Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 23(21): 9841-9850, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37737087

RESUMEN

To mimic natural photonic crystals having color regulation capacities dynamically responsive to the surrounding environment, periodic assembly structures have been widely constructed with response materials. Beyond monocomponent materials with stimulus responses, binary and multiphase systems generally offer extended color space and complex functionality. Constructing a rule for predicting response sensitivity can provide great benefits for the tailored design of intelligently responsive photonic materials. Here, we elucidate mathematical relationships between the response sensitivity of dynamically structural-color changes and the location distances of photonic co-phases in three-dimensional Hansen space that can empirically express the strength of their interaction forces, including dispersion force, polarity force, and hydrogen bonding. Such an empirical rule is proven to be applicable for some typical alcohols, acetone, and acetic acid regardless of their molecular structures, as verified by angle resolution spectroscopy, in situ infrared spectroscopy, and molecular simulation. The theoretical method we demonstrate provides rational access to custom-designed responsive structural coloration.

2.
ACS Appl Mater Interfaces ; 15(42): 49116-49122, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37815493

RESUMEN

In recent years, functional electrolyte additives have been widely studied during the CO2 evolution reaction (CO2ER) and CO2 reduction reaction (CO2RR) processes for Li-CO2 batteries. Owing to different concerns, functions of these additives are also multiple and limited. In this work, the multiple impacts of functional electrolyte additives for Li-CO2 batteries are discussed. N-phenylpyrrolidine (PPD) and 1-(3-bromophenyl) pyrrole (Br-PPD) are investigated as additives successively. First, the corresponding charging potential during the CO2ER process can be reduced to 3.65 V with PPD; then the Li||Li symmetric cells with Br-PPD possess a superior long-term cycling of 800 h benefited from a stable solid electrolyte interphase (SEI) on the surface of a Li metal by using a Li anode protected with bromine functional groups. In Br-PPD-based Li-CO2 cells, the charging potential can be maintained at 3.70 V for 120 cycles even with a Super P cathode. In this work, the relationship between the structural properties of organic molecules and their electrochemical applications is discussed and investigated. This is essential for the targeted design and preparation of additives in rechargeable batteries.

3.
J Pharm Biomed Anal ; 235: 115660, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37598469

RESUMEN

The nucleocapsid (N) protein is a suitable candidate for early diagnosis of porcine epidemic diarrhea virus (PEDV). Here, we identified the linear B-cell epitopes of the PEDV N-protein by integrating a computational-experimental framework and constructed three-dimensional (3D) structure model of the N protein using the ColabFold program in Google Colaboratory. Furthermore, we prepared the monoclonal antibodies against the predicted epitopes and recombinant N protein, respectively, and selected pairing mAbs (named 9C4 and 3C5) to develop a double-antibody sandwich immunochromatographic test strip using CdSe/ZnS quantum dots (QDs)-labelled 9C4 and 3C5 as capture and detection antibodies, respectively. This strip can specifically detect PEDV within 10 min with a detection limit of less than 6.25 × 103 TCID50/mL. In comparison with RT-PCR for testing 90 clinical samples, the relative sensitivity and specificity of the strip were found to be 98.0% and 100%, respectively, with a concordance rate of 98.9% and a kappa value of 0.978, indicating that QDs-ICTS is a reliable method for the application of PEDV detection in clinical samples.


Asunto(s)
Virus de la Diarrea Epidémica Porcina , Animales , Anticuerpos Monoclonales , Epítopos , Inmunoensayo , Porcinos
4.
Adv Sci (Weinh) ; 10(5): e2206290, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36504335

RESUMEN

Exploring high-safety but convenient encryption and decryption technologies to combat threats of information leakage is urgently needed but remains a great challenge. Here, a synergistically time- and temperature-resolved information coding/decoding solution based on functional photonic inks is demonstrated. Encrypted messages can be stored into multiple channels with dynamic-color patterns, and information decryption is only enabled at appointed temperature and time points. Notably, the ink can be easily processed into quick-response codes and multipixel plates. With high transparency and responsive color variations controlled by ink compositions and ambient temperatures, advanced 3D stacking multichannel coding and Morse coding techniques can be applied for multi-information storage, complex anticounterfeiting, and information interference. This study paves an avenue for the design and development of dynamic photonic inks and complex encryption technologies for high-end anticounterfeiting applications.

5.
Viruses ; 14(7)2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35891337

RESUMEN

The timely and accurate diagnosis of porcine epidemic diarrhea virus (PEDV) infection is crucial to reduce the risk of viral transmission. Therefore, the objective of this review was to evaluate the overall diagnostic accuracy of rapid point-of-care tests (POCTs) for PEDV. Studies published before 7 January 2022 were identified by searching PubMed, EMBASE, Springer Link, and Web of Science databases, using subject headings or keywords related to point of care and rapid test diagnostic for PEDV and PED. Two investigators independently extracted data, rated risk of bias, and assessed the quality using the Quality Assessment of Diagnostic Accuracy Studies-2 tool. The bivariate model and the hierarchical summary receiver operating characteristic (HSROC) model were used for performing the meta-analysis. Threshold effect, subgroup analysis, and meta-regression were applied to explore heterogeneity. Of the 2908 records identified, 24 eligible studies involving 3264 specimens were enrolled in the meta-analysis, including 11 studies on evaluation of lateral flow immunochromatography assay (ICA)-based, and 13 on nucleic acid isothermal amplification (NAIA)-based POCTs. The overall pooled sensitivity, specificity and diagnostic odds ratio (DOR) were 0.95 (95% CI: 0.92-0.97), 0.96 (95% CI 0.88-0.99) and 480 (95% CI 111-2074), respectively; for ICA-based POCTs and the corresponding values for NAIA-based, POCTs were 0.97 (95% CI 0.94-0.99), 0.98 (95% CI 0.91-0.99) and 1517 (95% CI 290-7943), respectively. The two tests showed highly comparable and satisfactory diagnostic performance in clinical utility. These results support current recommendations for the use of rapid POC tests when PEDV is suspected.


Asunto(s)
Virus de la Diarrea Epidémica Porcina , Animales , Sistemas de Atención de Punto , Pruebas en el Punto de Atención , Curva ROC , Sensibilidad y Especificidad , Porcinos
6.
Micromachines (Basel) ; 13(10)2022 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-36296015

RESUMEN

In this paper, a sub-arc-second macro/micro dual-drive rotary system is designed, and the continuous compensation of the system error and its experimental research are completed. First, the macro-drive system is driven by a direct-drive motor, and the micro-drive system uses a piezoelectric ceramic to drive the micro-drive rotary mechanism; the system uses a micro-drive system to compensate the motion error of the macro-drive system, and uses circular grating to feedback the displacement of the macro/micro total output turntable to form a macro/micro dual-drive closed-loop control system. Second, based on the establishment of the system error model, the design of the system's continuous error compensation scheme is completed. Finally, the positioning accuracy testing of the system, direct error compensation of the macro-drive, manual error compensation of the macro-drive, error compensation performance of the micro-drive part and macro/micro compensation of the system are carried out in the study. The results show that the repeated positioning error and the positioning error of the system are reduced by 78.8% and 95.2%, respectively, after macro/micro compensation. The correctness and effectiveness of the designed system design, error compensation and control method are verified through performance tests, and its positioning accuracy is verified to the sub-arc-second (0.1 arcsecond) level. The research in this paper has important reference value for the development of ultra-precision macro/micro dual-drive technology.

7.
Cancers (Basel) ; 13(22)2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34830961

RESUMEN

Prostate cancer (PCa) is a leading cause of cancer-related deaths among men worldwide, and novel therapies for advanced PCa are urgently needed. Cardiac glycosides represent an attractive group of candidates for anticancer repurposing, but the cardiac glycoside deslanoside has not been tested for potential anticancer activity so far. We found that deslanoside effectively inhibited colony formation in vitro and tumor growth in nude mice of PCa cell lines 22Rv1, PC-3, and DU 145. Such an anticancer activity was mediated by both the cell cycle arrest at G2/M and the induction of apoptosis, as demonstrated by different functional assays and the expression status of regulatory proteins of cell cycle and apoptosis in cultured cells. Moreover, deslanoside suppressed the invasion and migration of PCa cell lines. Genome-wide expression profiling and bioinformatic analyses revealed that 130 genes were either upregulated or downregulated by deslanoside in both 22Rv1 and PC-3 cell lines. These genes enriched multiple cellular processes, such as response to steroid hormones, regulation of lipid metabolism, epithelial cell proliferation and its regulation, and negative regulation of cell migration. They also enriched multiple signaling pathways, such as necroptosis, MAPK, NOD-like receptor, and focal adhesion. Survival analyses of the 130 genes in the TCGA PCa database revealed that 10 of the deslanoside-downregulated genes (ITG2B, CNIH2, FBF1, PABPC1L, MMP11, DUSP9, TMEM121, SOX18, CMPK2, and MAMDC4) inversely correlated, while one deslanoside-upregulated gene (RASD1) positively correlated, with disease-free survival in PCa patients. In addition, one deslanoside-downregulated gene (ENG) inversely correlated, while three upregulated genes (JUN, MXD1, and AQP3) positively correlated with overall survival in PCa patients. Some of the 15 genes have not been implicated in cancer before. These findings provide another candidate for repurposing cardiac glycosides for anticancer drugs. They also suggest that a diverse range of molecular events underlie deslanoside's anticancer activity in PCa cells.

8.
Micromachines (Basel) ; 12(9)2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34577706

RESUMEN

In the macro/micro dual-drive rotary system, the micro-drive system compensates for the position error of the macro-drive system. To realize the sub-arc-second (i.e., level of 1″-0.1″) positioning of the macro/micro dual-drive rotary system, it is necessary to study the positioning performance of the sub-arc-second micro-drive rotary system. In this paper, we designed a sub-arc-second micro-drive rotary system consisting of a PZT (piezoelectric actuator) and a micro rotary mechanism, and used simulation and experimental methods to study the positioning performance of the system. First, the micro-drive rotary system was developed to provide ultra-precise rotary motion. In this system, the PZT has ultrahigh resolution at a level of 0.1 nanometers in linear motion; a micro rotating mechanism was designed according to the composite motion principle of the flexible hinge, which could transform the linear motion of piezoelectric ceramics into rotating motion accurately. Second, the drive performance was analyzed based on the drive performance experiment. Third, kinematics, simulation, and experiments were carried out to analyze the transformation performance of the system. Finally, the positioning performance equation of the system was established based on the two performance equations, and the maximum rotary displacements and positioning error of the system were calculated. The study results showed that the system can provide precision motion at the sub-arc-second and good linearity of motion. This study has a certain reference value in ultra-precision positioning and micromachining for research on rotary motion systems at the sub-arc-second level.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA