Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Inorg Chem ; 62(46): 19015-19024, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37919966

RESUMEN

Highly efficient transformation of carbon dioxide (CO2) into value-added chemicals is considered a promising route for clean production and future energy sustainability, which is crucial for realizing a carbon-neutral economy. It remains a great challenge to develop highly stable and active catalysts with low-cost, environmentally friendly, and nontoxic materials for catalytic conversion of CO2. Herein, a precious-metal-free and heterogeneous MOF (LTG-FeZr) catalyst, composed of bis(terpyridine)iron(II) complexes and zirconium(IV) ions, was designed and prepared via a metalloligand approach. LTG-FeZr, with a robust framework and regular 1D channels not only can achieve the photocatalytic reduction of CO2 to HCOOH with a high conversion rate (up to 265 µmol·g-1·h-1) under visible-light irradiation but also exhibits exceptional catalytic activities toward the synthesis of cyclic carbonates via cycloaddition reactions of various epoxides and CO2 in the absence of light. Possible mechanisms for two different conversion processes of CO2 catalyzed by LTG-FeZr have been proposed. LTG-FeZr represents an ideal dual-function MOF platform for the catalytic conversion and utilization of CO2 in all weather conditions.

2.
Inorg Chem ; 62(18): 7111-7122, 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37099015

RESUMEN

In this study, Mo-glycerate was used as a precursor to create MoS2 hollow nanospheres (HNS), which were then used for the first time to modify ZnIn2S4 nanosheets to create MoS2 HNS/ZnIn2S4 photocatalysts. The findings demonstrate that MoS2 HNS/ZnIn2S4 heterojunctions exhibited remarkably boosted photocatalytic properties and excellent reusability for both RhB degradation and H2 evolution without the use of Pt as a co-catalyst. Among the heterojunctions, the RhB degradation and H2 evolution efficiencies of the optimized MoS2 HNS/ZnIn2S4-3 wt % composite were almost 5 and 34 times higher than those of ZnIn2S4, respectively. The excellent performance of MoS2 HNS/ZnIn2S4-3 wt % might be attributed to the expansion of the visible-light response range and the accelerated separation efficiency of photo-induced carriers, according to the findings of the optical property tests. Based on the established band gap position and characterization results, a potential mechanism for appealing photocatalytic activity over MoS2 HNS/ZnIn2S4 heterojunctions was also postulated.

3.
Inorg Chem ; 62(1): 401-407, 2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36537348

RESUMEN

The first mixed-valence nanocluster CuI/CuII with the highest percentage of CuII ions was synthesized by using 4-tert-butylcalix[4]arene (Calix4), with the formula DMF2⊂[(CO3)2-@CuII6CuI3(Calix4)3Cl2(DMF)5(H3O)]•DMF (1), as a photothermal nanocluster. Its structure was characterized using single-crystal X-ray diffraction, Fourier-transform infrared spectroscopy, and powder X-ray diffraction. In addition, the charge state and chemical composition of the nanocluster were determined using electrospray ionization spectrometry and X-ray photoelectron spectroscopy (XPS) spectrum. The results of the XPS and X-ray crystallography revealed that there are two independent CuII and CuI centers in nanocluster 1 with the relative abundances of 66.6 and 33.3% for CuII and CuI, respectively. The nanocluster contains three four-coordinated CuI ions with a square-planar geometry and six five-coordinated CuII ions with a square pyramid geometry. The nanocluster shows strong near-infrared optical absorption in the solid state and excellent photothermal conversion ability (the equilibrium temperature ∼78.2 °C) with the light absorption centers in 286-917 nm over previous reported pentanucleus CuI4CuII clusters and CuII compounds.

4.
Molecules ; 28(20)2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37894610

RESUMEN

Angiotensin-converting enzyme 1 (ACE1) is a peptide involved in fluid and blood pressure management. It regulates blood pressure by converting angiotensin I to angiotensin II, which has vasoconstrictive effects. Previous studies have shown that certain compounds of natural origin can inhibit the activity of angiotensin-converting enzymes and exert blood pressure-regulating effects. Surface Plasmon Resonance (SPR) biosensor technology is the industry standard method for observing biomolecule interactions. In our study, we used molecular simulation methods to investigate the docking energies of various herbal metabolites with ACE1 proteins, tested the real-time binding affinities between various herbal metabolites and sACE1 by SPR, and analyzed the relationship between real-time binding affinity and docking energy. In addition, to further explore the connection between inhibitor activity and real-time binding affinity, several herbal metabolites' in vitro inhibitory activities were tested using an ACE1 activity test kit. The molecular docking simulation technique's results and the real-time affinity tested by the SPR technique were found to be negatively correlated, and the virtual docking technique still has some drawbacks as a tool for forecasting proteins' affinities to the metabolites of Chinese herbal metabolites. There may be a positive correlation between the enzyme inhibitory activity and the real-time affinity detected by the SPR technique, and the results from the SPR technique may provide convincing evidence to prove the interaction between herbal metabolites and ACE1 target proteins.


Asunto(s)
Inhibidores de la Enzima Convertidora de Angiotensina , Técnicas Biosensibles , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Inhibidores de la Enzima Convertidora de Angiotensina/química , Simulación del Acoplamiento Molecular , Resonancia por Plasmón de Superficie , Técnicas Biosensibles/métodos , Angiotensinas
5.
Chemphyschem ; 23(3): e202100790, 2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-34850511

RESUMEN

There is still a lack of deep understanding on the reaction kinetics and mechanism of thiol etching of gold. Herein, by using the sensor of quartz crystal microbalance (QCM) as the sacrificial probe, the etching reaction of gold has been studied by employing cysteamine (CS) as a typical thiol etchant. The etching reaction is verified as diffusion-controlled and shows a half-order reaction kinetics. It is demonstrated that intact thiol and amino on CS are both crucial for its etching ability to gold. Applied potentials can affect the electron transfer and hence can be used to regulate the gold etching. Our results also reveal that only two carbon atoms of the spacer between thiol and amino on CS are very critical to the excellent etching ability. This work exhibits a new route to explore the thiol etching reaction of gold and elucidates the reaction kinetics and mechanism.


Asunto(s)
Técnicas Biosensibles , Tecnicas de Microbalanza del Cristal de Cuarzo , Técnicas Biosensibles/métodos , Oro/química , Tecnicas de Microbalanza del Cristal de Cuarzo/métodos , Compuestos de Sulfhidrilo/química
6.
Langmuir ; 38(28): 8614-8622, 2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35786970

RESUMEN

Polymer hydrogel-based solid-state supercapacitors exhibit great potential applications in flexible devices. Nevertheless, the poor electrode-electrolyte interfacial properties restrict their advances. Herein, by taking the well-developed polyvinyl alcohol (PVA)/H2SO4 gel electrolyte and the graphene film electrode as the prototype, a very simple strategy is demonstrated to improve the interfacial affinity between the electrode and the hydrogel electrolyte by a preadsorbed highly hydrophilic polyzwitterion layer of poly(propylsulfonate dimethylammonium propylmethacrylamide) (PPDP) on the electrode surface. Electrochemical measurements confirm that the charge-transfer resistance on the interface is effectively reduced after modification with PPDP. Consequently, the obtained areal capacitance experiences a 3-fold increase compared to the unmodified ones. Results from electrochemical quartz crystal microbalance with dissipation demonstrate that more ions can be reversibly transferred on the modified interface during the change-discharge cycles, suggesting that the accessible surface area on the electrode is also increased. The hydrophilic PVA layer shows a similar function but with a much smaller efficiency. The strategy depicted here is highly universalizable and can be generalized to different electrode/electrolyte systems or other electrochemical energy storage devices.

7.
Anticancer Drugs ; 33(1): e247-e259, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34387601

RESUMEN

Accumulating evidence insists that circular RNAs (circRNAs) play important roles in the development of human cancers, including gastric cancer. This study aimed to investigate the role of circ-SFMBT2 and provide a potential mechanism to explain its function. The expression of circ-SFMBT2, miR-885-3p and chromodomain-helicase-DNA-binding protein 7 (CHD7) mRNA was determined by quantitative real-time PCR (qRT-PCR), and the protein level of CHD7 was determined by western blot. To investigate the function of circ-SFMBT2 in vitro, the effects of circ-SFMBT2 on cell viability, colony formation, apoptosis, migration and invasion were assessed using cell counting kit-8 assay, colony formation assay, flow cytometry assay, wounding healing assay and transwell assay, respectively. The indicators of oxidative stress were assessed using matched kits. Besides, the function of circ-SFMBT2 was also investigated in animal models. The relationship between miR-885-3p and circ-SFMBT2 or CHD7 was verified by dual-luciferase reporter assay and RNA immunoprecipitation assay. Circ-SFMBT2 and CHD7 were upregulated, whereas miR-885-3p was downregulated in gastric cancer tissues and cells. In functional assay, circ-SFMBT2 knockdown suppressed gastric cancer cell viability, colony formation ability, migration, invasion and oxidative stress but induced apoptosis, and circ-SFMBT2 downregulation also blocked tumor growth in vivo. In mechanism analysis, circ-SFMBT2 regulated CHD7 expression by sponging its target miRNA, miR-885-3p. Rescue experiments manifested that miR-885-3p inhibition reversed the effects of circ-SFMBT2 knockdown, and CHD7 overexpression abolished the antitumor role of miR-885-3p overexpression. Moreover, circ-SFMBT2 knockdown inactivated the Wnt/ß-catenin signaling pathway. Circ-SFMBT2 downregulation repressed the development of gastric cancer partially by controlling the miR-885-3p/CHD7 axis, which might be a novel strategy to inhibit gastric cancer progression.


Asunto(s)
ADN Helicasas/metabolismo , Proteínas de Unión al ADN/metabolismo , MicroARNs/metabolismo , ARN Circular/genética , Proteínas Represoras/genética , Neoplasias Gástricas/patología , Apoptosis/fisiología , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular/fisiología , Regulación hacia Abajo , Regulación Neoplásica de la Expresión Génica , Humanos , Regulación hacia Arriba , Vía de Señalización Wnt/fisiología , beta Catenina/metabolismo
8.
Inorg Chem ; 61(9): 4009-4017, 2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-35188386

RESUMEN

The exploration and development of coordination nanocages can provide an approach to control chemical reactions beyond the bounds of the flask, which has aroused great interest due to their significant applications in the field of molecular recognition, supramolecular catalysis, and molecular self-assembly. Herein, we take the advantage of a semirigid and nonsymmetric bridging ligand (H5L) with rich metal-chelating sites to construct an unusual and discrete 3d-4f metallacage, [Zn2Er4(H2L)4(NO3)Cl2(H2O)]·NO3·xCH3OH·yH2O (Zn2Er4). The 3d-4f Zn2Er4 cage possesses a quadruple-stranded structure, and all of the ligands wrap around an open spherical cavity within the core. The self-assembly of the unique cage not only ensures the structural stability of the Zn2Er4 cage as a nanoreactor in solution but also makes the bimetallic lanthanide cluster units active sites that are exposed in the medium-sized cavity. It is important to note that the Zn2Er4 cage as a homogeneous catalyst has been successfully applied to catalyze three-component aza-Darzens reactions of formaldehyde, anilines, and α-diazo esters without another additive under mild conditions, displaying better catalytic activity, higher specificity, short reaction time, and low catalyst loadings. A possible mechanism for this three-component aza-Darzens reaction catalyzed by the Zn2Er4 cage has been proposed. These experimental results have demonstrated the great potential of the discrete 3d-4f metallacage as a host nanoreactor for the development of supramolecular or molecular catalysis.

9.
Inorg Chem ; 61(1): 154-169, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-34902243

RESUMEN

A precipitation method involving a deep eutectic solvent (DES)─a mixture of hydrogen bond donor and acceptor─is used to synthesize a ternary metal oxide. Without toxic reagents, precipitates consisting of Zn3(OH)2V2O7·nH2O and Zn5(OH)6(CO3)2 are obtained by simply introducing deionized H2O to the DES solution containing dissolved ZnO and V2O5. Manipulation of the synthetic conditions demonstrates high tunability in the size/morphology of the two-dimensional nanosheets precipitated during the dynamic equilibrium process. According to differential scanning calorimetry and high-temperature powder X-ray diffraction, Zn3V2O8 and ZnO obtained by the annealing of the precipitate are intermediates in the reaction pathway toward metastable Zn4V2O9. Intimate mixing of the metal precursors achieved by the precipitation method allows access to the metastable zinc-rich vanadate with unusually rapid heat treatment. The UV-vis and surface photovoltage spectra reveal the presence of sub-band gap states, stemming from the reduced vanadium (V4+) center. Photoelectrochemical measurements confirm weak photoanodic currents for water and methanol oxidation. For the first time, this work shows the synthesis of a metastable oxide with the DES-precipitation route and provides insight into the structure-property relationship of the zinc-rich vanadate.

10.
Mikrochim Acta ; 189(3): 122, 2022 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-35218439

RESUMEN

Current solid-contact ion-selective electrodes (ISEs) suffer from signal-to-noise drift and short lifespans partly due to water uptake and the development of an aqueous layer between the transducer and ion-selective membrane. To address these challenges, we report on a nitrate ISE based on hydrophobic laser-induced graphene (LIG) coated with a poly(vinyl) chloride-based nitrate selective membrane. The hydrophobic LIG was created using a polyimide substrate and a double lasing process under ambient conditions (air at 23.0 ± 1.0 °C) that resulted in a static water contact angle of 135.5 ± 0.7° (mean ± standard deviation) in wettability testing. The LIG-ISE displayed a Nernstian response of - 58.17 ± 4.21 mV dec-1 and a limit-of-detection (LOD) of 6.01 ± 1.44 µM. Constant current chronopotentiometry and a water layer test were used to evaluate the potential (emf) signal stability with similar performance to previously published work with graphene-based ISEs. Using a portable potentiostat, the sensor displayed comparable (p > 0.05) results to a US Environmental Protection Agency (EPA)-accepted analytical method when analyzing water samples collected from two lakes in Ames, IA. The sensors were stored in surface water samples for 5 weeks and displayed nonsignificant difference in performance (LOD and sensitivity). These results, combined with a rapid and low-cost fabrication technique, make the development of hydrophobic LIG-ISEs appealing for a wide range of long-term in situ surface water quality applications.

11.
Microprocess Microsyst ; : 104071, 2021 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-33612888

RESUMEN

Covers are a well-known group of organisms infected with the disease caused by two people. A new type of COVID-19 is soon discovered in Wuhan, China. Even so, infections cause a pandemic, as indicated by the World Health Organization and are widespread throughout the world, as it can be slow. Also, these days, every country in the world is working hard to control COVID-19. There are many components to distinguish Covid, including pictures of clinical studies of chest CT and blood test results. Show patients confirmed to have a fever, stagnation, and dry COVID-19. In particular, several strategies can be used to distinguish the underlying squeal of infection, such as kits for clinical locations. Nevertheless, such gadgets have set aside some effort to introduce and use them, incurring huge costs. Another structure, COVID-19, for engineering and identification using mobile phone sensors along these lines of thought. This proposition can be easily placed because most radiologists only have various daily use needs for mobile phones. At the same standard, individuals will be able to use their mobile phones to infect the system for identification purposes. The phone is not reliable if the camera, receiver, temperature sensors, inertial sensors, gas-tight sensor, light-shielded sensor, existing computing rich processor, viscosity sensor and remote chipset/sensors, memory space, and huge sensors have a number. Planning Detection Combination Algorithm (DCA) structure carefully as expected of function, as a result of the infection, reads the mobile phone sensors' signs to estimate the severity of pneumonia.

12.
Chemistry ; 26(43): 9518-9526, 2020 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-32379364

RESUMEN

As redox-active based supercapacitors are known as highly desirable next-generation supercapacitor electrodes, the targeted design of two ferrocene-functionalized (Fc(COOH)2 ) clusters based on coinage metals, [(PPh3 )2 AgO2 CFcCO2 Ag(PPh3 )2 ]2 ⋅7 CH3 OH (SC1 : super capacitor) and [(PPh3 )3 CuO2 CFcCO2 Cu(PPh3 )3 ]⋅3 CH3 OH (SC2 ), is reported. Both structures are fully characterized by various techniques. The structures are utilized as energy storage electrode materials, giving 130 F g-1 and 210 F g-1 specific capacitance at 1.5 A g-1 in Na2 SO4 electrolyte, respectively. The obtained results show that the presence of CuI instead of AgI improves the supercapacitive performance of the cluster. Further, to improve the conductivity, the PSC2 ([(PPh3 )2 CuO2 CFcCO2 ]∞ ), a polymeric structure of SC2 , was synthesized and used as an energy storage electrode. PSC2 displays high conductivity and gives 455 F g-1 capacitance at 3 A g-1 . The PSC2 as a supercapacitor electrode presents a high power density (2416 W kg-1 ), high energy density (161 Wh kg-1 ), and long cycle life over 4000 cycles (93 %). These results could lead to the amplification of high-performance supercapacitors in new areas to develop real applications and stimulate the use of the targeted design of coordination polymers without hybridization or compositions with additive materials.

13.
Inorg Chem ; 59(10): 6684-6688, 2020 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-32281792

RESUMEN

The first silver nanocluster with an octahedral template of TeO66- was synthesized as a neutral 36-nucleus nanocluster, and its structure was demonstrated using single-crystal X-ray diffraction, Fourier transform infrared spectroscopy, electrospray ionization mass spectrometry, and X-ray photoelectron spectroscopy. The peripheral ligands of the cagelike skeleton of the nanocluster are CF3COO- and tBuC≡C-. During the synthesis, the TeO66- template arranged the nanocluster, and a 36-nucleus nanocluster was formed. The effect of the template nature was displayed on the structural features of the nanocluster in comparison with an 8-nucleus cluster, with the same synthesis conditions. The photoluminescence and UV-vis absorption analyses of the nanocluster were also investigated. The nanocluster displayed near-infrared luminescence emission at 690 nm.

14.
Inorg Chem ; 59(4): 2248-2254, 2020 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-31999438

RESUMEN

Advancement of the synthesis and control of the self-assembly process of new high-nucleus silver clusters with desired structures is important for both the material sciences and the many applications. Herein, three new silver clusters, 20-, 22-, and 8-nucleus, based on alkynyl ligands were constructed and their structures were confirmed by single-crystal X-ray diffraction, powder X-ray diffraction, elemental analyses, and Fourier-transform infrared spectroscopy (FT-IR). For the first time, the trivalent tetrahedron anion of AsO43-, as a template, and the surface ligand of Ph2PO2H, with new coordination modes, were employed in preparation of the silver clusters. The role of surface ligands and template anions in the size and structure of the clusters was investigated. The presence of the template in the structure of the clusters led to the formation of the high-nucleus clusters. Also, in this report, it was shown that the participation of the template in the assembly of a cluster can be controlled by the surface ligands. UV-vis absorption and luminescent properties of the clusters and the thermal stability of the 8-nucleus cluster were also studied.

15.
Chemphyschem ; 20(20): 2647-2656, 2019 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-31441207

RESUMEN

Lead halide perovskites possess unique characteristics that are well-suited for optoelectronic and energy capture devices, however, concerns about their long-term stability remain. Limited stability is often linked to the methylammonium cation, and all-inorganic CsPbX3 (X=Cl, Br, I) perovskite nanocrystals have been reported with improved stability. In this work, the photostability and thermal stability properties of CsPbX3 (X=Cl, Br, I) nanocrystals were investigated by means of electron microscopy, X-ray diffraction, thermogravimetric analysis coupled with FTIR (TGA-FTIR), ensemble and single particle spectral characterization. CsPbBr3 was found to be stable under 1-sun illumination for 16 h in ambient conditions, although single crystal luminescence analysis after illumination using a solar simulator indicates that the luminescence states are changing over time. CsPbBr3 was also stable to heating to 250 °C. Large CsPbI3 crystals (34±5 nm) were shown to be the least stable composition under the same conditions as both XRD reflections and Raman bands diminish under irradiation; and with heating the γ (black) phase reverts to the non-luminescent δ phase. Smaller CsPbI3 nanocrystals (14±2 nm) purified by a different washing strategy exhibited improved photostability with no evidence of crystal growth but were still thermally unstable. Both CsPbCl3 and CsPbBr3 show crystal growth under irradiation or heat, likely with a preferential orientation based on XRD patterns. TGA-FTIR revealed nanocrystal mass loss was only from liberation and subsequent degradation of surface ligands. Encapsulation or other protective strategies should be employed for long-term stability of these materials under conditions of high irradiance or temperature.

16.
Inorg Chem ; 58(9): 5397-5400, 2019 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-30985117

RESUMEN

In order to study the charge effect on the formation of an anion-templated silver cluster, a trivalent tetrahedral anion was incorporated into the silver assembly. A 26-nuclear silver cluster was prepared, and its structure was confirmed by single-crystal X-ray diffraction. Also, the resulting structure was characterized by powder X-ray diffraction data. Its light absorption and photoluminescent properties were studied by solid-state UV diffuse-reflectance and fluorescence spectroscopy. Compared with the other reported silver clusters with tetrahedral anion templates, the more negative VO43- anion led to the formation of a bigger silver cluster. Also, the supramolecular motif O-H(CH3OH)···O(trifluoroacetate) was confirmed on the cluster surface for the first time.

17.
Appl Microbiol Biotechnol ; 101(12): 4923-4933, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28303296

RESUMEN

As a natural inhibitor of the receptor activator of nuclear factor-кB ligand (RANKL), osteprotegerin (OPG) is considered a promising treatment for metabolic bone diseases. Typical approaches for preparing recombinant OPG or its derivatives employ eukaryotic expression systems. Due to the advantages of a prokaryotic expression system, which include its convenience, low cost, and abundant production, in this study, we establish a strategy for preparing functional OPG using the Escherichia coli expression system. After initial failures in preparation of OPG and its truncation, OPG cysteine-rich domain (OPG-CRD/OPGT) by using pET and pGEX vectors, we constructed a sortase A (SrtA)-aided E. coli expression system, in which the expressed protein was a self-cleaving SrtA fusion protein. Using this system, we successfully prepared the recombinant OPGT protein. The BIAcore analyses indicated that the prepared OPGT had high affinities in binding with RANKL and TRAIL. Cell experiments confirmed the inhibitory effects of the prepared OPGT on RANKL-induced osteoclast differentiation and TRAIL-induced tumor cell apoptosis. The sortase A-aided E. coli expression system for OPGT established in this study may contribute to further studies and commercial applications of OPG.


Asunto(s)
Aminoaciltransferasas/metabolismo , Proteínas Bacterianas/metabolismo , Cisteína Endopeptidasas/metabolismo , Cisteína/química , Escherichia coli/genética , Osteoprotegerina/química , Osteoprotegerina/genética , Aminoaciltransferasas/genética , Animales , Apoptosis/efectos de los fármacos , Proteínas Bacterianas/genética , Diferenciación Celular/efectos de los fármacos , Cisteína/genética , Cisteína Endopeptidasas/genética , Escherichia coli/enzimología , Vectores Genéticos , Humanos , Ratones , Osteoclastos/efectos de los fármacos , Osteoprotegerina/biosíntesis , Osteoprotegerina/farmacología , Unión Proteica , Dominios Proteicos , Ligando RANK/farmacología , Células RAW 264.7 , Proteínas Recombinantes/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología
18.
Zhongguo Zhong Yao Za Zhi ; 42(1): 34-40, 2017 Jan.
Artículo en Zh | MEDLINE | ID: mdl-28945022

RESUMEN

Gene editing is a kind of technologies that makes precise modification to the genome. It can be used to knock out/in and replace the specific DNA fragment, and make accurate gene editing on the genome level. The essence of the technique is the DNA sequence change with use of non homologous end link repair and homologous recombination repair, combined with specific DNA target recognition and endonuclease.This technology has wide range of development prospects and high application value in terms of scientific research, agriculture, medical treatment and other fields. In the field of gene therapy, gene editing technology has achieved cross-time success in cancers such as leukemia, genetic disorders such as hemophilia, thalassemia, multiple muscle nutritional disorders and retrovirus associated infectious diseases such as AIDS and other diseases. The preparation work for new experimental methods and animal models combined with gene editing technology is under rapid development and improvement. Laboratories around the world have also applied gene editing technique in prevention of malaria, organ transplantation, biological pharmaceuticals, agricultural breeding improvement, resurrection of extinct species, and other research areas. This paper summarizes the application and development status of gene editing technique in the above fields, and also preliminarily explores the potential application prospect of the technology in the field of traditional Chinese medicine, and discusses the present controversy and thoughts.


Asunto(s)
Edición Génica , Medicina Tradicional China , Animales
19.
Biol Pharm Bull ; 39(8): 1247-53, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27476935

RESUMEN

p-Cymene (4-isopropyltoluene) has been reported to have beneficial actions such as anti-inflammatory and antinociceptive activities. To evaluate whether p-cymene exhibits antitumor invasive actions, we examined the effects of p-cymene on the production of matrix metalloproteinase 9 (MMP-9)/gelatinase B and tissue inhibitor of metalloproteinases-1 (TIMP-1) in human fibrosarcoma HT-1080 cells. p-Cymene was found to dose-dependently inhibit the 12-O-tetradecanoylphorbol 13-acetate (TPA)-augmented production and gene expression of MMP-9 in HT-1080 cells. In contrast, p-cymene enhanced the TPA-augmented production and gene expression of TIMP-1 in HT-1080 cells. However, there was no change in the constitutive level of MMP-9 and TIMP-1 mRNAs and TIMP-1 protein in p-cymene-treated cells. In addition, we found that the in-vitro TPA-augmented invasiveness of HT-1080 cells was inhibited by p-cymene in a dose-dependent manner. Furthermore, p-cymene was found to suppress the constitutive and/or TPA-augmented phosphorylation of extracellular signal-regulated kinase (ERK)1/2 and p38 mitogen-activated protein kinase (MAPK) in HT-1080 cells. Thus, these results provide novel evidence that p-cymene is an effective candidate for the prevention of tumor invasion and metastasis through mechanisms that include the inhibition of MMP-9 expression and the augmentation of TIMP-1 production along with the suppression of ERK1/2 and p38 MAPK signal pathways in tumor cells.


Asunto(s)
Antineoplásicos/farmacología , Metaloproteinasa 9 de la Matriz/metabolismo , Monoterpenos/farmacología , Inhibidor Tisular de Metaloproteinasa-1/metabolismo , Línea Celular Tumoral , Cimenos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Fibrosarcoma/metabolismo , Humanos , Metaloproteinasa 9 de la Matriz/genética , ARN Mensajero/metabolismo , Inhibidor Tisular de Metaloproteinasa-1/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
20.
Int J Pharm ; 660: 124366, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38901541

RESUMEN

This research investigates the modeling of the pharmaceutical roller compaction process, focusing on the application of the Johanson model and the impact of varying roll speeds from 1 to 15 RPM on predictive accuracy of ribbon solid fraction. The classical Johanson's model was integrated with a dwell time parameter leading to an expression of a floating correction factor as a function of roll speed. Through systematic analysis of the effect of different roll speeds on the solid fraction of ribbons composed of microcrystalline cellulose, lactose, and their blends, corrective adjustment to the Johanson model was found to depend on both roll speed and formulation composition. Interestingly, the correction factor demonstrated excellent correlation with the blend's mechanical properties, namely yield stress (Py) and elastic modulus (E0), representative of the deformability of the powder. Validated by a multicomponent drug formulation with ±0.4-1.3 % differences, the findings underscore the utility of this modified mechanistic approach for precise prediction of ribbon solid fraction when Py or E0 is known for a given blend. Hence, this work advances the field by offering early insights for more accurate and controllable roller compaction operations during late-stage pharmaceutical manufacturing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA