Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Plant Cell Environ ; 45(6): 1698-1718, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35141923

RESUMEN

Aquaporins (AQPs) play important roles in plant growth, development and tolerance to environmental stresses. To understand the role of AQPs in the mangrove plant Kandelia obovata, which has the ability to acquire water from seawater, we identified 34 AQPs in the K. obovata genome and analysed their structural features. Phylogenetic analysis revealed that KoAQPs are homologous to AQPs of Populus and Arabidopsis, which are evolutionarily conserved. The key amino acid residues were used to assess water-transport ability. Analysis of cis-acting elements in the promoters indicated that KoAQPs may be stress- and hormone-responsive. Subcellular localization of KoAQPs in yeast showed most KoAQPs function in the membrane system. That transgenic yeast with increased cell volume showed that some KoAQPs have significant water-transport activity, and the substrate sensitivity assay indicates that some KoAQPs can transport H2 O2 . The transcriptome data were used to analyze the expression patterns of KoAQPs in different tissues and developing fruits of K. obovata. In addition, real-time quantitative PCR analyses combined transcriptome data showed that KoAQPs have complex responses to environmental factors, including salinity, flooding and cold. Collectively, the transport of water and solutes by KoAQPs contributed to the adaptation of K. obovata to the coastal intertidal environment.


Asunto(s)
Acuaporinas , Rhizophoraceae , Acuaporinas/genética , Acuaporinas/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Rhizophoraceae/metabolismo , Saccharomyces cerevisiae/metabolismo , Agua/metabolismo
2.
Plant Cell ; 31(10): 2332-2352, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31427469

RESUMEN

A crucial step for mRNA polyadenylation is poly(A) signal recognition by trans-acting factors. The mammalian cleavage and polyadenylation specificity factor (CPSF) complex components CPSF30 and WD repeat-containing protein33 (WDR33) recognize the canonical AAUAAA for polyadenylation. In Arabidopsis (Arabidopsis thaliana), the flowering time regulator FY is the homolog of WDR33. However, its role in mRNA polyadenylation is poorly understood. Using poly(A) tag sequencing, we found that >50% of alternative polyadenylation (APA) events are altered in fy single mutants or double mutants with oxt6 (a null mutant of AtCPSF30), but mutation of the FY WD40-repeat has a stronger effect than deletion of the plant-unique Pro-Pro-Leu-Pro-Pro (PPLPP) domain. fy mutations disrupt AAUAAA or AAUAAA-like poly(A) signal recognition. Notably, A-rich signal usage is suppressed in the WD40-repeat mutation but promoted in PPLPP-domain deficiency. However, fy mutations do not aggravate the altered signal usage in oxt6 Furthermore, the WD40-repeat mutation shows a preference for 3' untranslated region shortening, but the PPLPP-domain deficiency shows a preference for lengthening. Interestingly, the WD40-repeat mutant exhibits shortened primary roots and late flowering with alteration of APA of related genes. Importantly, the long transcripts of two APA genes affected in fy are related to abiotic stress responses. These results reveal a conserved and specific role of FY in mRNA polyadenylation.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Poliadenilación/genética , Señales de Poliadenilación de ARN 3'/genética , ARN Mensajero/genética , Transcriptoma/genética , Factores de Escisión y Poliadenilación de ARNm/genética , Factores de Escisión y Poliadenilación de ARNm/metabolismo , Regiones no Traducidas 3'/genética , Factor de Especificidad de Desdoblamiento y Poliadenilación/genética , Flores/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/genética , Ontología de Genes , Redes Reguladoras de Genes , Mutación , Fenotipo , Raíces de Plantas/metabolismo , Unión Proteica , Dominios Proteicos/genética , Repeticiones WD40/genética
3.
Plant J ; 98(2): 260-276, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30570805

RESUMEN

Alternative polyadenylation (APA) is a widespread post-transcriptional mechanism that regulates gene expression through mRNA metabolism, playing a pivotal role in modulating phenotypic traits in rice (Oryza sativa L.). However, little is known about the APA-mediated regulation underlying the distinct characteristics between two major rice subspecies, indica and japonica. Using a poly(A)-tag sequencing approach, polyadenylation (poly(A)) site profiles were investigated and compared pairwise from germination to the mature stage between indica and japonica, and extensive differentiation in APA profiles was detected genome-wide. Genes with subspecies-specific poly(A) sites were found to contribute to subspecies characteristics, particularly in disease resistance of indica and cold-stress tolerance of japonica. In most tissues, differential usage of APA sites exhibited an apparent impact on the gene expression profiles between subspecies, and genes with those APA sites were significantly enriched in quantitative trait loci (QTL) related to yield traits, such as spikelet number and 1000-seed weight. In leaves of the booting stage, APA site-switching genes displayed global shortening of 3' untranslated regions with increased expression in indica compared with japonica, and they were overrepresented in the porphyrin and chlorophyll metabolism pathways. This phenomenon may lead to a higher chlorophyll content and photosynthesis in indica than in japonica, being associated with their differential growth rates and yield potentials. We further constructed an online resource for querying and visualizing the poly(A) atlas in these two rice subspecies. Our results suggest that APA may be largely involved in developmental differentiations between two rice subspecies, especially in leaf characteristics and the stress response, broadening our knowledge of the post-transcriptional genetic basis underlying the divergence of rice traits.


Asunto(s)
Genes de Plantas/genética , Oryza/genética , Oryza/metabolismo , Poliadenilación , Aclimatación , Clorofila/metabolismo , Regulación de la Expresión Génica de las Plantas , Germinación , Fenotipo , Fotosíntesis , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Sitios de Carácter Cuantitativo , Semillas , Estrés Fisiológico , Transcriptoma
4.
Bioinformatics ; 34(11): 1841-1849, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29360928

RESUMEN

Motivation: Alternative polyadenylation (APA) has been increasingly recognized as a crucial mechanism that contributes to transcriptome diversity and gene expression regulation. As RNA-seq has become a routine protocol for transcriptome analysis, it is of great interest to leverage such unprecedented collection of RNA-seq data by new computational methods to extract and quantify APA dynamics in these transcriptomes. However, research progress in this area has been relatively limited. Conventional methods rely on either transcript assembly to determine transcript 3' ends or annotated poly(A) sites. Moreover, they can neither identify more than two poly(A) sites in a gene nor detect dynamic APA site usage considering more than two poly(A) sites. Results: We developed an approach called APAtrap based on the mean squared error model to identify and quantify APA sites from RNA-seq data. APAtrap is capable of identifying novel 3' UTRs and 3' UTR extensions, which contributes to locating potential poly(A) sites in previously overlooked regions and improving genome annotations. APAtrap also aims to tally all potential poly(A) sites and detect genes with differential APA site usages between conditions. Extensive comparisons of APAtrap with two other latest methods, ChangePoint and DaPars, using various RNA-seq datasets from simulation studies, human and Arabidopsis demonstrate the efficacy and flexibility of APAtrap for any organisms with an annotated genome. Availability and implementation: Freely available for download at https://apatrap.sourceforge.io. Contact: liqq@xmu.edu.cn or xhuister@xmu.edu.cn. Supplementary information: Supplementary data are available at Bioinformatics online.


Asunto(s)
Poliadenilación , Análisis de Secuencia de ARN/métodos , Programas Informáticos , Transcriptoma , Arabidopsis/genética , Humanos , Poli A/metabolismo
5.
RNA Biol ; 16(6): 785-797, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30810468

RESUMEN

Alternative polyadenylation (APA) has been discovered to play regulatory roles in the development of many cancer cells through preferential addition of a poly(A) tail at specific sites of pre-mRNA. A recent study found that APA was involved in the mediation of acute myeloid leukaemia (AML). However, unlike gene expression heterogeneity, little attention has been directed toward variations in single-cell APA for different cell types during AML development. Here, we used single-cell RNA-seq data of a massive population of 16,843 bone marrow mononuclear cells (BMMCs) from healthy and AML patient samples to investigate dynamic APA usage in different cell types. Abnormalities of APA dynamics in the BMMCs from AML patient samples were uncovered compared to the stable APA dynamics in samples from healthy individuals, as well as lower APA diversity between eight cell types in AML patients. Genes with APA dynamics specific to the AML samples were significantly enriched in cellular signal transduction pathways that contribute to AML development. Moreover, many leukaemic cell marker genes such as NF-κB, GATA2 and IAP-Family genes exhibited APA dynamics that specifically affected abnormal proliferation and differentiation of leukemic BMMCs. Additionally, mature erythroid cells displayed greater APA dynamics and global 3' UTR shortening compared with other cell types. Our results revealed extensive involvement of APA regulation in leukemia development and erythropoiesis at the single-cell level, providing a high-resolution atlas to navigate cellular mRNA processing landscapes of differentiated cells in AML.


Asunto(s)
Leucemia Mieloide Aguda/genética , Poliadenilación , Células de la Médula Ósea/metabolismo , Humanos , Análisis de Secuencia de ARN , Transducción de Señal , Análisis de la Célula Individual
6.
Ecotoxicol Environ Saf ; 183: 109485, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31376807

RESUMEN

Alternative polyadenylation (APA) is an important way to regulate gene expression at the post-transcriptional level, and is extensively involved in plant stress responses. However, the systematic roles of APA regulation in response to abiotic and biotic stresses in rice at the genome scale remain unknown. To take advantage of available RNA-seq datasets, using a novel tool APAtrap, we identified thousands of genes with significantly differential usage of polyadenylation [poly(A)] sites in response to the abiotic stress (drought, heat shock, and cadmium) and biotic stress [bacterial blight (BB), rice blast, and rice stripe virus (RSV)]. Genes with stress-responsive APA dynamics commonly exhibited higher expression levels when their isoforms with short 3' untranslated region (3' UTR) were more abundant. The stress-responsive APA events were widely involved in crucial stress-responsive genes and pathways: e.g. APA acted as a negative regulator in heat stress tolerance; APA events were involved in DNA repair and cell wall formation under Cd stress; APA regulated chlorophyll metabolism, being associated with the pathogenesis of leaf diseases under RSV and BB challenges. Furthermore, APA events were found to be involved in glutathione metabolism and MAPK signaling pathways, mediating a crosstalk among the abiotic and biotic stress-responsive regulatory networks in rice. Analysis of large-scale datasets revealed that APA may regulate abiotic and biotic stress-responsive processes in rice. Such post-transcriptome diversities contribute to rice adaption to various environmental challenges. Our study would supply useful resource for further molecular assisted breeding of multiple stress-tolerant cultivars for rice.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Oryza/genética , Poliadenilación , Estrés Fisiológico/genética , Cadmio/toxicidad , Sequías , Genoma de Planta , Respuesta al Choque Térmico , Oryza/efectos de los fármacos , Oryza/metabolismo , Oryza/microbiología , Transcriptoma
7.
Int J Mol Sci ; 20(4)2019 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-30813258

RESUMEN

Pre-mRNA cleavage and polyadenylation is an essential step for almost all mRNA in eukaryotes. The cis-elements around the poly(A) sites, however, are very diverse among different organisms. We characterized the poly(A) signals of seven different species, and compared them with that of four well-studied organisms. We found that ciliates do not show any dominant poly(A) signal; a triplet (UAA) and tetramers (UAAA and GUAA) are dominant in diatoms and red alga, respectively; and green alga Ostreococcus uses UGUAA as its poly(A) signal. Spikemoss and moss use conserved AAUAAA signals that are similar to other land plants. Our analysis suggests that the first two bases (NN in NNUAAA) are likely degenerated whereas UAAA appears to be the core motif. Combined with other published results, it is suggested that the highly conserved poly(A) signal AAUAAA may be derived from UAA with an intermediate, putative UAAA, following a pathway of UAA→UAAA→AAUAAA.


Asunto(s)
Eucariontes/genética , Genoma , Poliadenilación/genética , Secuencia de Bases , Humanos , Nucleótidos/genética , Filogenia , Poli A/genética , Especificidad de la Especie
8.
Trends Plant Sci ; 28(2): 223-234, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36175275

RESUMEN

Precise regulation of gene expression is crucial for plant survival. As a cotranscriptional regulatory mechanism, pre-mRNA polyadenylation is essential for fine-tuning gene expression. Polyadenylation can be alternatively projected at various sites of a transcript, which contributes to transcriptome diversity. Epigenetic modification is another mechanism of transcriptional control. Recent studies have uncovered crosstalk between cotranscriptional polyadenylation processes and both epigenomic and epitranscriptomic markers. Genetic analyses have demonstrated that DNA methylation, histone modifications, and epitranscriptomic modification are involved in regulating polyadenylation in plants. Here we summarize current understanding of the links between epigenetics and polyadenylation and their novel biological efficacy for plant development and environmental responses. Unresolved issues and future directions are discussed to shed light on the field.


Asunto(s)
Epigenómica , Poliadenilación , Poliadenilación/genética , Epigénesis Genética/genética , Plantas/genética , Plantas/metabolismo , ARN/metabolismo
9.
Mol Hortic ; 3(1): 19, 2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37789388

RESUMEN

The sessile nature of plants confines their responsiveness to changing environmental conditions. Gene expression regulation becomes a paramount mechanism for plants to adjust their physiological and morphological behaviors. Alternative polyadenylation (APA) is known for its capacity to augment transcriptome diversity and plasticity, thereby furnishing an additional set of tools for modulating gene expression. APA has also been demonstrated to exhibit intimate associations with plant stress responses. In this study, we review APA dynamic features and consequences in plants subjected to both biotic and abiotic stresses. These stresses include adverse environmental stresses, and pathogenic attacks, such as cadmium toxicity, high salt, hypoxia, oxidative stress, cold, heat shock, along with bacterial, fungal, and viral infections. We analyzed the overarching research framework employed to elucidate plant APA response and the alignment of polyadenylation site transitions with the modulation of gene expression levels within the ambit of each stress condition. We also proposed a general APA model where transacting factors, including poly(A) factors, epigenetic regulators, RNA m6A modification factors, and phase separation proteins, assume pivotal roles in APA related transcriptome plasticity during stress response in plants.

10.
Plant Physiol ; 157(3): 1546-54, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21908687

RESUMEN

Messenger RNA (mRNA) maturation in eukaryotic cells requires the formation of the 3' end, which includes two tightly coupled steps: the committing cleavage reaction that requires both correct cis-element signals and cleavage complex formation, and the polyadenylation step that adds a polyadenosine [poly(A)] tract to the newly generated 3' end. An in vitro biochemical assay plays a critical role in studying this process. The lack of such an assay system in plants hampered the study of plant mRNA 3'-end formation for the last two decades. To address this, we have now established and characterized a plant in vitro cleavage assay system, in which nuclear protein extracts from Arabidopsis (Arabidopsis thaliana) suspension cell cultures can accurately cleave different pre-mRNAs at expected in vivo authenticated poly(A) sites. The specific activity is dependent on appropriate cis-elements on the substrate RNA. When complemented by yeast (Saccharomyces cerevisiae) poly(A) polymerase, about 150-nucleotide poly(A) tracts were added specifically to the newly cleaved 3' ends in a cooperative manner. The reconstituted polyadenylation reaction is indicative that authentic cleavage products were generated. Our results not only provide a novel plant pre-mRNA cleavage assay system, but also suggest a cross-kingdom functional complementation of yeast poly(A) polymerase in a plant system.


Asunto(s)
Arabidopsis/metabolismo , Bioensayo/métodos , Precursores del ARN/metabolismo , Procesamiento Postranscripcional del ARN/genética , Arabidopsis/citología , Células Cultivadas , Endonucleasas/metabolismo , Cinética , Proteínas Nucleares/metabolismo , Poliadenilación/genética , Polinucleotido Adenililtransferasa/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos/genética , Saccharomyces cerevisiae/enzimología , Solubilidad , Especificidad por Sustrato
12.
Front Plant Sci ; 13: 1061747, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36684724

RESUMEN

Vivipary is a rare sexual reproduction phenomenon where embryos germinate directly on the maternal plants. However, it is a common genetic event of woody mangroves in the Rhizophoraceae family. The ecological benefits of vivipary in mangroves include the nurturing of seedlings in harsh coastal and saline environments, but the genetic and molecular mechanisms of vivipary remain unclear. Here we investigate the viviparous embryo development and germination processes in mangrove Kandelia obovata by a transcriptomic approach. Many key biological pathways and functional genes were enriched in different tissues and stages, contributing to vivipary. Reduced production of abscisic acid set a non-dormant condition for the embryo to germinate directly. Genes involved in the metabolism of and response to other phytohormones (gibberellic acid, brassinosteroids, cytokinin, and auxin) are expressed precociously in the axis of non-vivipary stages, thus promoting the embryo to grow through the seed coat. Network analysis of these genes identified the central regulatory roles of LEC1 and FUS3, which maintain embryo identity in Arabidopsis. Moreover, photosynthesis related pathways were significantly up-regulated in viviparous embryos, and substance transporter genes were highly expressed in the seed coat, suggesting a partial self-provision and maternal nursing. We conclude that the viviparous phenomenon is a combinatorial result of precocious loss of dormancy and enhanced germination potential during viviparous seed development. These results shed light on the relationship between seed development and germination, where the continual growth of the embryo replaces a biphasic phenomenon until a mature propagule is established.

13.
Genome Biol ; 23(1): 149, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35799267

RESUMEN

BACKGROUND: Accurate and comprehensive annotation of transcript sequences is essential for transcript quantification and differential gene and transcript expression analysis. Single-molecule long-read sequencing technologies provide improved integrity of transcript structures including alternative splicing, and transcription start and polyadenylation sites. However, accuracy is significantly affected by sequencing errors, mRNA degradation, or incomplete cDNA synthesis. RESULTS: We present a new and comprehensive Arabidopsis thaliana Reference Transcript Dataset 3 (AtRTD3). AtRTD3 contains over 169,000 transcripts-twice that of the best current Arabidopsis transcriptome and including over 1500 novel genes. Seventy-eight percent of transcripts are from Iso-seq with accurately defined splice junctions and transcription start and end sites. We develop novel methods to determine splice junctions and transcription start and end sites accurately. Mismatch profiles around splice junctions provide a powerful feature to distinguish correct splice junctions and remove false splice junctions. Stratified approaches identify high-confidence transcription start and end sites and remove fragmentary transcripts due to degradation. AtRTD3 is a major improvement over existing transcriptomes as demonstrated by analysis of an Arabidopsis cold response RNA-seq time-series. AtRTD3 provides higher resolution of transcript expression profiling and identifies cold-induced differential transcription start and polyadenylation site usage. CONCLUSIONS: AtRTD3 is the most comprehensive Arabidopsis transcriptome currently. It improves the precision of differential gene and transcript expression, differential alternative splicing, and transcription start/end site usage analysis from RNA-seq data. The novel methods for identifying accurate splice junctions and transcription start/end sites are widely applicable and will improve single-molecule sequencing analysis from any species.


