Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 183
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Intervirology ; 66(1): 97-110, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37285807

RESUMEN

BACKGROUND: Herpes simplex virus 1 (HSV-1), an important human pathogen, is capable of latent infection in neurons and productive (lytic) infection in other tissue cells. Once infected with HSV-1, the immune system of the organism cannot eliminate the virus and carries it lifelong. HSV-1 possesses approximately 150 kb of double-stranded linear genomic DNA and can encode at least 70 proteins and 37 mature microRNAs (miRNAs) derived from 18 precursor miRNAs (pre-miRNAs). SUMMARY: These HSV-1-encoded miRNAs are widely involved in multiple processes in the life cycle of the virus and the host cell, including viral latent and lytic infection, as well as host cell immune signaling, proliferation, and apoptosis. KEY MESSAGE: In this review, we focused primarily on recent advances in HSV-1-encoded miRNA expression, function, and mechanism, which may provide new research ideas and feasible research methods systemically and comprehensively.


Asunto(s)
Herpesvirus Humano 1 , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Herpesvirus Humano 1/genética , Latencia del Virus/genética , Transducción de Señal
2.
J Immunol ; 206(11): 2527-2535, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33980582

RESUMEN

The T cell response is an important detection index in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine development. The present study was undertaken to determine the T cell epitopes in the spike (S) protein of SARS-CoV-2 that dominate the T cell responses in SARS-CoV-2-infected patients. PBMCs from rhesus macaques vaccinated with a DNA vaccine encoding the full-length S protein were isolated, and an ELISPOT assay was used to identify the recognized T cell epitopes among a total of 158 18-mer and 10-aa-overlapping peptides spanning the full-length S protein. Six multipeptide-based epitopes located in the S1 region, with four of the six located in the receptor-binding domain, were defined as the most frequently recognized epitopes in macaques. The conservation of the epitopes across species was also verified, and peptide mixtures for T cell response detection were established. Six newly defined T cell epitopes were found in the current study, which may provide a novel potential target for T cell response detection and the diagnosis and vaccine design of SARS-CoV-2 based on multipeptide subunit-based epitopes.


Asunto(s)
Epítopos de Linfocito T/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Animales , Macaca mulatta
3.
BMC Plant Biol ; 22(1): 342, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35836128

RESUMEN

BACKGROUND: Rhododendron molle (Ericaceae) is a traditional Chinese medicine, which has been used to treat rheumatism and relieve pain since ancient times. The characteristic grayanoids of this plant have been demonstrated to be the chemical basis for the analgesic activity. Moreover, unlike morphine, these diterpenoids are non-addictive. Grayanoids mainly distribute in the leaves, flowers, roots, and fruits of R. molle, with low content. Currently the research on the biosynthesis of grayanoids is hindered, partially due to lack of the genomic information. RESULTS: In the present study, a total of 744 Mb sequences were generated and assembled into 13 chromosomes. An ancient whole-genome duplication event (Ad-ß) was discovered that occurred around 70 million years ago. Tandem and segmental gene duplications led to specific gene expansions in the terpene synthase and cytochrome P450 (CYP450) gene families. Two diterpene synthases were demonstrated to be responsible for the biosynthesis of 16α-hydroxy-ent-kaurane, the key precursor for grayanoids. Phylogenetic analysis revealed a species-specific bloom of the CYP71AU subfamily, which may involve the candidate CYP450s responsible for the biosynthesis of grayanoids. Additionally, three putative terpene biosynthetic gene clusters were found. CONCLUSIONS: We reported the first genome assembly of R. molle and investigated the molecular basis underpinning terpenoids biosynthesis. Our work provides a foundation for elucidating the complete biosynthetic pathway of grayanoids and studying the terpenoids diversity in R. molle.


Asunto(s)
Diterpenos , Ericaceae , Rhododendron , Cromosomas , Ericaceae/genética , Filogenia , Rhododendron/genética
4.
PLoS Pathog ; 16(8): e1008703, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32776994

RESUMEN

Herpes simplex virus type 1 (HSV1) is a complicated structural agent with a sophisticated transcription process and a high infection rate. A vaccine against HSV1 is urgently needed. As multiple viral-encoded proteins, including structural and nonstructural proteins, contribute to immune response stimulation, an attenuated or deficient HSV1 vaccine may be relatively reliable. Advances in genomic modification technologies provide reliable means of constructing various HSV vaccine candidates. Based on our previous work, an M6 mutant with mutations in the UL7, UL41, LAT, Us3, Us11 and Us12 genes was established. The mutant exhibited low proliferation in cells and an attenuated phenotype in an animal model. Furthermore, in mice and rhesus monkeys, the mutant can induce remarkable serum neutralizing antibody titers and T cell activation and protect against HSV1 challenge by impeding viral replication, dissemination and pathogenesis.


Asunto(s)
Vacunas contra el Virus del Herpes Simple/inmunología , Herpes Simple/inmunología , Herpesvirus Humano 1/inmunología , Animales , Femenino , Herpes Simple/prevención & control , Herpes Simple/virología , Vacunas contra el Virus del Herpes Simple/administración & dosificación , Vacunas contra el Virus del Herpes Simple/genética , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/fisiología , Humanos , Ratones , Ratones Endogámicos BALB C , Mutación , Fenotipo , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/genética , Vacunas Atenuadas/inmunología , Proteínas Virales/administración & dosificación , Proteínas Virales/genética , Proteínas Virales/inmunología
5.
PLoS Pathog ; 16(11): e1008949, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33180882

RESUMEN

The COVID-19 has emerged as an epidemic, causing severe pneumonia with a high infection rate globally. To better understand the pathogenesis caused by SARS-CoV-2, we developed a rhesus macaque model to mimic natural infection via the nasal route, resulting in the SARS-CoV-2 virus shedding in the nose and stool up to 27 days. Importantly, we observed the pathological progression of marked interstitial pneumonia in the infected animals on 5-7 dpi, with virus dissemination widely occurring in the lower respiratory tract and lymph nodes, and viral RNA was consistently detected from 5 to 21 dpi. During the infection period, the kinetics response of T cells was revealed to contribute to COVID-19 progression. Our findings implied that the antiviral response of T cells was suppressed after 3 days post infection, which might be related to increases in the Treg cell population in PBMCs. Moreover, two waves of the enhanced production of cytokines (TGF-α, IL-4, IL-6, GM-CSF, IL-10, IL-15, IL-1ß), chemokines (MCP-1/CCL2, IL-8/CXCL8, and MIP-1ß/CCL4) were detected in lung tissue. Our data collected from this model suggested that T cell response and cytokine/chemokine changes in lung should be considered as evaluation parameters for COVID-19 treatment and vaccine development, besides of observation of virus shedding and pathological analysis.


Asunto(s)
Betacoronavirus/patogenicidad , Infecciones por Coronavirus/patología , Neumonía Viral/patología , Animales , COVID-19 , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/virología , Citocinas/inmunología , Modelos Animales de Enfermedad , Pulmón/inmunología , Pulmón/patología , Macaca mulatta , Pandemias , Neumonía Viral/virología , SARS-CoV-2 , Carga Viral/métodos , Virulencia , Esparcimiento de Virus , Tratamiento Farmacológico de COVID-19
6.
Immunopharmacol Immunotoxicol ; 44(5): 633-640, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35506627

RESUMEN

Background: The safety of novel vaccines against COVID-19 is currently a major focus of preclinical research. As a part of the safety evaluation testing package, 24 healthy guinea pigs were used to determine whether repeated administration of inactivated SARS-CoV-2 vaccine could induce active systemic anaphylaxis (ASA), and to evaluate its degree of severity.Method: According to sex and body weight, the animals were randomly divided into three experimental groups (eight animals per group). The negative control group received 0.9% sodium chloride (priming dose: 0.5 mL/animal; challenge dose: 1 mL/animal); the positive control group received 10% ovalbumin (priming dose: 0.5 mL/animal; challenge dose: 1 mL/animal); and the inactivated SARS-CoV-2 vaccine group received inactivated SARS-CoV-2 vaccines (priming dose: 100 U in 0.5 mL/animal; challenge dose: 200 U in 1 mL/animal). Priming dose administration was conducted by multi-point injection into the muscles of the hind limbs, three times, once every other day. On days 14 and 21 after the final priming injection, a challenge test was conducted. Half of the animals in each group were injected intravenously with twice the dose and volume of the tested substance used for immunization. During the experimental course, the injection site, general clinical symptoms, body weight, and systemic allergic reaction symptoms were monitored.Result: After intramuscular injection of inactivated SARS-CoV-2 vaccine, there were no abnormal reactions at the injection site, clinical symptoms, or deaths. There was no difference in body weight between the groups, and there were no allergic reactions. Conclusion: Thus, inactivated SARS-CoV-2 vaccine injected intramuscularly in guinea pigs did not produce ASA and had a good safety profile, which can provide actual data on vaccine risks and important reference data for clinical research on this vaccine.


Asunto(s)
Anafilaxia , Vacunas contra la COVID-19 , COVID-19 , Animales , Femenino , Cobayas , Masculino , Anafilaxia/epidemiología , Anticuerpos Antivirales , Peso Corporal , Chlorocebus aethiops , COVID-19/prevención & control , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/efectos adversos , Inyecciones Intramusculares , Ovalbúmina , SARS-CoV-2 , Cloruro de Sodio , Células Vero
7.
Clin Infect Dis ; 73(11): e3949-e3955, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-33165503

RESUMEN

BACKGROUND: We evaluated an inactivated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine for immunogenicity and safety in adults aged 18-59 years. METHODS: In this randomized, double-blinded, controlled trial, healthy adults received a medium dose (MD) or a high dose (HD) of the vaccine at an interval of either 14 days or 28 days. Neutralizing antibody (NAb) and anti-S and anti-N antibodies were detected at different times, and adverse reactions were monitored for 28 days after full immunization. RESULTS: A total of 742 adults were enrolled in the immunogenicity and safety analysis. Among subjects in the 0, 14 procedure, the seroconversion rates of NAb in MD and HD groups were 89% and 96% with geometric mean titers (GMTs) of 23 and 30, respectively, at day 14 and 92% and 96% with GMTs of 19 and 21, respectively, at day 28 after immunization. Anti-S antibodies had GMTs of 1883 and 2370 in the MD group and 2295 and 2432 in the HD group. Anti-N antibodies had GMTs of 387 and 434 in the MD group and 342 and 380 in the HD group. Among subjects in the 0, 28 procedure, seroconversion rates for NAb at both doses were both 95% with GMTs of 19 at day 28 after immunization. Anti-S antibodies had GMTs of 937 and 929 for the MD and HD groups, and anti-N antibodies had GMTs of 570 and 494 for the MD and HD groups, respectively. No serious adverse events were observed during the study period. CONCLUSIONS: Adults vaccinated with inactivated SARS-CoV-2 vaccine had NAb as well as anti-S/N antibody and had a low rate of adverse reactions. CLINICAL TRIALS REGISTRATION: NCT04412538.


Asunto(s)
COVID-19 , SARS-CoV-2 , Adulto , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacunas contra la COVID-19 , Método Doble Ciego , Humanos , Inmunogenicidad Vacunal
8.
Bioconjug Chem ; 32(5): 1034-1046, 2021 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-33951913

RESUMEN

SARS-CoV-2 caused the COVID-19 pandemic that lasted for more than a year. Globally, there is an urgent need to use safe and effective vaccines for immunization to achieve comprehensive protection against SARS-CoV-2 infection. Focusing on developing a rapid vaccine platform with significant immunogenicity as well as broad and high protection efficiency, we designed a SARS-CoV-2 spike protein receptor-binding domain (RBD) displayed on self-assembled ferritin nanoparticles. In a 293i cells eukaryotic expression system, this candidate vaccine was prepared and purified. After rhesus monkeys are immunized with 20 µg of RBD-ferritin nanoparticles three times, the vaccine can elicit specific humoral immunity and T cell immune response, and the neutralizing antibodies can cross-neutralize four SARS-CoV-2 strains from different sources. In the challenge protection test, after nasal infection with 2 × 105 CCID50 SARS-CoV-2 virus, compared with unimmunized control animals, virus replication in the vaccine-immunized rhesus monkeys was significantly inhibited, and respiratory pathology observations also showed only slight pathological damage. These analyses will benefit the immunization program of the RBD-ferritin nanoparticle vaccine in the clinical trial design and the platform construction to present a specific antigen domain in the self-assembling nanoparticle in a short time to harvest stable, safe, and effective vaccine candidates for new SARS-CoV-2 isolates.


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , Nanopartículas/química , Glicoproteína de la Espiga del Coronavirus/metabolismo , Linfocitos T/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Sitios de Unión , Linfocitos T CD8-positivos/inmunología , COVID-19/inmunología , Ferritinas/química , Ferritinas/metabolismo , Inmunidad Humoral , Macaca mulatta , Masculino , Nanopartículas/metabolismo , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Linfocitos T/metabolismo , Ultracentrifugación
9.
Clin Infect Dis ; 71(9): 2421-2427, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31734699

RESUMEN

BACKGROUND: Evaluation of a licensed inactivated enterovirus type 71 (EV71) vaccine is needed in a phase IV study with a large population to identify its effectiveness and safety for further application. METHODS: An open-label, controlled trial involving a large population of 155 995 children aged 6-71 months was performed; 40 724 were enrolled in the vaccine group and received 2 doses of inactivated EV71 vaccine at an interval of 1 month, and the remaining children were used as the control group. The EV71-infected cases with hand, foot, and mouth disease were monitored in the vaccine and control groups during a follow-up period of 14 months since the 28th day postinoculation through the local database of the Notifiable Infectious Diseases Network. The effectiveness of the vaccine was estimated by comparing the incidence density in the vaccine group versus that in the control group based upon EV71-infected patients identified via laboratory testing. In parallel, the active and passive surveillance for safety of the vaccine was conducted by home or telephone visits and by using the Adverse Event Following Immunization (AEFI) system, respectively. RESULTS: An overall level of 89.7% (95% confidence interval, 24.0-98.6%) vaccine effectiveness against EV71 infection and a 4.58% rate of reported adverse events were observed. Passive surveillance demonstrated a 0.31% rate of reported common minor reactions. CONCLUSIONS: The clinical protection and safety of the EV71 vaccine were demonstrated in the immunization of a large population. CLINICAL TRIALS REGISTRATION: NCT03001986.


Asunto(s)
Enterovirus Humano A , Enterovirus , Enfermedad de Boca, Mano y Pie , Vacunas Virales , Adolescente , Adulto , Anciano , Anticuerpos Antivirales , Niño , Enfermedad de Boca, Mano y Pie/epidemiología , Enfermedad de Boca, Mano y Pie/prevención & control , Humanos , Persona de Mediana Edad , Vacunas de Productos Inactivados/efectos adversos , Adulto Joven
10.
Lab Invest ; 100(4): 596-605, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31857694

RESUMEN

Enterovirus A71 (EV-A71) infection is primarily responsible for fatal hand, foot, and mouth disease (HFMD) cases. Infants and younger children are more likely to suffer central nervous system damage as a result of EV-A71 infection, but this virus mostly does not affect older children and adults. This study investigated the possible mechanism underlying the age-dependent lethal effect of EV-A71 infection by comparing neonatal and adult mouse models of EV-A71 infection. Although viral proliferation is absent in both neonatal and adult mice, we observed that EV-A71, as a stimulus for astrocytes, elevates the levels of cytokines and monoamine neurotransmitters in neonatal mice. Then, we selected IL-6 and adrenaline as targets in a pharmacological approach to further validate the roles of these factors in mediating the mortality of neonatal mice after EV-A71 infection. Intracerebral injection of IL-6 and adrenaline enhanced the severity of EV-A71 infection, while treatment with an anti-IL-6-neutralizing antibody or the adrenergic-antagonist phenoxybenzamine reversed the lethal effect of EV-A71 in neonatal mice. These results suggest that the central nervous system (CNS) damage in neonatal cases of EV-A71 infection might be caused by an activated fetal cerebral immune response to the virus, including the disruption of brainstem function through increased levels of cytokines and neurotransmitters, rather than the typical cytopathic effect (CPE) of viral infection.


Asunto(s)
Enterovirus Humano A/patogenicidad , Infecciones por Enterovirus , Interacciones Huésped-Patógeno/fisiología , Envejecimiento/fisiología , Animales , Animales Recién Nacidos , Astrocitos/inmunología , Astrocitos/metabolismo , Encéfalo/inmunología , Encéfalo/metabolismo , Encéfalo/virología , Infecciones por Enterovirus/fisiopatología , Infecciones por Enterovirus/virología , Femenino , Interleucina-6/metabolismo , Ratones , Ratones Endogámicos ICR , Carga Viral
11.
J Med Virol ; 92(11): 2830-2838, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32558946

RESUMEN

Coronavirus disease 2019, caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), leads to a series of clinical symptoms of respiratory and pulmonary inflammatory reactions via unknown pathologic mechanisms related to the viral infection process in tracheal or bronchial epithelial cells. Investigation of this viral infection in the human bronchial epithelial cell line (16HBE) suggests that SARS-CoV-2 can enter these cells through interaction between its membrane-localized S protein with the angiotensin-converting enzyme 2 molecule on the host cell membrane. Further observation indicates distinct viral replication with a dynamic and moderate increase, whereby viral replication does not lead to a specific cytopathic effect but maintains a continuous release of progeny virions from infected cells. Although messenger RNA expression of various innate immune signaling molecules is altered in the cells, transcription of interferons-α (IFN-α), IFN-ß, and IFN-γ is unchanged. Furthermore, expression of some interleukins (IL) related to inflammatory reactions, such as IL-6, IL-2, and IL-8, is maintained at low levels, whereas that of ILs involved in immune regulation is upregulated. Interestingly, IL-22, an IL that functions mainly in tissue repair, shows very high expression. Collectively, these data suggest a distinct infection process for this virus in respiratory epithelial cells, which may be linked to its clinicopathological mechanism.


Asunto(s)
Bronquios/citología , Células Epiteliales/virología , SARS-CoV-2/fisiología , Replicación Viral , Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/virología , Línea Celular , Efecto Citopatogénico Viral/inmunología , Células Epiteliales/inmunología , Humanos , Inmunidad Innata , Interleucinas/inmunología , Glicoproteína de la Espiga del Coronavirus/metabolismo
12.
Rev Med Virol ; 29(4): e2054, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31197909

RESUMEN

Herpes simplex virus (HSV) can cause oral or genital ulcerative lesions and even encephalitis in various age groups with high infection rates. More seriously, HSV may lead to a wide range of recurrent diseases throughout a lifetime. No vaccines against HSV are currently available. The accumulated clinical research data for HSV vaccines reveal that the effects of HSV interacting with the host, especially the host immune system, may be important for the development of HSV vaccines. HSV vaccine development remains a major challenge. Thus, we focus on the research data regarding the interactions of HSV and host immune cells, including dendritic cells (DCs), innate lymphoid cells (ILCs), macrophages, and natural killer (NK) cells, and the related signal transduction pathways involved in immune evasion and cytokine production. The aim is to explore possible strategies to develop new effective HSV vaccines.


Asunto(s)
Vacunas contra el Virus del Herpes Simple/inmunología , Vacunas contra el Virus del Herpes Simple/aislamiento & purificación , Herpes Simple/prevención & control , Herpes Simple/virología , Interacciones Microbiota-Huesped , Inmunidad Innata , Simplexvirus/inmunología , Desarrollo de Medicamentos/métodos , Descubrimiento de Drogas/métodos , Herpes Simple/inmunología , Humanos , Simplexvirus/crecimiento & desarrollo
13.
J Infect Dis ; 219(1): 50-58, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30085178

RESUMEN

Background: Mumps vaccine immunizations have reduced the incidence of this disease. With the variation of mumps circulating strain, novel vaccine strains are always important. Methods: A 2-center parallel, randomized, double-blind noninferiority trial was performed to compare an F-genotype attenuated mumps vaccine (SP strain) to the A-genotype vaccine (S-79, Jeryl-Lynn strain) in 1080 healthy children aged 8-24 months in Hubei, China. Results: Participants were randomly assigned to receive a high or low dose of the SP or S79 vaccine and then assessed clinically at 30 minutes and 1-28 days postinoculation. No differences in local or systemic reactivity were observed. A similar incidence of severe adverse events associated with the vaccine was observed in the high-dose group and the positive control group. Based on throat swab collections, no viral shedding was present at the 4th and 10th days in any group. Neutralizing and hemagglutination-inhibiting antibody assays with the F- or A-genotype strains showed similar trends in geometric mean titers in the high-dose SP and S79 groups. Increased cytotoxic T lymphocyte responses were observed in all groups. Conclusions: The F-genotype attenuated mumps vaccine is safe, offers immunogenicity against a homologous virus, and is noninferior to the A-genotype vaccine in 8- to 24-month-old children.


Asunto(s)
Vacuna contra la Parotiditis/administración & dosificación , Virus de la Parotiditis/inmunología , Paperas/prevención & control , Anticuerpos Antivirales/sangre , Preescolar , China/epidemiología , Relación Dosis-Respuesta a Droga , Método Doble Ciego , Femenino , Genotipo , Pruebas de Inhibición de Hemaglutinación , Humanos , Inmunización , Lactante , Masculino , Paperas/inmunología , Vacuna contra la Parotiditis/inmunología , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/inmunología
14.
Dig Dis Sci ; 64(5): 1392-1394, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30868408

RESUMEN

The original version of the article unfortunately contained errors in 'Severity of illness' and 'Hospital characteristics' entries of Table 1. Corrected version of Table 1 is given below.

15.
BMC Immunol ; 19(1): 4, 2018 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-29368591

RESUMEN

BACKGROUND: The Haemophilus influenzae type b (Hib) conjugate vaccine has been widely used in children to prevent invasive Hib disease because of its strong immunogenicity and antibody response induction relative to the capsular polysaccharide (CPS) antigen. The data from vaccine studies suggest that the conjugate vaccine contains carrier proteins that enhance and/or regulate the antigen's immunogenicity, but the mechanism of this enhancement remains unclear. METHODS: To explore the immunological role of the conjugate vaccine, we compared the immune responses and gene profiles of rhesus macaques after immunization with CPS, carrier protein tetanus toxoid (TT) or conjugate vaccine. RESULTS: A distinct immune response was induced by the Hib conjugate vaccine but not by CPS or carrier protein TT. The genes that were dynamically regulated in conjunction with the macaque immune responses to the conjugate vaccine were investigated. CONCLUSIONS: We propose that these genes are involved in the induction of specific immunity that is characterized by the appearance and maintenance of antibodies against Hib.


Asunto(s)
Haemophilus influenzae tipo b/inmunología , Leucocitos Mononucleares/inmunología , Macaca mulatta/inmunología , Toxoide Tetánico/inmunología , Transcriptoma/inmunología , Vacunación/métodos , Vacunas Conjugadas/inmunología , Animales , Cápsulas Bacterianas/inmunología , Vacunas contra Haemophilus/administración & dosificación , Vacunas contra Haemophilus/inmunología , Inmunidad/genética , Inmunidad/inmunología , Leucocitos Mononucleares/metabolismo , Macaca mulatta/genética , Polisacáridos Bacterianos/inmunología , Transcriptoma/genética , Vacunas Conjugadas/administración & dosificación
16.
J Virol ; 91(15)2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28539442

RESUMEN

Interactions between hepatitis C virus (HCV) and lipoproteins in humans play an important role in the efficient establishment of chronic infection. Apolipoprotein E (ApoE) on the HCV envelope mediates virus attachment to host cells as well as immune evasion. This interaction is thought to occur in hepatocytes, as ApoE plays dual functions in HCV assembly and maturation as well as cell attachment. In the present study, we found that secreted ApoE (sApoE) can also bind to viral particles via its C-terminal domain after HCV is released from the cell. Furthermore, the binding affinity of interactions between the sApoE N terminus and cell surface receptors affected HCV infectivity in a dose-dependent manner. The extracellular binding of sApoE to HCV is dependent on HCV envelope proteins, and recombinant HCV envelope proteins are also able to bind to sApoE. These results suggest that extracellular interactions between HCV and sApoE may potentially complicate vaccine development and studies of viral pathogenesis.IMPORTANCE End-stage liver disease caused by chronic HCV infection remains a clinical challenge, and there is an urgent need for a prophylactic method of controlling HCV infection. Because host immunity against HCV is poorly understood, additional investigations of host-virus interactions in the context of HCV are important. HCV is primarily transmitted through blood, which is rich in lipoproteins. Therefore, it is of interest to further determine how HCV interacts with lipoproteins in human blood. In this study, we found that secreted ApoE (sApoE), an exchangeable component found in lipoproteins, participates in extracellular interactions with HCV virions. More significantly, different variants of sApoE differentially affect HCV infection efficiency in a dose-dependent manner. These findings provide greater insight into HCV infection and host immunity and could help propel the development of new strategies for preventing HCV infection.


Asunto(s)
Apolipoproteínas E/metabolismo , Hepacivirus/fisiología , Interacciones Huésped-Patógeno , Proteínas del Envoltorio Viral/metabolismo , Línea Celular , Humanos , Unión Proteica
17.
Dig Dis Sci ; 63(9): 2267-2274, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29457210

RESUMEN

BACKGROUND: Patients with cirrhosis are at high readmission risk. Using a large statewide database, we evaluated the effect of hospital cirrhosis-related patient volume on 30-day readmissions in patients with cirrhosis. METHODS: We conducted a retrospective study of the Healthcare Cost and Utilization Project State Inpatient Database for adult patients with cirrhosis, as defined by International Classification of Diseases, Ninth Revision (ICD-9) codes, hospitalized in California between 2009 and 2011. Multivariable logistic regression analysis was performed to evaluate the effect of hospital volume on 30-day readmissions. RESULTS: A total of 69,612 patients with cirrhosis were identified in 405 hospitals; 24,062 patients were discharged from the top 10% of hospitals (N = 41) by cirrhosis volume, and 45,550 patients in the bottom 90% (N = 364). Compared with higher-volume centers, lower-volume hospitals cared for patients with similar average Quan-Charlson-Deyo (QCD) comorbidity scores (6.54 vs. 6.68), similar proportion of hepatitis B and fatty liver disease, lower proportion of hepatitis C (34.8 vs. 41.5%) but greater proportion of alcoholic liver disease (53.1 vs. 47.4%). Multivariable logistic regression analysis demonstrated admission to a lower-volume hospital did not predict 30-day readmission (odds ratio [OR] 0.97, 95% confidence interval [CI] 0.92-1.01) after adjusting for sociodemographics, QCD score, cirrhosis severity, and hospital characteristics. Instead, liver transplant center status significantly decreased the risk of readmission (OR 0.87, 95% CI 0.80-0.94). Ascites, hepatic encephalopathy, hepatocellular carcinoma, higher QCD, and presence of alcoholic liver disease and hepatitis C were also independent predictors. CONCLUSIONS: Readmissions within 30 days were common among patients with cirrhosis hospitalized in California. While hospital cirrhosis volume did not predict 30-day readmissions, liver transplant center status was protective of readmissions. Medically complicated patients with cirrhosis at hospitals without liver transplant centers may benefit from additional support to prevent readmission.


Asunto(s)
Hospitales de Alto Volumen , Hospitales de Bajo Volumen , Cirrosis Hepática/terapia , Readmisión del Paciente , Anciano , California/epidemiología , Bases de Datos Factuales , Femenino , Humanos , Cirrosis Hepática/diagnóstico , Cirrosis Hepática/epidemiología , Trasplante de Hígado , Modelos Logísticos , Masculino , Persona de Mediana Edad , Análisis Multivariante , Oportunidad Relativa , Estudios Retrospectivos , Factores de Riesgo , Índice de Severidad de la Enfermedad , Factores de Tiempo
18.
Clin Infect Dis ; 64(10): 1317-1325, 2017 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-28419204

RESUMEN

BACKGROUND: A Sabin strain-based inactivated poliomyelitis vaccine (Sabin-IPV) is the rational option for completely eradicating poliovirus transmission. The neutralizing capacity of Sabin-IPV immune serum to different strains of poliovirus is a key indicator of the clinical protective efficacy of this vaccine. METHODS: Sera collected from 500 infants enrolled in a randomized, blinded, positive control, phase 2 clinical trial were randomly divided into 5 groups: Groups A, B, and C received high, medium, and low doses, respectively, of Sabin-IPV, while groups D and E received trivalent oral polio vaccine and Salk strain-based IPV, respectively, all on the same schedule. Immune sera were collected after the third dose of primary immunization, and tested in cross-neutralization assays against 19 poliovirus strains of all 3 types. RESULTS: All immune sera from all 5 groups interacted with the 19 poliovirus strains with various titers and in a dose-dependent manner. One type 2 immunodeficiency-associated vaccine-derived poliovirus strain was not recognized by these immune sera. CONCLUSIONS: Sabin-IPV vaccine can induce protective antibodies against currently circulating and reference wild poliovirus strains and most vaccine-derived poliovirus strains, with rare exceptions. CLINICAL TRIALS REGISTRATION: NCT01056705.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Sueros Inmunes/inmunología , Vacuna Antipolio de Virus Inactivados/inmunología , Vacuna Antipolio Oral/inmunología , Poliovirus/inmunología , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Relación Dosis-Respuesta Inmunológica , Humanos , Lactante , Pruebas de Neutralización , Poliomielitis/prevención & control , Poliomielitis/transmisión , Poliomielitis/virología , Poliovirus/genética , Vacuna Antipolio de Virus Inactivados/administración & dosificación , Vacuna Antipolio Oral/administración & dosificación , Análisis de Secuencia de ADN , Vacunación
19.
N Engl J Med ; 370(9): 829-37, 2014 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-24571755

RESUMEN

BACKGROUND: Enterovirus 71 (EV71) is a major cause of hand, foot, and mouth disease in children and may be fatal. A vaccine against EV71 is needed. METHODS: We conducted a randomized, double-blind, placebo-controlled phase 3 trial involving healthy children 6 to 71 months of age in Guangxi Zhuang Autonomous Region, China. Two doses of an inactivated EV71 vaccine or placebo were administered intramuscularly, with a 4-week interval between doses, and children were monitored for up to 11 months. The primary end point was protection against hand, foot, and mouth disease caused by EV71. RESULTS: A total of 12,000 children were randomly assigned to receive vaccine or placebo. Serum neutralizing antibodies were assessed in 549 children who received the vaccine. The seroconversion rate was 100% 4 weeks after the two vaccinations, with a geometric mean titer of 170.6. Over the course of two epidemic seasons, the vaccine efficacy was 97.4% (95% confidence interval [CI], 92.9 to 99.0) according to the intention-to-treat analysis and 97.3% (95% CI, 92.6 to 99.0) according to the per-protocol analysis. Adverse events, such as fever (which occurred in 41.6% of the participants who received vaccine vs. 35.2% of those who received placebo), were significantly more common in the week after vaccination among children who received the vaccine than among those who received placebo. CONCLUSIONS: The inactivated EV71 vaccine elicited EV71-specific immune responses and protection against EV71-associated hand, foot, and mouth disease. (Funded by the National Basic Research Program and others; ClinicalTrials.gov number, NCT01569581.).


Asunto(s)
Enterovirus Humano A/inmunología , Enfermedad de Boca, Mano y Pie/prevención & control , Vacunas Virales/inmunología , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Preescolar , China , Método Doble Ciego , Enterovirus Humano A/genética , Femenino , Fiebre/etiología , Enfermedad de Boca, Mano y Pie/epidemiología , Enfermedad de Boca, Mano y Pie/inmunología , Humanos , Lactante , Inyecciones Intramusculares , Estimación de Kaplan-Meier , Masculino , Vacunas de Productos Inactivados , Vacunas Virales/administración & dosificación , Vacunas Virales/efectos adversos
20.
J Virol ; 90(2): 790-804, 2016 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-26512084

RESUMEN

UNLABELLED: Studies of herpes simplex virus (HSV) infections of humans are limited by the use of rodent models such as mice, rabbits, and guinea pigs. Tree shrews (Tupaia belangeri chinensis) are small mammals indigenous to southwest Asia. At behavioral, anatomical, genomic, and evolutionary levels, tree shrews are much closer to primates than rodents are, and tree shrews are susceptible to HSV infection. Thus, we have studied herpes simplex virus 1 (HSV-1) infection in the tree shrew trigeminal ganglion (TG) following ocular inoculation. In situ hybridization, PCR, and quantitative reverse transcription-PCR (qRT-PCR) analyses confirm that HSV-1 latently infects neurons of the TG. When explant cocultivation of trigeminal ganglia was performed, the virus was recovered after 5 days of cocultivation with high efficiency. Swabbing the corneas of latently infected tree shrews revealed that tree shrews shed virus spontaneously at low frequencies. However, tree shrews differ significantly from mice in the expression of key HSV-1 genes, including ICP0, ICP4, and latency-associated transcript (LAT). In acutely infected tree shrew TGs, no level of ICP4 was observed, suggesting the absence of infection or a very weak, acute infection compared to that of the mouse. Immunofluorescence staining with ICP4 monoclonal antibody, and immunohistochemistry detection by HSV-1 polyclonal antibodies, showed a lack of viral proteins in tree shrew TGs during both acute and latent phases of infection. Cultivation of supernatant from homogenized, acutely infected TGs with RS1 cells also exhibited an absence of infectious HSV-1 from tree shrew TGs. We conclude that the tree shrew has an undetectable, or a much weaker, acute infection in the TGs. Interestingly, compared to mice, tree shrew TGs express high levels of ICP0 transcript in addition to LAT during latency. However, the ICP0 transcript remained nuclear, and no ICP0 protein could be seen during the course of mouse and tree shrew TG infections. Taken together, these observations suggest that the tree shrew TG infection differs significantly from the existing rodent models. IMPORTANCE: Herpes simplex viruses (HSVs) establish lifelong infection in more than 80% of the human population, and their reactivation leads to oral and genital herpes. Currently, rodent models are the preferred models for latency studies. Rodents are distant from primates and may not fully represent human latency. The tree shrew is a small mammal, a prosimian primate, indigenous to southwest Asia. In an attempt to further develop the tree shrew as a useful model to study herpesvirus infection, we studied the establishment of latency and reactivation of HSV-1 in tree shrews following ocular inoculation. We found that the latent virus, which resides in the sensory neurons of the trigeminal ganglion, could be stress reactivated to produce infectious virus, following explant cocultivation and that spontaneous reactivation could be detected by cell culture of tears. Interestingly, the tree shrew model is quite different from the mouse model of HSV infection, in that the virus exhibited only a mild acute infection following inoculation with no detectable infectious virus from the sensory neurons. The mild infection may be more similar to human infection in that the sensory neurons continue to function after herpes reactivation and the affected skin tissue does not lose sensation. Our findings suggest that the tree shrew is a viable model to study HSV latency.


Asunto(s)
Herpesvirus Humano 1/fisiología , Transcripción Genética , Ganglio del Trigémino/virología , Tupaiidae/virología , Latencia del Virus , Replicación Viral , Animales , Modelos Animales de Enfermedad , Femenino , Perfilación de la Expresión Génica , Herpesviridae , Ratones Endogámicos BALB C , Proteínas Virales/biosíntesis , Esparcimiento de Virus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA