH), Iba1, and GFAP surrounding the hematoma. These results confirmed that RIP3-phosphorylated MLKL and CaMK II participate in ICH-induced necroptosis and could provide potential targets for the treatment of ICH patients.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Necroptosis , Proteínas Quinasas , Proteína Serina-Treonina Quinasas de Interacción con Receptores , Animales , Ratas , Apoptosis , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Hemorragia Cerebral , Hematoma , Necrosis , Neuronas , Factor de Necrosis Tumoral alfa , Proteínas Quinasas/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo
11.
J Neurochem ; 166(5): 830-846, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37434423

RESUMEN

The pathological hallmark of Parkinson's disease (PD) is the intraneuronal accumulation of misfolded alpha-synuclein (termed Lewy bodies) in dopaminergic neurons of substantia nigra par compacta (SNc). It is assumed that the α-syn pathology is induced by gastrointestinal inflammation and then transfers to the brain by the gut-brain axis. Therefore, the relationship between gastrointestinal inflammation and α-syn pathology leading to PD remains to be investigated. In our study, rotenone (ROT) oral administration induces gastrointestinal tract (GIT) inflammation in mice. In addition, we used pseudorabies virus (PRV) for tracing studies and performed behavioral testing. We observed that ROT treatments enhance macrophage activation, inflammatory mediator expression, and α-syn pathology in the GIT 6-week post-treatment (P6). Moreover, pathological α-syn was localized with IL-1R1 positive neural cells in GIT. In line with these findings, we also find pS129-α-syn signals in the dorsal motor nucleus of the vagus (DMV) and tyrosine hydroxylase in the nigral-striatum dynamically change from 3-week post-treatment (P3) to P6. Following that, pS129-α-syn was dominant in the enteric neural cell, DMV, and SNc, accompanied by microglial activation, and these phenotypes were absent in IL-1R1r/r mice. These data suggest that IL-1ß/IL-1R1-dependent inflammation of GIT can induce α-syn pathology, which then propagates to the DMV and SNc, resulting in PD.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Animales , Ratones , alfa-Sinucleína/metabolismo , Encéfalo/metabolismo , Neuronas Dopaminérgicas/metabolismo , Tracto Gastrointestinal/metabolismo , Cuerpos de Lewy/metabolismo , Enfermedad de Parkinson/metabolismo
12.
Neurochem Res ; 48(6): 1925-1944, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36757575

RESUMEN

Subarachnoid hemorrhage (SAH) is associated with circadian rhythm abnormalities, in which REV-ERBα plays a major regulatory role. Our ambition was to investigate the capacity of REV-ERBα to inhibit neuronal neuroapoptosis induced by early brain injury (EBI) after SAH. The endovascular perforation model was used to produce experimental SAH in Sprague-Dawley rats. Specific small-interfering RNA was used to downregulate the expression REV-ERBα while SR9009 was used to upregulate the expression before assessments. Short- and long-term neurobehavior assessments, immunofluorescence staining, TUNEL staining, Nissl staining, brain water content, and Western blot were performed. The expression level of endogenous REVERBα tended to increase and then decrease after SAH and peaked at 48 h. REV-ERBα upregulation diminished neuronal apoptosis and enhanced neurological function deficits. Meanwhile, REV-ERBα downregulation aggravated the damage. Furthermore, the levels of downstream proteins of REV-ERBα (i.e., brain and muscle ARNT-like 1 (BMAL1) and circadian locomotor output cycles kaput (CLOCK)) changed accordingly with REV-ERBα regulation. REV-ERBα may attenuate neuronal apoptosis in EBI after SAH through the BMAL1/CLOCK pathway.


Asunto(s)
Lesiones Encefálicas , Hemorragia Subaracnoidea , Ratas , Animales , Ratas Sprague-Dawley , Factores de Transcripción ARNTL , Hemorragia Subaracnoidea/metabolismo , Lesiones Encefálicas/metabolismo , Ritmo Circadiano
13.
Annu Rev Psychol ; 73: 547-574, 2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34587781

RESUMEN

This article covers recent research activities in educational psychology that have an interdisciplinary emphasis and that accommodate twenty-first-century skills in addition to the traditional foundations of literacy, numeracy, science, reasoning (problem-solving), and academic subject matter. We emphasize digital technologies because they are capable of tracking learning data in rich detail and reliably delivering interventions that are tailored to individual learners in particular sociocultural contexts. This is a departure from inflexible pedagogical approaches that previously have been routinely adopted in most classrooms and other contexts of instruction with no precise record of learning and instructional activities. A good design of educational technology embraces the principles of learning science, identifies the basic types of learning that are needed, implements relevant technological affordances, and accommodates feedback from different stakeholders. This article covers research in literacy, collaborative problem-solving, motivation, emotion, and science, technology, engineering, and mathematics (STEM) areas.


Asunto(s)
Psicología Educacional , Tecnología , Tecnología Educacional , Humanos , Aprendizaje , Matemática
14.
Appl Opt ; 62(7): 1865-1870, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37132940

RESUMEN

In order to explore the application of terahertz (THz) vortex beams in 3D dielectric-coated target detection and imaging, scattering characteristics of a THz Bessel vortex beam by 3D dielectric-coated conducting targets are investigated in terms of the combination of planewave angular spectrum expansion and a physics optics method in this paper. The accuracy of the proposed method is verified by comparing with the results of FEKO software. The scattering characteristics of a THz Bessel vortex beam by several typical 3D dielectric-coated targets are analyzed in detail. The effects of the beam parameters (topological charge, half-cone angle, incident angle and frequency) are discussed. The results show that with an increase of topological charge, the magnitude of the radar cross section (RCS) decreases, and the maximum value moves away from the incident direction gradually; the distribution of the RCS does not keep symmetry as the incident angle increases, and the corresponding orbital angular momentum state distribution of the far-scattered field is distorted remarkably.

15.
Anim Genet ; 54(6): 763-771, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37726929

RESUMEN

The Swan goose and Greylag goose are species of geese native to East Asia and Europe, respectively, and are widely believed to be the ancestors of Chinese and European domesticated geese. The Yili goose (YL) and European domestic geese originated from the Greylag goose, but the history of domestication is unclear. In this study, we sequenced and analyzed the genome of the YL goose and the Hortobagy goose to combine with other previously sequenced goose populations for in-depth analysis. The population genetic variations in Stone geese, East Zhejiang White Geese, Taihu geese and Zi geese were also identified and compared. The results showed that admixture gene flow existed in the YL geese population, which was introgressed by Chinese geese, suggesting that gene flow events were frequent and widespread among domesticated geese. Further selected sweep analysis identified candidate genes and metabolic pathways that may be related to the differences in morphology. Several genes such as TGFBR3L, CMYA5, FOXD1, ARHGEF28 and SUCLG2 are associated with growth, reproduction and fertility traits. The results of this study will help to understand the genetic characteristics of domestic geese and the genes affecting important traits and provide a basis for the improved breed of domestic geese.


Asunto(s)
Gansos , Genómica , Animales , Gansos/genética , Europa (Continente) , Domesticación , Secuencia de Bases
16.
Chem Biodivers ; 20(3): e202200768, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36694378

RESUMEN

Mexican tea (Dysphania ambrosioides (L.) Mosyakin & Clemants) is rich in phenolic acids and flavonoids and could be a potential medicinal herb that can be used for prevention of human hepatocellular carcinoma. The objective of this study was to elaborate the possible mechanism for the prevention or treatment of hepatocellular carcinoma using Mexican tea, and to provide new avenues for the utilization of the invasive plant. In this study, the D. ambrosioides seed extracts (CSE) were analyzed by gas chromatography-mass spectrometry, and the effects of CSE on proliferation, migration, invasion, and gene expression of SMMC-7721 cells were investigated. Eight compounds were identified in CSE, and the compound with the highest content was ascaridole (25.82 %). The proliferation was significantly inhibited by CSE (p<0.05), and IC50 values were 0.587 g/L, 0.360 g/L, and 0.361 g/L at 24 h, 36 h, and 48 h, respectively. Migration and invasion were significantly inhibited (p<0.05). The network pharmacology and transcriptome analysis indicated that 2-hydroxy-2,6,6-trimethylbicyclo[3.1.1]heptan-3-one, cis-11-eicosenoic acid and 2-ethylcyclohexanone might be the active compounds. Transcriptome analysis indicated that the Wnt signaling pathway, which is related to migration and invasion, was significantly altered; this was verified by western blot assay. The expression of wnt11, lef1 and mmp7 genes in SMMC-7721 cells was significantly down-regulated (p<0.05), while gsk-3ß was significantly up-regulated (p<0.05). These results indicate that CSE inhibits the invasion and migration of SMMC-7721 cells in hepatocellular carcinoma through the Wnt signaling pathway.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Extractos Vegetales , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Glucógeno Sintasa Quinasa 3 beta , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Extractos Vegetales/química , Extractos Vegetales/farmacología ,
17.
J Adv Nurs ; 79(2): 652-663, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36484162

RESUMEN

AIM: In this study, a person-centred approach was used to analyse career success profiles and explore the associated psychosocial factors among nurses. DESIGN: A cross-sectional study was conducted from 15 April to 15 October 2019. METHODS: A total of 1155 registered Chinese nurses were recruited from two general hospitals using convenience sampling. Participants completed a printed questionnaire, including the Maslach Burnout Inventory, Stress of Conscience Questionnaire, Practice Environment Scale, and Career Success Scale. Latent profile analysis and multinomial logistic regression were performed. The data were analysed with Mplus 8.3 and SPSS version 26.0. RESULTS: Three latent profiles of career success were identified: high, moderate and low. Nurses with lower educational levels, more years of work experience, lower emotional exhaustion, higher personal achievement, lower stress of conscience and higher participation in hospital affairs were more likely to have higher career success than the other profiles. CONCLUSIONS: Burnout, stress of conscience, practice environment, educational level and years of work experience were associated with career success among nurses. Targeting interventions may help enhance nurses' career success. Future research should combine subjective and objective indicators (salary, title and so on) to assess career success and explore other determinants for formulating interventions to enhance nurses' career success. IMPACT: The heterogeneity and psychosocial factors associated with nurses' career success provide valuable evidence for the formulation of individualized interventions. Nursing managers should understand the importance of career success, develop interventions to reduce nurses' burnout and stress of conscience, and improve the practice environment to enhance their career success. NO PATIENT OR PUBLIC CONTRIBUTIONS: This study was designed to examine the psychosocial factors associated with nurses' career success. The study was not conducted using suggestions from the patient groups or the public.


Asunto(s)
Agotamiento Profesional , Enfermeras y Enfermeros , Personal de Enfermería en Hospital , Humanos , Estudios Transversales , Agotamiento Profesional/psicología , Emociones , Agotamiento Psicológico , Hospitales , Encuestas y Cuestionarios , Satisfacción en el Trabajo , Personal de Enfermería en Hospital/psicología
18.
Genomics ; 114(6): 110485, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36126832

RESUMEN

Under the pressure of natural and artificial selection, domestic animals, including chickens, have evolved unique mechanisms of genetic adaptations such as high-altitude adaptation, hot and arid climate adaptation, and desert adaptation. Here, we investigated the genetic basis of cold tolerance in chicken by integrating whole-genome and transcriptome sequencing technologies. Genome-wide comparative analyses of 118 chickens living in different latitudes showed 46 genes and several pathways that may be involved in cold adaptation. The results of the functional enrichment analysis of differentially expressed genes proved the important role of metabolic pathways and immune-related pathways in cold tolerance in chickens. The subsequent integration of whole genome and transcriptome sequencing technology further identified six genes - dnah5 (dynein axonemal heavy chain 5), ptgs2 (prostaglandin-endoperoxide synthase 2), inhba (inhibin beta A subunit), irx2 (iroquois homeobox 2), ensgalg00000054917, and ensgalg00000046652 - requiring more detailed studies. In addition, we also discovered different allele frequency distributions of five SNPs (single nucleotide polymorphisms) within ptgs2 and nine SNPs within dnah5 in chickens in different latitudes, suggesting strong selective pressure of these two genes in chickens. We provide a novel insight into the genetic adaptation in chickens to cold environments, and provide a reference for evaluating and developing adaptive chicken breeds in cold environments.


Asunto(s)
Pollos , Genómica , Animales , Pollos/genética
19.
Int J Mol Sci ; 24(14)2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37511310

RESUMEN

As an essential constituent of the mitochondrial contact site and cristae organization system (MICOS), MIC19 plays a crucial role in maintaining the stability of mitochondrial function and microstructure. However, the mechanisms and functions of MIC19 in intracerebral hemorrhage (ICH) remain unknown and need to be investigated. Sprague Dawley (SD) rats injected with autologous blood obtained from the caudal artery, and cultured neurons exposed to oxygen hemoglobin (OxyHb) were used to establish and emulate the ICH model in vivo and in vitro. Lentiviral vector encoding MIC19 or MIC19 short hairpin ribonucleic acid (shRNA) was constructed and administered to rats by intracerebroventricular injection to overexpress or knock down MIC19, respectively. First, MIC19 protein levels were increased after ICH modeling. After virus transfection and subsequent ICH modeling, we observed that overexpression of MIC19 could mitigate cell apoptosis and neuronal death, as well as abnormalities in mitochondrial structure and function, oxidative stress within mitochondria, and neurobehavioral deficits in rats following ICH. Conversely, knockdown of MIC19 had the opposite effect. Moreover, we found that the connection between MIC19 and SAM50 was disrupted after ICH, which may be a reason for the impairment of the mitochondrial structure after ICH. In conclusion, MIC19 exerts a protective role in the subsequent injury induced by ICH. The investigation of MIC19 may offer clinicians novel therapeutic insights for patients afflicted with ICH.


Asunto(s)
Hemorragia Cerebral , Mitocondrias , Membranas Mitocondriales , Animales , Ratas , Apoptosis , Hemorragia Cerebral/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Ratas Sprague-Dawley
20.
Int J Mol Sci ; 24(19)2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37834194

RESUMEN

Base excision DNA repair (BER) is a key pathway safeguarding the genome of all living organisms from damage caused by both intrinsic and environmental factors. Most present knowledge about BER comes from studies of human cells, E. coli, and yeast. Plants may be under an even heavier DNA damage threat from abiotic stress, reactive oxygen species leaking from the photosynthetic system, and reactive secondary metabolites. In general, BER in plant species is similar to that in humans and model organisms, but several important details are specific to plants. Here, we review the current state of knowledge about BER in plants, with special attention paid to its unique features, such as the existence of active epigenetic demethylation based on the BER machinery, the unexplained diversity of alkylation damage repair enzymes, and the differences in the processing of abasic sites that appear either spontaneously or are generated as BER intermediates. Understanding the biochemistry of plant DNA repair, especially in species other than the Arabidopsis model, is important for future efforts to develop new crop varieties.


Asunto(s)
Arabidopsis , Humanos , Arabidopsis/metabolismo , Escherichia coli/metabolismo , Reparación del ADN , Daño del ADN , ADN de Plantas/genética , ADN de Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA