RESUMEN
Metabolic reprogramming is a hallmark of cancer. The nicotinamide phosphoribosyltransferase (NAMPT)-mediated salvage pathway maintains sufficient cellular NAD levels and is required for tumorigenesis and development. However, the molecular mechanism by which NAMPT contributes to HBV-associated hepatocellular carcinoma (HCC) remains not fully understood. In the present study, our results showed that NAMPT protein was obviously upregulated in HBV-positive HCC tissues compared with HBV-negative HCC tissues. NAMPT was positively associated with aggressive HCC phenotypes and poor prognosis in HBV-positive HCC patients. NAMPT overexpression strengthened the proliferative, migratory, and invasive capacities of HBV-associated HCC cells, while NAMPT-insufficient HCC cells exhibited decreased growth and mobility. Mechanistically, we demonstrated that NAMPT activated SREBP1 (sterol regulatory element-binding protein 1) by increasing the expression and nuclear translocation of SREBP1, leading to the transcription of SREBP1 downstream lipogenesis-related genes and the production of intracellular lipids and cholesterol. Altogether, our data uncovered an important molecular mechanism by which NAMPT promoted HBV-induced HCC progression through the activation of SREBP1-triggered lipid metabolism reprogramming and suggested NAMPT as a promising prognostic biomarker and therapeutic target for HBV-associated HCC patients.
Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Nicotinamida Fosforribosiltransferasa , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/virología , Virus de la Hepatitis B , Lipogénesis , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/virología , Nicotinamida Fosforribosiltransferasa/genéticaRESUMEN
Plant health is intricately linked to crop quality, food security and agricultural productivity. Obtaining accurate plant health information is of paramount importance in the realm of precision agriculture. Wearable sensors offer an exceptional avenue for investigating plant health status and fundamental plant science, as they enable real-time and continuous in-situ monitoring of physiological biomarkers. However, a comprehensive overview that integrates and critically assesses wearable plant sensors across various facets, including their fundamental elements, classification, design, sensing mechanism, fabrication, characterization and application, remains elusive. In this study, we provide a meticulous description and systematic synthesis of recent research progress in wearable sensor properties, technology and their application in monitoring plant health information. This work endeavours to serve as a guiding resource for the utilization of wearable plant sensors, empowering the advancement of plant health within the precision agriculture paradigm.
Asunto(s)
Agricultura , Dispositivos Electrónicos Vestibles , Agricultura/métodos , Productos Agrícolas , Técnicas Biosensibles/instrumentaciónRESUMEN
Gene transcription and protein translation are two key steps of the 'central dogma.' It is still a major challenge to quantitatively deconvolute factors contributing to the coding ability of transcripts in mammals. Here, we propose ribosome calculator (RiboCalc) for quantitatively modeling the coding ability of RNAs in human genome. In addition to effectively predicting the experimentally confirmed coding abundance via sequence and transcription features with high accuracy, RiboCalc provides interpretable parameters with biological information. Large-scale analysis further revealed a number of transcripts with a variety of coding ability for distinct types of cells (i.e. context-dependent coding transcripts), suggesting that, contrary to conventional wisdom, a transcript's coding ability should be modeled as a continuous spectrum with a context-dependent nature.
Asunto(s)
Modelos Biológicos , Biosíntesis de Proteínas , ARN , Transcripción Genética , Animales , Genoma Humano , Humanos , Mamíferos/genética , Mamíferos/metabolismo , ARN/metabolismo , ARN Largo no Codificante/genética , Ribosomas/genética , Ribosomas/metabolismo , Transcripción Genética/genéticaRESUMEN
Increasing evidences showed that ovulatory dysfunction, possibly caused by luteinized unruptured follicular follicle syndrome (LUFS), is one of the reasons for endometriosis-related infertility. The present study was conducted to explore the potential effect of elevated progesterone in follicular fluid (FF) on ovulation in endometriosis. A prospective study including 50 ovarian endometriosis patients and 50 control patients with matched pairs design was conducted with alterations in FF and peritoneal fluid (PF) components identified by metabolomics analyses and differentially expressed genes in granulosa cells (GCs) identified by transcriptome analysis. Patients with endometriosis exhibited a significantly higher progesterone level in serum, FF, and PF. Granulosa cells from endometriosis patients revealed decreased expression of HPGD, COX-2, and suppressed NF-ĸB signaling. Similarly, progesterone treatment in vitro downregulated HPGD and COX2 expression and suppressed NF-ĸB signaling in granulosa tumor-like cell line KGN (Bena Culture Collection, China) and primarily cultured GCs, as manifested by decreased expressions of IL1R1, IRAK3, reduced pIĸBα/IĸBα ratio, and nucleus translocation of p65. On the contrary, TNF-α treatment increased expression of IL1R1, IRAK3, pIĸBα, p65, and HPGD in GCs. One potential p65 binding site was identified in the promoter region of HPGD by chromatin immunoprecipitation. In conclusion, we found that intrafollicular progesterone might downregulate HPGD and COX-2 in GCs via suppressing the NF-ĸB signaling pathway, shedding light on the mechanism underlying the endometriosis-related ovulatory dysfunction.
Asunto(s)
Endometriosis , Infertilidad Femenina , Femenino , Humanos , Progesterona/farmacología , Progesterona/metabolismo , Líquido Folicular/metabolismo , Endometriosis/genética , Endometriosis/metabolismo , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Estudios Prospectivos , Células de la Granulosa/metabolismo , Infertilidad Femenina/metabolismoRESUMEN
Motif identification is among the most common and essential computational tasks for bioinformatics and genomics. Here we proposed a novel convolutional layer for deep neural network, named variable convolutional (vConv) layer, for effective motif identification in high-throughput omics data by learning kernel length from data adaptively. Empirical evaluations on DNA-protein binding and DNase footprinting cases well demonstrated that vConv-based networks have superior performance to their convolutional counterparts regardless of model complexity. Meanwhile, vConv could be readily integrated into multi-layer neural networks as an 'in-place replacement' of canonical convolutional layer. All source codes are freely available on GitHub for academic usage.
Asunto(s)
Secuencias de Aminoácidos , Biología Computacional/métodos , Aprendizaje Profundo , Genómica/métodos , Redes Neurales de la Computación , Motivos de Nucleótidos , Programas Informáticos , Algoritmos , Benchmarking , Secuenciación de Nucleótidos de Alto Rendimiento , HumanosRESUMEN
Background: Sepsis is an uncontrolled systemic inflammatory response. Long noncoding RNAs (lncRNAs) are involved in the pathogenesis of sepsis. However, little is known about the roles of lncRNAs in sepsis-induced myocardial dysfunction. Objective: We aimed to determine the regulatory mechanism of lncRNAs in sepsis-induced myocardial dysfunction. Methods: In this study, we analysed the lncRNA and mRNA expression profiles using microarray analysis. Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, protein-protein interaction network, and gene set enrichment analysis were used to evaluate the data. We also constructed coding and noncoding coexpression and competing endogenous RNA networks to investigate the mechanisms. Results: In vivo lipopolysaccharide -induced sepsis rat model was established. A total of 387 lncRNAs and 1,952 mRNAs were identified as significantly changed in the left ventricle. Kyoto Encyclopedia of Genes and Genomes analysis of mRNAs showed that the upregulated genes were mainly enriched in the "complement and coagulation cascade pathway" and "immune-related biological processes" terms. Eight significantly changed lncRNAs detected by RT-qPCR may be responsible for these processes. A competing endogenous RNA network was generated, and the results indicated that eight lncRNAs were related to the "calcium ion binding" process. Conclusion: These results demonstrate that crosstalk between lncRNAs and mRNAs may play important roles in the development of sepsis-induced myocardial dysfunction.
RESUMEN
BACKGROUND: Berberine (BBR) is an isoquinoline alkaloid found in the Berberis species. It was found to have protected effects in cardiovascular diseases. Here, we investigated the effect the regulatory function of long noncoding RNAs (lncRNAs) during the treatment of stable coronary heart disease (CHD) using BBR. We performed microarray analyses to identify differentially expressed (DE) lncRNAs and mRNAs between whole blood samples from 5 patients with stable CHD taking BBR and 5 no BBR volunteers. DE lncRNAs and mRNAs were validated by quantitative real-time PCR. RESULTS: A total of 1703 DE lncRNAs and 912 DE mRNAs were identified. Kyoto Encyclopedia of Genes and Genomes pathway analysis indicated DE mRNAs might be associated with mammalian target of rapamycin and mitogen-activated protein kinase pathway. These pathways may be involved in the healing process after CHD. To study the relationship between mRNAs encoding transcription factors (DNA damage inducible transcript 3, sal-like protein 4 and estrogen receptor alpha gene) and CHD related de mRNAs, we performed protein and protein interaction analysis on their corresponding proteins. AKT and apoptosis pathway were significant enriched in protein and protein interaction network. BBR may affect downstream apoptosis pathways through DNA damage inducible transcript 3, sal-like protein 4 and estrogen receptor alpha gene. Growth arrest-specific transcript 5 might regulate CHD-related mRNAs through competing endogenous RNA mechanism and may be the downstream target gene regulated by BBR. Verified by the quantitative real-time PCR, we identified 8 DE lncRNAs that may relate to CHD. We performed coding and non-coding co-expression and competing endogenous RNA mechanism analysis of these 8 DE lncRNAs and CHD-related DE mRNA, and predicted their subcellular localization and N6-methyladenosine modification sites. CONCLUSION: Our research found that BBR may affect mammalian target of rapamycin, mitogen-activated protein kinase, apoptosis pathway and growth arrest-specific transcript 5 in the process of CHD. These pathways may be involved in the healing process after CHD. Our research might provide novel insights for functional research of BBR.
Asunto(s)
Berberina , Enfermedad Coronaria , ARN Largo no Codificante , Berberina/farmacología , Berberina/uso terapéutico , Enfermedad Coronaria/tratamiento farmacológico , Enfermedad Coronaria/genética , Receptor alfa de Estrógeno , Humanos , Proteínas Quinasas Activadas por Mitógenos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Serina-Treonina Quinasas TORRESUMEN
PURPOSE: To examine the distribution of causes of death (CODs) in patients with small cell lung cancer (SCLC). METHODS: Patients diagnosed with SCLC were identified from the Surveillance, Epidemiology, and End Results Program database during 2004-2015. Standardized mortality rates (SMRs) were performed for each COD to present changes in risk for a particular COD following SCLC diagnosis. RESULTS: A total of 44,506 patients diagnosed with SCLC were identified in this study, and 42,476 patients died during the follow-up. Of total deaths, 69.5% occurred within the first years after diagnosis, 26% occurred from 1 to 3 years, and 4.5% individuals survived longer than 3 years. In addition, 88.7% of deaths were caused by SCLC, followed by non-cancer causes (7.1%) and other cancers (4.2%). Moreover, non-cancer CODs increased from 6.3 to 30% over time after 3 years of diagnosis. As for non-cancer CODs, cardiovascular diseases, COPD, and septicemia were the most common in SCLC. CONCLUSION: Non-cancer CODs, such as cardiovascular events, COPD and septicemia, contribute to a considerable proportion of deaths among long-term SCLC survivors, supporting the involvement of multidisciplinary care for the follow-up strategy in SCLC.
Asunto(s)
Neoplasias Pulmonares , Enfermedad Pulmonar Obstructiva Crónica , Sepsis , Carcinoma Pulmonar de Células Pequeñas , Causas de Muerte , Humanos , Carcinoma Pulmonar de Células Pequeñas/diagnósticoRESUMEN
Sex form is one of the most important characteristics in papaya cultivation in which hermaphrodite is the preferable form. Self-pollination of H*-TSS No.7, an inbred line derived from a rare X chromosome mutant SR*, produced all-hermaphrodite progeny. The recessive lethal allele controlling the all-hermaphrodite phenomenon was proposed to be the recessive Germination suppressor (gs) locus. This study employed next-generation sequencing technology and genome comparison to identify the candidate Gs gene. One specific gene, monodehydroascorbate reductase 4 (MDAR4) harboring a unique polymorphic 3 bp deletion in H*-TSS No.7 was identified. The function of MDAR4 is known to be involved in the hydrogen peroxide (H2O2) scavenging pathway and is associated with seed germination. Furthermore, MDAR4 showed higher expression in the imbibed seeds than that in the dry seeds indicating its potential role in the seed germination. Perhaps this is the very first report providing the evidences that MDAR4 is the candidate of Gs locus in H*-TSS No.7. In addition, Gs allele-specific markers were developed which would be facilitated for breeding all-hermaphrodite lines.
Asunto(s)
Carica/genética , Cromosomas de las Plantas/genética , Organismos Hermafroditas/genética , NADH NADPH Oxidorreductasas/genética , Genoma de Planta/genética , Germinación/genética , Peróxido de Hidrógeno/metabolismo , Polinización/genética , Polinización/fisiología , Semillas/crecimiento & desarrollo , Eliminación de Secuencia/genéticaRESUMEN
BACKGROUND: Hepatitis B virus (HBV) has a crucial role in the progression of hepatocellular carcinoma (HCC). Tumour cells must develop anoikis resistance in order to survive before metastasis. This study aimed to investigate the mechanism of IQGAP1 in HBV-mediated anoikis evasion and metastasis in HCC cells. METHODS: IQGAP1 expression was detected by immunohistochemistry, real-time PCR and immunoblot analysis. Lentiviral-mediated stable upregulation or knockdown of IGAQP1, immunoprecipitation, etc. were used in function and mechanism study. RESULTS: IQGAP1 was markedly upregulated in HBV-positive compared with HBV-negative HCC cells and tissues. IQGAP1 was positively correlated to poor prognosis of HBV-associated HCC patients. IQGAP1 overexpression significantly enhanced the anchorage-independent growth and metastasis, whereas IQGAP1-deficient HCC cells are more sensitive to anoikis. Mechanistically, we found that HBV-induced ROS enhanced the association of IQGAP1 and Rac1 that activated Rac1, leading to phosphorylation of Src/FAK pathway. Antioxidants efficiently inhibited IQGAP1-mediated anoikis resistance and metastasis. CONCLUSIONS: Our study indicated an important mechanism by which upregulated IQGAP1 by HBV promoted anoikis resistance, migration and invasion of HCC cells through Rac1-dependent ROS accumulation and activation of Src/FAK signalling, suggesting IQGAP1 as a prognostic indicator and a novel therapeutic target in HCC patients with HBV infection.
Asunto(s)
Carcinoma Hepatocelular/patología , Quinasa 1 de Adhesión Focal/fisiología , Neoplasias Hepáticas/patología , Especies Reactivas de Oxígeno/metabolismo , Proteína de Unión al GTP rac1/fisiología , Proteínas Activadoras de ras GTPasa/fisiología , Familia-src Quinasas/fisiología , Animales , Anoicis , Línea Celular Tumoral , Femenino , Hepatitis B/complicaciones , Humanos , Ratones , Ratones Endogámicos BALB C , Metástasis de la Neoplasia , Transducción de Señal/fisiologíaRESUMEN
We study the motion morphology, distance, and velocity of plasma and laser-induced shock waves induced by a millisecond-nanosecond (ms-ns) combined-pulse laser with different pulse delays on silicon. The laser shadowgraph method is used, and the phenomenon of double laser-induced shock waves has been found while the pulse delay is 1.2-1.8 ms. The controlling variable method is used to study this phenomenon, and it is found that it is mainly related to the ignition of the laser-supported absorption wave induced by the ms laser. Moreover, the plasma expansion velocity increases with the increase of pulse delay, the axial propagation distance of laser-induced shock waves increases monotonically with pulse delay, and the velocity of laser-induced shock waves decreases with the increase of pulse delay.
RESUMEN
Seipin deficiency is responsible for type 2 congenital generalized lipodystrophy with severe loss of adipose tissue and can lead to hepatic steatosis, insulin resistance (IR), and dyslipidemia in humans. Adipose tissue secretes many adipokines that are central to the regulation of metabolism. In this study, we investigated whether transplantation of normal adipose tissue could ameliorate severe hepatic steatosis, IR, and dyslipidemia in lipoatrophic seipin knockout (SKO) mice. Normal adipose tissue from wild-type mice was transplanted into 6-wk-old SKO mice. At 4 mo after adipose tissue transplantation (AT), the transplanted fat survived with detectable blood vessels, and the reduced levels of plasma leptin, a major adipokine, were dramatically increased. Severe hepatic steatosis, IR, and dyslipidemia in SKO mice were ameliorated after AT. In addition, abnormal hepatic lipogenesis and ß-oxidation gene expression in SKO mice were improved after AT. Our results suggest that AT may be an effective treatment to improve lipodystrophy-associated metabolic disorders.
Asunto(s)
Ácidos Grasos no Esterificados/metabolismo , Proteínas de Unión al GTP Heterotriméricas/genética , Leptina/genética , Lipodistrofia Generalizada Congénita/genética , Hígado/metabolismo , Grasa Subcutánea/trasplante , Animales , Dislipidemias/etiología , Dislipidemias/genética , Dislipidemias/metabolismo , Hígado Graso/etiología , Hígado Graso/genética , Hígado Graso/metabolismo , Subunidades gamma de la Proteína de Unión al GTP , Prueba de Tolerancia a la Glucosa , Leptina/metabolismo , Metabolismo de los Lípidos , Lipodistrofia Generalizada Congénita/complicaciones , Lipodistrofia Generalizada Congénita/metabolismo , Ratones , Ratones Noqueados , Triglicéridos/metabolismoRESUMEN
Porcine circovirus 3 (PCV3), as a newly emerged circovirus, is widely distributed in pig populations worldwide. Co-infection of PCV2 and PCV3 has been reported frequently in clinical samples. In the present study, a TB Green II-based duplex real-time polymerase chain reaction (qPCR) was developed to rapidly and differentially detect PCV2 and PCV3. The assay specifically detected PCV2 and PCV3, with no fluorescence signals being detected for other non-targeted pig pathogens. The duplex qPCR showed a high degree of linearity (R2 > 0.998), and its limits of detection were 10 and 78 copies/µL for PCV2 and PCV3, respectively. The duplex qPCR could detect and differentiate PCV2 (melting peaks at 85.5 °C) and PCV3 (melting peaks at 82.5 °C), and showed high repeatability and reproducibility, with intra- and inter-assay coefficients of variation of less than 2.0%. Fifty-six tissue samples from 18 pig farms were used to evaluate the duplex qPCR method. The results revealed infection rates of 66.07% (37/56) and 39.28% (22/56) for PCV2 and PCV3, respectively. The PCV2 + PCV3 co-infection rate was 39.28% (22/56). The developed method could be used as an efficient molecular biology tool for epidemiological investigations of PCV2 and PCV3.
Asunto(s)
Infecciones por Circoviridae/diagnóstico , Circovirus/aislamiento & purificación , Coinfección/diagnóstico , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Enfermedades de los Porcinos/virología , Animales , Infecciones por Circoviridae/veterinaria , Colorantes Fluorescentes/química , Límite de Detección , Reacción en Cadena de la Polimerasa Multiplex , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , PorcinosRESUMEN
Glioblastoma is the most common malignant brain tumor and has a poor prognosis. Tachykinin receptor neurokinin-1 (NK1R) is a promising target in glioblastoma therapy because of its overexpression in human glioblastoma. NK1R agonists promote glioblastoma cell growth, whereas NK1R antagonists efficiently inhibit cell growth both in vitro and in vivo However, the molecular mechanisms involved in these effects are incompletely understood. ß-Arrestins (ARRBs) serve as scaffold proteins and adapters to mediate intracellular signal transduction. Here we show that the ARRB1-mediated signaling pathway is essential for NK1-mediated glioblastoma cell proliferation. ARRB1 knockdown significantly inhibited NK1-mediated glioblastoma cell proliferation and induced G2/M phase cell cycle arrest. ARRB1 knockdown cells showed remarkable down-regulation of CDC25C/CDK1/cyclin B1 activity. We also demonstrated that ARRB1 mediated prolonged phosphorylation of ERK1/2 and Akt in glioblastoma cells induced by NK1R activation. ERK1/2 and Akt phosphorylation are involved in regulating CDC25C/CDK1/cyclin B1 activity. The lack of long-term ERK1/2 and Akt activation in ARRB1 knockdown cells was at least partly responsible for the delayed cell cycle progression and proliferation. Moreover, we found that ARRB1-mediated ERK1/2 and Akt phosphorylation regulated the transcriptional activity of both NF-κB and AP-1, which were involved in cyclin B1 expression. ARRB1 deficiency increased the sensitivity of glioblastoma cells to the treatment of NK1R antagonists. Taken together, our results suggest that ARRB1 plays an essential role in NK1R-mediated cell proliferation and G2/M transition in glioblastoma cells. Interference with ARRB1-mediated signaling via NK1R may have potential significance for therapeutic strategies targeting glioblastoma.
Asunto(s)
Fase G2 , Glioblastoma/metabolismo , Sistema de Señalización de MAP Quinasas , Receptores de Neuroquinina-1/metabolismo , beta-Arrestina 1/metabolismo , Proteína Quinasa CDC2 , Línea Celular , Ciclina B1/genética , Ciclina B1/metabolismo , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Técnicas de Silenciamiento del Gen , Glioblastoma/genética , Glioblastoma/terapia , Humanos , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores de Neuroquinina-1/genética , beta-Arrestina 1/genética , Fosfatasas cdc25/genética , Fosfatasas cdc25/metabolismoRESUMEN
Drynaria roosii (Nakaike) is a traditional Chinese medicinal fern, known as 'GuSuiBu'. The effective components, naringin and neoeriocitrin, share a highly similar chemical structure and medicinal function. Our HPLC-tandem mass spectrometry (MS/MS) results showed that the accumulation of naringin/neoeriocitrin depended on specific tissues or ages. However, little was known about the expression patterns of naringin/neoeriocitrin-related genes involved in their regulatory pathways. Due to a lack of basic genetic information, we applied a combination of single molecule real-time (SMRT) sequencing and second-generation sequencing (SGS) to generate the complete and full-length transcriptome of D. roosii. According to the SGS data, the differentially expressed gene (DEG)-based heat map analysis revealed that naringin/neoeriocitrin-related gene expression exhibited obvious tissue- and time-specific transcriptomic differences. Using the systems biology method of modular organization analysis, we clustered 16,472 DEGs into 17 gene modules and studied the relationships between modules and tissue/time point samples, as well as modules and naringin/neoeriocitrin contents. We found that naringin/neoeriocitrin-related DEGs distributed in nine distinct modules, and DEGs in these modules showed significantly different patterns of transcript abundance to be linked to specific tissues or ages. Moreover, weighted gene co-expression network analysis (WGCNA) results further identified that PAL, 4CL and C4H, and C3H and HCT acted as the major hub genes involved in naringin and neoeriocitrin synthesis, respectively, and exhibited high co-expression with MYB- and basic helix-leucine-helix (bHLH)-regulated genes. In this work, modular organization and co-expression networks elucidated the tissue and time specificity of the gene expression pattern, as well as hub genes associated with naringin/neoeriocitrin synthesis in D. roosii. Simultaneously, the comprehensive transcriptome data set provided important genetic information for further research on D. roosii.
Asunto(s)
Disacáridos/genética , Flavanonas/genética , Regulación de la Expresión Génica de las Plantas , Polypodiaceae/genética , Cromatografía Líquida de Alta Presión , Disacáridos/metabolismo , Flavanonas/metabolismo , Redes Reguladoras de Genes , Malonil Coenzima A/genética , Malonil Coenzima A/metabolismo , Fenilalanina/genética , Fenilalanina/metabolismo , Proteínas de Plantas/genética , Polypodiaceae/metabolismo , Análisis de Secuencia de ARN/métodos , Espectrometría de Masas en Tándem , Factores de Transcripción/genética , TranscriptomaRESUMEN
The High Energy Photon Source (HEPS), a 6â GeV green-field diffraction-limited storage ring light source, will be built in Beijing, China. The HEPS design has been evolving for about ten years, and is now mostly finished and ready for construction. The storage ring is based on a modified hybrid seven-bend achromat (7BA) design, where bending magnets with reverse bending angles and longitudinal gradients are adopted to reach an ultralow natural emittance of 34.2â pm with a circumference of 1360.4â m. The central slice of the dipole in the middle of the modified hybrid 7BA, with flexible magnetic field, is used as the source of the bending-magnet beamline. Moreover, alternating high- and low-beta sections are specially designed to generate and deliver X-ray synchrotron radiation with high brightness of 5â ×â 1022â photons s-1 mm-2 mrad-2 (0.1% bandwidth)-1. Here, the HEPS storage ring design and solutions to the challenges inherent in this ultralow-emittance design are presented.
RESUMEN
BACKGROUND: Postoperative bleeding remains a frequent complication after cardiovascular surgery and may contribute to serious morbidity and mortality. Observational studies have suggested a relationship between low endogenous plasma fibrinogen concentration and increased risk of postoperative blood loss in cardiac surgery. Although the transfusion of fibrinogen concentrate has been increasing, potential benefits and risks associated with perioperative fibrinogen supplementation in cardiovascular surgery are not fully understood. METHODS: PubMed, Cochrane Library, Ovid MEDLINE, Embase, Web of Science, and China National Knowledge Infrastructure were searched on January 15, 2017, with automated updates searched until February 15, 2018, to identify all randomized controlled trials (RCTs) of fibrinogen concentrate, whether for prophylaxis or treatment of bleeding, in adults undergoing cardiovascular surgery. All RCTs comparing fibrinogen infusion versus any other comparator (placebo/standard of care or another active comparator) in adult cardiovascular surgery and reporting at least 1 predefined clinical outcome were included. The random-effects model was used to calculate risk ratios and weighted mean differences (95% confidence interval [CI]) for dichotomous and continuous variables, respectively. Subgroup analyses by fibrinogen dose and by baseline risk for bleeding were preplanned. RESULTS: A total of 8 RCTs of fibrinogen concentrate in adults (n = 597) of mixed risk or high risk undergoing cardiovascular surgery were included. Compared to placebo or inactive control, perioperative fibrinogen concentrate did not significantly impact risk of all-cause mortality (risk ratio, 0.41; 95% CI, 0.12-1.38; I = 10%; P = .15). Fibrinogen significantly reduced incidence of allogeneic red blood cell transfusion (risk ratio, 0.64; 95% CI, 0.49-0.83; I = 0%; P = .001). No significant differences were found for other clinical outcomes. Subgroup analyses were unremarkable when analyzed according to fibrinogen dose, time of infusion initiation, mean cardiopulmonary bypass time, and rotational thromboelastometry/fibrinogen temogram use (all P values for subgroup interaction were nonsignificant). CONCLUSIONS: Current evidence remains insufficient to support or refute routine perioperative administration of fibrinogen concentrate in patients undergoing cardiovascular surgery. Fibrinogen concentrate may reduce the need for additional allogeneic blood product transfusion in cardiovascular surgery patients at high risk or with evidence of bleeding. However, no definitive advantage was found for reduction in risk of mortality or other clinically relevant outcomes. The small number of clinical events within existing randomized trials suggests that further well-designed studies of adequate power and duration to measure all-cause mortality, stroke, myocardial infarction, reoperation, and thromboembolic events should be conducted. Future studies should also address cost-effectiveness relative to standard of care.
Asunto(s)
Procedimientos Quirúrgicos Cardíacos/efectos adversos , Fibrinógeno/administración & dosificación , Hemostáticos/administración & dosificación , Hemorragia Posoperatoria/prevención & control , Ensayos Clínicos Controlados Aleatorios como Asunto/métodos , Transfusión Sanguínea/tendencias , Procedimientos Quirúrgicos Cardíacos/tendencias , Transfusión de Eritrocitos/tendencias , Humanos , Infusiones Intravenosas , Hemorragia Posoperatoria/etiologíaRESUMEN
BACKGROUND: Prophylactic pancreatic stents after endoscopic retrograde cholangiopancreatography (ERCP) can help prevent post-ERCP pancreatitis. However most of the pancreatic stents need to be removed by another ERCP. The aim of this observational study was to investigate the feasibility and effectiveness of the modified pancreatic stent system for prevention of post-ERCP pancreatitis. METHODS: From November 2013 to November 2015, a total of 230 patients who had prophylactic pancreatic stent placed for prevention of post-ERCP pancreatitis at a single institution were identified and stratified. In this case-control design, 150 patients received an ordinary pancreatic stent, and 80 patients received the modified pancreatic stent. The main outcome measures were the difficulty level and complications of pancreatic stent placement and extraction between the two groups. RESULTS: In ordinary group, the average time of pancreatic stent and nasal biliary drainage placement was 3.5 ± 0.6 min. There were 13 cases of stent proximal migration (8.7%), 20 cases of stent spontaneous abscission (13.3%), 5 cases of acute pancreatitis (3.3%) (2 cases for stent abscission) and 7 cases of hyperamylasemia (4.7%) after ERCP. One hundred thirty patients received extra duodenoscope (86.7%) to remove the stent, and 4 cases had acute pancreatitis and 5 patients had hyperamylasemia after removing the proximal migratory stents. In modified group, the average time of pancreatic stent system placement was 4.9 ± 0.7 min, but there was only one case of stent abscission (1.3%), 2 cases of acute pancreatitis (2.5%) and 3 cases of hyperamylasemia (3.8%). The new pancreatic stents were removed directly under x-ray without complication. CONCLUSIONS: The modified pancreatic stent system has the same effect of preventing post-ERCP pancreatitis, lower rate of stents proximal migration and spontaneous abscission, and the advantage of easier removed compared with ordinary pancreatic stent.