Asunto(s)
Arabidopsis , Transcriptoma , Empalme Alternativo , Arabidopsis/genética , Perfilación de la Expresión Génica/métodos , RNA-Seq , Análisis de Secuencia de ARN/métodos
14.
Plant Physiol ; 151(3): 1546-56, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19748916

RESUMEN

Cleavage and polyadenylation of precursor mRNA is an essential process for mRNA maturation. Among the 15 to 20 protein factors required for this process, a subgroup of proteins is needed for both cleavage and polyadenylation in plants and animals. This subgroup of proteins is known as the cleavage and polyadenylation specificity factor (CPSF). To explore the in vivo structural features of plant CPSF, we used tandem affinity purification methods to isolate the interacting protein complexes for each component of the CPSF subunits using Arabidopsis (Arabidopsis thaliana ecotype Landsberg erecta) suspension culture cells. The proteins in these complexes were identified by mass spectrometry and western immunoblots. By compiling the in vivo interaction data from tandem affinity purification tagging as well as other available yeast two-hybrid data, we propose an in vivo plant CPSF model in which the Arabidopsis CPSF possesses AtCPSF30, AtCPSF73-I, AtCPSF73-II, AtCPSF100, AtCPSF160, AtFY, and AtFIPS5. Among them, AtCPSF100 serves as a core with which all other factors, except AtFIPS5, are associated. These results show that plant CPSF possesses distinct features, such as AtCPSF73-II and AtFY, while sharing other ortholog components with its yeast and mammalian counterparts. Interestingly, these two unique plant CPSF components have been associated with embryo development and flowering time controls, both of which involve plant-specific biological processes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Factor de Especificidad de Desdoblamiento y Poliadenilación/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/aislamiento & purificación , Células Cultivadas , Factor de Especificidad de Desdoblamiento y Poliadenilación/genética , Factor de Especificidad de Desdoblamiento y Poliadenilación/aislamiento & purificación , Espectrometría de Masas , Proteómica , Precursores del ARN/metabolismo , ARN de Planta/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
15.
Nucleic Acids Res ; 36(9): 3150-61, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18411206

RESUMEN

The position of a poly(A) site of eukaryotic mRNA is determined by sequence signals in pre-mRNA and a group of polyadenylation factors. To reveal rice poly(A) signals at a genome level, we constructed a dataset of 55 742 authenticated poly(A) sites and characterized the poly(A) signals. This resulted in identifying the typical tripartite cis-elements, including FUE, NUE and CE, as previously observed in Arabidopsis. The average size of the 3'-UTR was 289 nucleotides. When mapped to the genome, however, 15% of these poly(A) sites were found to be located in the currently annotated intergenic regions. Moreover, an extensive alternative polyadenylation profile was evident where 50% of the genes analyzed had more than one unique poly(A) site (excluding microheterogeneity sites), and 13% had four or more poly(A) sites. About 4% of the analyzed genes possessed alternative poly(A) sites at their introns, 5'-UTRs, or protein coding regions. The authenticity of these alternative poly(A) sites was partially confirmed using MPSS data. Analysis of nucleotide profile and signal patterns indicated that there may be a different set of poly(A) signals for those poly(A) sites found in the coding regions. Based on the features of rice poly(A) signals, an updated algorithm termed PASS-Rice was designed to predict poly(A) sites.


Asunto(s)
Regiones no Traducidas 3'/química , Genoma de Planta , Oryza/genética , Poliadenilación , Secuencias Reguladoras de Ácido Ribonucleico , Algoritmos , Genes de Plantas , Genómica , Oryza/metabolismo , Poli A/análisis
16.
Front Plant Sci ; 11: 1255, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32922425

RESUMEN

Poly(A) tail length (PAL) has been implicated in the regulation of mRNA translation activities. However, the extent of such regulation at the transcriptome level is less understood in plants. Herein, we report the development and optimization of a large-scale sequencing technique called the Assay for PAL-sequencing (APAL-seq). To explore the role of PAL on post-transcriptional modification and translation, we performed PAL profiling of Arabidopsis transcriptome in response to heat shock. Transcripts of 2,477 genes were found to have variable PAL upon heat treatments. Further study of the transcripts of 14 potential heat-responsive genes identified two distinct groups of genes. In one group, PAL was heat stress-independent, and in the other, PAL was heat stress-sensitive. Meanwhile, the protein expression of HSP70 and HSP17.6C was determined to test the impact of PAL on translational activity. In the absence of heat stress, neither gene demonstrated protein expression; however, under gradual or abrupt heat stress, both transcripts showed enhanced protein expression with elongated PAL. Interestingly, HSP17.6C protein levels were positively correlated with the severity of heat treatment and peaked when treated with abrupt heat. Our results suggest that plant genes have a high variability of PALs and that PAL contributes to swift posttranslational stress responses.

17.
Plant J ; 54(5): 899-910, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18298670

RESUMEN

The timely transition from vegetative to reproductive growth is vital for reproductive success in plants. It has been suggested that messenger RNA 3'-end processing plays a role in this transition. Specifically, two autonomous factors in the Arabidopsis thaliana flowering time control pathway, FY and FCA, are required for the alternative polyadenylation of FCA pre-mRNA. In this paper we provide evidence that Pcf11p-similar protein 4 (PCFS4), an Arabidopsis homologue of yeast polyadenylation factor Protein 1 of Cleavage Factor 1 (Pcf11p), regulates FCA alternative polyadenylation and promotes flowering as a novel factor in the autonomous pathway. First, the mutants of PCFS4 show delayed flowering under both long-day and short-day conditions and still respond to vernalization treatment. Next, gene expression analyses indicate that the delayed flowering in pcfs4 mutants is mediated by Flowering Locus C (FLC). Moreover, the expression profile of the known FCA transcripts, which result from alternative polyadenylation, was altered in the pcfs4 mutants, suggesting the role of PCFS4 in FCA alternative polyadenylation and control of flowering time. In agreement with these observations, using yeast two-hybrid assays and TAP-tagged protein pull-down analyses, we also revealed that PCFS4 forms a complex in vivo with FY and other polyadenylation factors. The PCFS4 promoter activity assay indicated that the transcription of PCFS4 is temporally and spatially regulated, suggesting its non-essential nature in plant growth and development.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/fisiología , Flores , Proteínas de Saccharomyces cerevisiae/fisiología , Factores de Escisión y Poliadenilación de ARNm/fisiología , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Mutación , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fracciones Subcelulares/metabolismo , Factores de Escisión y Poliadenilación de ARNm/genética , Factores de Escisión y Poliadenilación de ARNm/metabolismo
18.
Planta ; 230(4): 819-25, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19636588

RESUMEN

Ribonucleases (RNases) play a variety of cellular and biological roles in all three domains of life. In an attempt to perform RNA immuno-precipitation assays of Arabidopsis proteins, we found an EDTA-dependent RNase activity from Arabidopsis suspension tissue cultures. Further investigations proved that the EDTA-dependent RNase activity was plant specific. Characterization of the RNase activity indicated that it was insensitive to low pH and high concentration of NaCl. In the process of isolating the activity with cation exchange chromatography, we found that the EDTA dependency of the activity was lost. This led us to speculate that some metal ions, which inhibited the RNase activity, may be removed during cation exchange chromatography so that the nuclease activity was released. The EDTA dependency of the activity could be due to the ability of the EDTA chelating those metal ions, mimicking the effect of the cation exchange chromatography. Indeed, Zn(2+) strongly inhibited the activity, and the inhibition could be released by EDTA based on both in-solution and in-gel assays. In-gel assays identified two RNase activity bands. Mass spectrometry assays of those activity bands revealed more than 20 proteins. However, none of them has an apparent known nuclease domain, suggesting that one or more of those proteins might possess a currently uncharacterized nuclease domain. Our results may shed light on RNA metabolism in plants by introducing a novel plant-specific RNase activity.


Asunto(s)
Arabidopsis/enzimología , Ribonucleasas/metabolismo , Zinc/farmacología , Ácido Edético/farmacología , Concentración de Iones de Hidrógeno/efectos de los fármacos , Ribonucleasas/antagonistas & inhibidores , Ribonucleasas/aislamiento & purificación , Cloruro de Sodio/farmacología , Especificidad de la Especie
19.
Genetics ; 179(1): 83-93, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18493042

RESUMEN

Many of Chlamydomonas reinhardtii expressed sequence tags (ESTs) in GenBank dbEST and community EST assemblies were either over- or undertrimmed in terms of their cDNA termini, which are defined as the diagnostic sequence elements that delineate 3'/5' ends of mRNA transcripts. Overtrimming represents a loss of directional, positional, and structural information of transcript ends whereas undertrimming causes unclean spurious sequences retained in ESTs that exert deleterious impacts on downstream EST-based applications. We examined 309,278 raw EST sequencing trace files of C. reinhardtii and found that only 57% had cDNA termini that matched the expected structures specified in their cDNA library constructions while satisfying our minimum length requirement for their final clean sequences. Using GMAP, 156,963 individual ESTs were mapped to the genome successfully, with their in silico-verified cDNA termini anchored to the genome. Our data analysis suggested strong macro- and microheterogeneity of 3'/5' end positions of individual transcripts derived from the same genes in C. reinhardtii. This work annotating differential ends of individual transcripts in the draft genome presents the research community with a new stream of data that will facilitate accurate determination of gene structures, genome annotation, and exploration of the transcriptome and mRNA metabolism in C. reinhardtii.


Asunto(s)
Chlamydomonas reinhardtii/genética , ADN Complementario/genética , Etiquetas de Secuencia Expresada , Perfilación de la Expresión Génica/métodos , Animales , Secuencia de Bases , Mapeo Cromosómico , Biología Computacional , Datos de Secuencia Molecular , Regiones no Traducidas/genética
20.
Sci Total Environ ; 681: 191-201, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31103657

RESUMEN

Mangrove forests are an important contributor to the coastal marine environment. They have developed unique adaptations to the harsh coastal wetland, yet their geographic distribution is limited by environmental temperature. The adaptive strategies of mangrove at the molecular level, however, have not been addressed. In the present work, transcriptome analyses were performed on different cold damaged plants of a mangrove species, Kandelia obovata. From the samples collected in the field after a cold stress, we found that distinct expression profiles of many key genes are related to extreme temperature responses. These include transcription factors such as WRKY and bHLH, and other genes encoding proteins like SnRK2, PR-1, KCS, involving in the pathways of plant hormones, plant-pathogen interactions, and long chain fatty acid synthesis. We also examined the transcriptomes of eight tissues of K. obovata to identify candidate genes involved in adaptation and development. While stress-responsive genes were globally expressed, tissue-specific genes with diverse functions might be involved in tissue development and adaptability. For examples, genes encoding CYP724B1 and ABCB1 were specifically expressed in the fruit and root, respectively. Additionally, 26 genes were identified as positively selected genes in K. obovata, six of them were found to be involved in chilling stress response, seed germination and oxidation-reduction processes, suggesting their roles in stressful environment adaptation. Together, these results shed light into the K. obovata's natural responses to cold snaps at the molecular level, and reveal a global gene expression portrait across different tissues. It also provides a transcriptome resource for further molecular ecology studies and conservation planning of this and other mangrove plants in their native and adopted environments.


Asunto(s)
Adaptación Fisiológica/genética , Rhizophoraceae/fisiología , Frío , Perfilación de la Expresión Génica , Reguladores del Crecimiento de las Plantas , Rhizophoraceae/genética , Transcriptoma , Humedales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA