Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(52): e2307477120, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38134195

RESUMEN

Potassium-ion batteries (PIBs) have attracted ever-increasing interest due to the abundant potassium resources and low cost, which are considered a sustainable energy storage technology. However, the graphite anodes employed in PIBs suffer from low capacity and sluggish reaction kinetics caused by the large radius of potassium ions. Herein, we report nitrogen-doped, defect-rich hollow carbon nanospheres with contact curved interfaces (CCIs) on carbon nanotubes (CNTs), namely CCI-CNS/CNT, to boost both electron transfer and potassium-ion adsorption. Density functional theory calculations validate that engineering CCIs significantly augments the electronic state near the Fermi level, thus promoting electron transfer. In addition, the CCIs exhibit a pronounced affinity for potassium ions, promoting their adsorption and subsequently benefiting potassium storage. As a result, the rationally designed CCI-CNS/CNT anode shows remarkable cyclic stability and rate capability. This work provides a strategy for enhancing the potassium storage performance of carbonaceous materials through CCI engineering, which can be further extended to other battery systems.

2.
Chem Commun (Camb) ; 59(17): 2381-2398, 2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36723354

RESUMEN

Rechargeable potassium (K) batteries that are of low cost, with high energy densities and long cycle lives have attracted tremendous interest in affordable and large-scale energy storage. However, the large size of the K-ion leads to sluggish reaction kinetics and causes a large volume variation during the ion insertion/extraction processes, thus hindering the utilization of active electrode materials, triggering a serious structural collapse, and deteriorating the cycling performance. Therefore, the exploration of suitable materials/hosts that can reversibly and sustainably accommodate K-ions and host K metals are urgently needed. Electrospun carbon-based materials have been extensively studied as electrode/host materials for rechargeable K batteries owing to their designable structures, tunable composition, hierarchical pores, high conductivity, large surface areas, and good flexibility. Here, we present the recent developments in electrospun CNF-based nanomaterials for various K batteries (e.g., K-ion batteries, K metal batteries, K-chalcogen batteries), including their fabrication methods, structural modulation, and electrochemical performance. This Feature Article is expected to offer guidelines for the rational design of novel electrospun electrodes for the next-generation K batteries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA