Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; : 107489, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38908753

RESUMEN

Nonribosomal peptide synthetases (NRPSs) are responsible for the production of important biologically active peptides. The large, multidomain NRPSs operate through an assembly line strategy in which the growing peptide is tethered to carrier domains that deliver the intermediates to neighboring catalytic domains. While most NRPS domains catalyze standard chemistry of amino acid activation, peptide bond formation and product release, some canonical NRPS catalytic domains promote unexpected chemistry. The paradigm monobactam antibiotic sulfazecin is produced through the activity of a terminal thioesterase domain of SulM, which catalyzes an unusual ß-lactam forming reaction in which the nitrogen of the C-terminal N-sulfo-2,3-diaminopropionate residue attacks its thioester tether to release the monobactam product. We have determined the structure of the thioesterase domain as both a free-standing domain and a didomain complex with the upstream holo peptidyl-carrier domain. The position of variant lid helices results in an active site pocket that is quite constrained, a feature that is likely necessary to orient the substrate properly for ß-lactam formation. Modeling of a sulfazecin tripeptide into the active site identifies a plausible binding mode identifying potential interactions for the sulfamate and the peptide backbone with Arg2849 and Asn2819, respectively. The overall structure is similar to the ß-lactone forming thioesterase domain that is responsible for similar ring closure in the production of obafluorin. We further use these insights to enable bioinformatic analysis to identify additional, uncharacterized ß-lactam-forming biosynthetic gene clusters by genome mining.

2.
Proc Natl Acad Sci U S A ; 119(34): e2206494119, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35969793

RESUMEN

Complex carbapenems are important clinical antibiotics used to treat recalcitrant infections. Their biosynthetic gene clusters contain three essential B12-dependent radical S-adenosylmethionine (rSAM) enzymes. The majority of characterized enzymes in this subfamily catalyze methyl transfer, but only one is required to sequentially install all methionine-derived carbons in complex carbapenems. Therefore, it is probable that the other two rSAM enzymes have noncanonical functions. Through a series of fermentation and in vitro experiments, we show that ThnL uses radical SAM chemistry to catalyze thioether bond formation between C2 of a carbapenam precursor and pantetheine, uniting initial bicycle assembly common to all carbapenems with later tailoring events unique to complex carbapenems. ThnL also catalyzes reversible thiol/disulfide redox on pantetheine. Neither of these functions has been observed previously in a B12-dependent radical SAM enzyme. ThnL expands the known activity of this subclass of enzymes beyond carbon-carbon bond formation or rearrangement. It is also the only radical SAM enzyme currently known to catalyze carbon-sulfur bond formation with only an rSAM Fe-S cluster and no additional auxiliary clusters.


Asunto(s)
Carbapenémicos , Proteínas Hierro-Azufre , S-Adenosilmetionina , Vitamina B 12 , Carbapenémicos/biosíntesis , Carbapenémicos/química , Carbono , Proteínas Hierro-Azufre/química , Panteteína/química , S-Adenosilmetionina/química , Sulfuros , Vitamina B 12/química
3.
Proc Natl Acad Sci U S A ; 119(34): e2208060119, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35972962

RESUMEN

As nitric oxide (NO) plays significant roles in a variety of physiological processes, the capability for real-time and accurate detection of NO in live organisms is in great demand. Traditional assessments of NO rely on indirect colorimetric techniques or electrochemical sensors that often comprise rigid constituent materials and can hardly satisfy sensitivity and spatial resolution simultaneously. Here, we report a flexible and highly sensitive biosensor based on organic electrochemical transistors (OECTs) capable of continuous and wireless detection of NO in biological systems. By modifying the geometry of the active channel and the gate electrodes of OECTs, devices achieve optimum signal amplification of NO. The sensor exhibits a low response limit, a wide linear range, high sensitivity, and excellent selectivity, with a miniaturized active sensing region compared with a conventional electrochemical sensor. The device demonstrates continuous detection of the nanomolar range of NO in cultured cells for hours without significant signal drift. Real-time and wireless measurement of NO is accomplished for 8 d in the articular cavity of New Zealand White rabbits with anterior cruciate ligament (ACL) rupture injuries. The observed high level of NO is associated with the onset of osteoarthritis (OA) at the later stage. The proposed device platform could provide critical information for the early diagnosis of chronic diseases and timely medical intervention to optimize therapeutic efficacy.


Asunto(s)
Técnicas Biosensibles , Óxido Nítrico , Osteoartritis , Tecnología Inalámbrica , Animales , Técnicas Biosensibles/métodos , Enfermedad Crónica , Diagnóstico Precoz , Técnicas Electroquímicas/métodos , Electrodos , Óxido Nítrico/análisis , Osteoartritis/diagnóstico , Conejos
4.
Mar Drugs ; 22(5)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38786596

RESUMEN

The escalation of jellyfish stings has drawn attention to severe skin reactions, underscoring the necessity for novel treatments. This investigation assesses the potential of hydroxybenzoic acid derivatives, specifically protocatechuic acid (PCA) and gentisic acid (DHB), for alleviating Nemopilema nomurai Nematocyst Venom (NnNV)-induced injuries. By employing an in vivo mouse model, the study delves into the therapeutic efficacy of these compounds. Through a combination of ELISA and Western blot analyses, histological examinations, and molecular assays, the study scrutinizes the inflammatory response, assesses skin damage and repair mechanisms, and investigates the compounds' ability to counteract venom effects. Our findings indicate that PCA and DHB significantly mitigate inflammation by modulating critical cytokines and pathways, altering collagen ratios through topical application, and enhancing VEGF and bFGF levels. Furthermore, both compounds demonstrate potential in neutralizing NnNV toxicity by inhibiting metalloproteinases and phospholipase-A2, showcasing the viability of small-molecule compounds in managing toxin-induced injuries.


Asunto(s)
Venenos de Cnidarios , Hidroxibenzoatos , Piel , Animales , Hidroxibenzoatos/farmacología , Ratones , Venenos de Cnidarios/farmacología , Piel/efectos de los fármacos , Piel/patología , Piel/metabolismo , Gentisatos/farmacología , Nematocisto/efectos de los fármacos , Modelos Animales de Enfermedad , Citocinas/metabolismo
5.
Genomics ; 115(6): 110709, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37739021

RESUMEN

Recent studies on marine organisms have made use of third-generation sequencing technologies such as Pacific Biosciences (PacBio) and Oxford Nanopore Technologies (ONT). While these specialized bioinformatics tools have different algorithmic designs and performance capabilities, they offer scalability and can be applied to various datasets. We investigated the effectiveness of PacBio and ONT RNA sequencing methods in identifying the venom of the jellyfish species Nemopilema nomurai. We conducted a detailed analysis of the sequencing data from both methods, focusing on key characteristics such as CD, alternative splicing, long-chain noncoding RNA, simple sequence repeat, transcription factor, and functional transcript annotation. Our findings indicate that ONT generally produced higher raw data quality in the transcriptome analysis, while PacBio generated longer read lengths. PacBio was found to be superior in identifying CDs and long-chain noncoding RNA, whereas ONT was more cost-effective for predicting alternative splicing events, simple sequence repeats, and transcription factors. Based on these results, we conclude that PacBio is the most specific and sensitive method for identifying venom components, while ONT is the most cost-effective method for studying venogenesis, cnidocyst (venom gland) development, and transcription of virulence genes in jellyfish. Our study has implications for future sequencing technologies in marine jellyfish, and highlights the power of full-length transcriptome analysis in discovering potential therapeutic targets for jellyfish dermatitis.


Asunto(s)
Venenos de Cnidarios , Escifozoos , Animales , ARN , Análisis de Secuencia de ARN , ARN no Traducido , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
6.
Int J Mol Sci ; 25(1)2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38203853

RESUMEN

The scarcity of donor kidneys greatly impacts the survival of patients with end-stage renal failure. Pigs are increasingly becoming potential organ donors but are limited by immunological rejection. Based on the human kidney organoid already established with the CHIR99021 and FGF9 induction strategy, we generated porcine kidney organoids from porcine naïve-like ESCs (nESCs). The derived porcine organoids had a tubule-like constructure and matrix components. The porcine organoids expressed renal markers including AQP1 (proximal tubule), WT1 and PODO (podocyte), and CD31 (vascular endothelial cells). These results imply that the organoids had developed the majority of the renal cell types and structures, including glomeruli and proximal tubules. The porcine organoids were also identified to have a dextran absorptive function. Importantly, porcine organoids have a certain abundance of vascular endothelial cells, which are the basis for investigating immune rejection. The derived porcine organoids might serve as materials for immunosuppressor screening for xenotransplantation.


Asunto(s)
Células Endoteliales , Fallo Renal Crónico , Humanos , Porcinos , Animales , Riñón , Organoides , Células Madre Embrionarias
7.
Inorg Chem ; 61(48): 19512-19523, 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36410943

RESUMEN

Two helical ligands (L1 and L2) were designed and synthesized by a Schiff base condensation reaction. Eight complexes, {[Zn(L1)I2]·H2O}n (1), [Cd2(L1)2I4(CH3OH)2] (2), [Hg2(L1)2I4] (3), [Ag(L1)NO3]n (4), [Ag2(L1)2(NO3)2DMSO]·H2O (5), {[Zn2(L2)2Cl4]·2CHCl3}n (6), {[Ag(L2)]·NO3}n (7), and {[Ag(L2)NO3]·CH3OH}n (8), were synthesized and characterized based on these two ligands. The crystal structures show that both Schiff base compounds exist as racemic ligands with equal amounts of P- and M-helicity, and the assembly of these racemic ligands with metal ions can lead to homochiral or heterochiral complexes via a chiral self-recognition or self-discrimination process. Complexes 2, 3, and 5 exist as heterochiral metallomacrocycles with a figure-eight conformation. Complexes 1, 6, and 8 exist as one-dimensional (1D) homochiral helical chain coordination polymers, while complexes 4 and 7 exist as 1D heterochiral helical chain coordination polymers. Furthermore, gas and vapor adsorption measurements show that all of the synthesized complexes exhibit good selective adsorption capacities toward methanol and ethanol vapor over N2, H2, and O2.

8.
Mar Drugs ; 19(7)2021 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-34201994

RESUMEN

As a popular marine saccharide, chitooligosaccharides (COS) has been proven to have good antioxidant activity. Its antioxidant effect is closely related to its degree of polymerization, degree of acetylation and sequence. However, the specific structure-activity relationship remains unclear. In this study, three chitosan dimers with different sequences were obtained by the separation and enzymatic method, and the antioxidant activity of all four chitosan dimers were studied. The effect of COS sequence on its antioxidant activity was revealed for the first time. The amino group at the reducing end plays a vital role in scavenging superoxide radicals and in the reducing power of the chitosan dimer. At the same time, we found that the fully deacetylated chitosan dimer DD showed the strongest DPPH scavenging activity. When the amino groups of the chitosan dimer were acetylated, it showed better activity in scavenging hydroxyl radicals. Research on COS sequences opens up a new path for the study of COS, and is more conducive to the investigation of its mechanism.


Asunto(s)
Antioxidantes/química , Quitosano/química , Depuradores de Radicales Libres/química , Organismos Acuáticos , Compuestos de Bifenilo , Humanos , Radical Hidroxilo , Estructura Molecular , Picratos
9.
Int J Mol Sci ; 22(23)2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34884477

RESUMEN

Jellyfish stings threaten people's health and even life in coastal areas worldwide. Nemopilema nomurai is one of the most dangerous jellyfish in the East Asian Marginal Seas, which not only stings hundreds of thousands of people every year but also is assumed to be responsible for most deaths by jellyfish stings in China. However, there is no effective first-aid drug, such as antivenoms, for the treatment of severe stings by N. nomurai to date. In this study, we prepared a N. nomurai antiserum from rabbits using inactivated N. nomurai toxins (NnTXs) and isolated the IgG type of antivenom (IgG-AntiNnTXs) from the antiserum. Subsequently, IgG-AntiNnTXs were refined with multiple optimizations to remove Fc fragments. Finally, the F(ab')2 type of antivenom (F(ab')2-AntiNnTXs) was purified using Superdex 200 and protein A columns. The neutralization efficacy of both types of antivenom was analyzed in vitro and in vivo, and the results showed that both IgG and F(ab')2 types of antivenom have some neutralization effect on the metalloproteinase activity of NnTXs in vitro and could also decrease the mortality of mice in the first 4 h after injection. This study provides some useful information for the development of an effective antivenom for N. nomurai stings in the future.


Asunto(s)
Anticuerpos/aislamiento & purificación , Antivenenos/farmacología , Venenos de Cnidarios/antagonistas & inhibidores , Fragmentos Fab de Inmunoglobulinas/inmunología , Inmunoglobulina G/inmunología , Animales , Anticuerpos/metabolismo , Antivenenos/inmunología , Venenos de Cnidarios/toxicidad , Femenino , Dosificación Letal Mediana , Masculino , Ratones , Pruebas de Neutralización , Conejos , Escifozoos
10.
Int J Mol Sci ; 22(23)2021 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-34884722

RESUMEN

The inner cell mass of the pre-implantation blastocyst consists of the epiblast and hypoblast from which embryonic stem cells (ESCs) and extra-embryonic endoderm (XEN) stem cells, respectively, can be derived. Importantly, each stem cell type retains the defining properties and lineage restriction of its in vivo tissue origin. We have developed a novel approach for deriving porcine XEN (pXEN) cells via culturing the blastocysts with a chemical cocktail culture system. The pXEN cells were positive for XEN markers, including Gata4, Gata6, Sox17, and Sall4, but not for pluripotent markers Oct4, Sox2, and Nanog. The pXEN cells also retained the ability to undergo visceral endoderm (VE) and parietal endoderm (PE) differentiation in vitro. The maintenance of pXEN required FGF/MEK+TGFß signaling pathways. The pXEN cells showed a stable phenotype through more than 50 passages in culture and could be established repeatedly from blastocysts or converted from the naïve-like ESCs established in our lab. These cells provide a new tool for exploring the pathways of porcine embryo development and differentiation and providing further reference to the establishment of porcine ESCs with potency of germline chimerism and gamete development.


Asunto(s)
Técnicas de Cultivo de Embriones , Embrión de Mamíferos/citología , Endodermo/citología , Animales , Diferenciación Celular , Línea Celular , Desarrollo Embrionario , Células Madre Multipotentes , Transducción de Señal , Porcinos
11.
J Proteome Res ; 19(6): 2491-2500, 2020 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-32374608

RESUMEN

Jellyfish stings are a major threat to human beings in coastal areas of the world. Each year, hundreds of thousands of victims are stung by venomous jellyfish. Nemopilema nomurai is a dangerous species with a large number of victims including many deaths. N. nomurai venom is a complex cocktail that is rich in proteins and peptides, and it is secreted by nematocysts for prey or defense. Previous studies have identified hundreds of toxins in the venom of N. nomurai; however, it is unclear which toxin(s) is responsible for lethality. Herein, we isolated the lethal fraction (NnLF) from N. nomurai venom with multiple chromatography. NnLF showed strong lethality to mice, and the toxicology results were consistent with the clinical symptoms of dead patients after N. nomurai sting, which indicated that NnLF contained the key lethal toxins in the venom. Subsequently, proteomic analysis was performed to identify the toxins in NnLF, and a total of 13 toxin homologues were identified, including phospholipase, potassium channel inhibitor, hemolysin, thrombin, etc. Moreover, in vitro toxicity assays further verified the phospholipase A2 and hemolytic activity of NnLF. These results revealed that cell membrane-targeted toxins, including channel-forming toxins, potassium channel inhibitors, and especially phospholipases, played very important roles in the lethality of N. nomurai sting. Moreover, blood toxins such as thrombin-like toxin and hemolysins might be synergistically involved in lethality. These findings advance the understanding of lethality caused by N. nomurai sting and will be significant for the development of drugs to treat this jellyfish sting in the future.


Asunto(s)
Cnidarios , Venenos de Cnidarios , Escifozoos , Animales , Venenos de Cnidarios/toxicidad , Humanos , Ratones , Proteoma , Proteómica
12.
Nat Chem Biol ; 14(1): 5-7, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29155429

RESUMEN

The N-sulfonated monocyclic ß-lactam ring characteristic of the monobactams confers resistance to zinc metallo-ß-lactamases and affords the most effective class to combat carbapenem-resistant enterobacteria (CRE). Here we report unprecedented nonribosomal peptide synthetase activities, wherein an assembled tripeptide is N-sulfonated in trans before direct synthesis of the ß-lactam ring in a noncanonical, cysteine-containing thioesterase domain. This means of azetidinone synthesis is distinct from the three others known in nature.


Asunto(s)
Antibacterianos/biosíntesis , Enterobacteriaceae Resistentes a los Carbapenémicos/efectos de los fármacos , Monobactamas/biosíntesis , Biosíntesis de Péptidos Independientes de Ácidos Nucleicos , Péptido Sintasas/metabolismo , Pseudomonas/metabolismo , Antibacterianos/química , Antibacterianos/farmacología , Dominio Catalítico , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Monobactamas/química , Monobactamas/farmacología , Biosíntesis de Péptidos Independientes de Ácidos Nucleicos/genética , Péptido Sintasas/genética , Estereoisomerismo
13.
FASEB J ; 33(8): 9350-9361, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31125263

RESUMEN

The establishment of ungulate embryonic stem cells (ESCs) has been notoriously difficult via a conventional approach. We combined a traditional ESC culture method with reprogramming factors to assist the establishment of porcine naive-like ESCs (nESCs). Pig embryonic fibroblasts were transfected with a tetracycline-inducible vector carrying 4 classic mouse reprogramming factors, followed by somatic cell nuclear transfer and culturing to the blastocyst stage. Then, the inner cell mass was isolated and seeded in culture medium. The naive-like ESCs had characteristic verys similar to those of mouse ESCs and showed no signs of altered morphology or differentiation, even after 130 passages. They depended on leukemia inhibitory factor signals for maintenance of pluripotency, and the female cell lines had low expression of the X-inactive specific transcript gene and no histone H3 lysine 27 trimethylation spot. Notably, the ESCs differentiated into 3 germ layers in vitro and could be induced to undergo directional neural and kidney precursor differentiation under defined conditions, and the ESCs could keep proliferating after doxycycline was removed. nESCs can be established, and the well-characterized ESC lines will be useful for the research of transgenic pig models for human disease.-Zhang, M., Wang, C., Jiang, H., Liu, M., Yang, N., Zhao, L., Hou, D., Jin, Y., Chen, Q., Chen, Y., Wang, J., Dai, Y., Li, R. Derivation of novel naive-like porcine embryonic stem cells by a reprogramming factor-assisted strategy.


Asunto(s)
Reprogramación Celular/fisiología , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Animales , Células Cultivadas , Reprogramación Celular/efectos de los fármacos , Reprogramación Celular/genética , Células Madre Embrionarias/efectos de los fármacos , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Estratos Germinativos/citología , Estratos Germinativos/efectos de los fármacos , Estratos Germinativos/metabolismo , Inmunohistoquímica , Factor Inhibidor de Leucemia/farmacología , Ratones , MicroARNs/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/efectos de los fármacos , Células Madre Pluripotentes/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ARN , Porcinos
14.
Xenotransplantation ; 26(3): e12484, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30623494

RESUMEN

SIX1 and SIX4 genes play critical roles in kidney development. We evaluated the effect of these genes on pig kidney development by generating SIX1-/- and SIX1-/- /SIX4-/- pig foetuses using CRISPR/Cas9 and somatic cell nuclear transfer. We obtained 3 SIX1-/- foetuses and 16 SIX1-/- /SIX4-/- foetuses at different developmental stages. The SIX1-/- foetuses showed a migration block of the left kidney and a smaller size for both kidneys. The ureteric bud failed to form the normal branching and collecting system. Abnormal expressions of kidney development-related genes (downregulation of PAX2, PAX8, and BMP4 and upregulation of EYA1 and SALL1) were also observed in SIX1-/- foetal kidneys and confirmed in vitro in porcine kidney epithelial cells (PK15) following SIX1 gene deletion. The SIX1-/- /SIX4-/- foetuses exhibited more severe phenotypes, with most foetuses showing retarded development at early stages of gestation. The kidney developed only to the initial stage of metanephros formation. These results demonstrated that SIX1 and SIX4 are key genes for porcine metanephros development. The creation of kidney-deficient porcine foetuses provides a platform for generating human kidneys inside pigs using blastocyst complementation.


Asunto(s)
Sistemas CRISPR-Cas/genética , Marcación de Gen , Genes Homeobox/genética , Proteínas Nucleares/metabolismo , Animales , Blastocisto/metabolismo , Proteínas de Homeodominio/genética , Técnicas de Transferencia Nuclear , Porcinos , Transactivadores/genética , Trasplante Heterólogo/métodos
15.
Nanotechnology ; 30(39): 394002, 2019 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-31181541

RESUMEN

Transient electronics is an emerging technology that enables unique functional transformation or the physical disappearance of electronic devices, and is attracting increasing attention for potential applications in data secured hardware as an ultimate solution against data breaches. Developing smart triggered degradation modalities of silicon (Si) remain the key challenge to achieve advanced non-recoverable on-demand transient electronics. Here, we present a novel electrochemically triggered transience mechanism of Si by lithiation, allowing complete and controllable destruction of Si devices. The depth and microstructure of the lithiation-affected zone over time is investigated in detail and the results suggest a few hours of lithiation is sufficient to create microcracks and significantly promote lithium penetration. Finite element models are proposed to confirm the mechanism. Electrochemically triggered degradation of thin film Si ribbons and Si integrated circuit chips with metal-oxide-semiconductor field-effect transistors from a commercial 0.35 micrometer complementary metal-oxide-semiconductor technology node is performed to demonstrate the potential applications for commercial electronics. This work opens new opportunities for versatile triggered transience of Si-based devices for critical secured information systems and green consumer electronics.

16.
Molecules ; 24(2)2019 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-30658396

RESUMEN

Recently, Tribonema sp., a kind of filamentous microalgae, has been studied for biofuel production due to its accumulation of triacylglycerols. However, the polysaccharides of Tribonema sp. and their biological activities have rarely been reported. In this paper, we extracted sulfated polysaccharides from Tribonema sp. (TSP), characterized their chemical composition and structure, and determined their immunostimulation and anticancer activities on RAW264.7 macrophage cells and HepG2 cells. The results showed that TSP is a sulfated polysaccharide with a Mw of 197 kDa. TSP is a heteropolysaccharide that is composed mainly of galactose. It showed significant immune-modulatory activity by stimulating macrophage cells, such as upregulating interleukin 6 (IL-6), interleukin 10 (IL-10), and tumor necrosis factor α (TNF-α). In addition, TSP also showed significant dose-dependent anticancer activity (with an inhibition rate of up to 66.8% at 250 µg/mL) on HepG2 cells as determined by the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The cycle analysis indicated that the anticancer activity of TSP is mainly the result of induced cell apoptosis rather than affecting the cell cycle and mitosis of HepG2 cells. These findings suggest that TSP might have potential as an anticancer resource, but further research is needed, especially in vivo experiments, to explore the anticancer mechanism of TSP.


Asunto(s)
Antineoplásicos/farmacología , Factores Inmunológicos/farmacología , Microalgas/química , Polisacáridos/farmacología , Sulfatos/farmacología , Animales , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Células Hep G2 , Humanos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Células RAW 264.7 , Espectroscopía Infrarroja por Transformada de Fourier
17.
J Proteome Res ; 17(11): 3904-3913, 2018 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-30223649

RESUMEN

Jellyfish are a type of poisonous cnidarian invertebrate that secrete lethal venom for predation or defense. Human beings often become victims of jellyfish stings accidentally while swimming or fishing and suffer severe pain, itching, swelling, inflammation, shock, and even death. Jellyfish venom is composed of various toxins, and the lethal toxin is the most toxic and hazardous component of the venom, which is responsible for deaths caused by jellyfish stings and envenomation. Our previous study revealed many toxins in jellyfish venom, including phospholipase A2, metalloproteinase, and protease inhibitors. However, it is still unknown which type of toxin is lethal and how it works. Herein a combined toxicology analysis, proteome strategy, and purification approach was employed to investigate the lethality of the venom of the jellyfish Cyanea nozakii. Toxicity analysis revealed that cardiotoxicity including acute myocardial infarction and a significant decrease in both heart rate and blood pressure is the primary cause of death. Purified lethal toxin containing a fraction of jellyfish venom was subsequently subjected to proteome analysis and bioinformation analysis. A total of 316 and 374 homologous proteins were identified, including phospholipase A2-like toxins and metalloprotease-like toxins. Furthermore, we confirmed that the lethality of the jellyfish venom is related to metalloproteinase activity but without any phospholipase A2 activity or hemolytic activity. Altogether, this study not only provides a comprehensive understanding of the lethal mechanism of jellyfish venom but also provides very useful information for the therapeutic or rescue strategy for severe jellyfish stings.


Asunto(s)
Venenos de Cnidarios/química , Metaloproteasas/aislamiento & purificación , Infarto del Miocardio/inducido químicamente , Fosfolipasas A2/aislamiento & purificación , Proteoma/aislamiento & purificación , Escifozoos/química , Animales , Presión Sanguínea/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/fisiopatología , Cromatografía Liquida , Venenos de Cnidarios/toxicidad , Femenino , Ontología de Genes , Corazón/efectos de los fármacos , Corazón/fisiopatología , Frecuencia Cardíaca/efectos de los fármacos , Riñón/efectos de los fármacos , Riñón/fisiopatología , Hígado/efectos de los fármacos , Hígado/fisiopatología , Pulmón/efectos de los fármacos , Pulmón/fisiopatología , Masculino , Espectrometría de Masas , Metaloproteasas/química , Metaloproteasas/toxicidad , Ratones , Anotación de Secuencia Molecular , Infarto del Miocardio/fisiopatología , Fosfolipasas A2/química , Fosfolipasas A2/toxicidad , Proteoma/química , Proteoma/clasificación , Proteoma/toxicidad , Proteómica/métodos , Escifozoos/patogenicidad , Escifozoos/fisiología , Bazo/efectos de los fármacos , Bazo/fisiopatología
18.
Small ; 14(28): e1800994, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29806124

RESUMEN

Biodegradable transient devices represent an emerging type of electronics that could play an essential role in medical therapeutic/diagnostic processes, such as wound healing and tissue regeneration. The associated biodegradable power sources, however, remain as a major challenge toward future clinical applications, as the demonstrated electrical stimulation and sensing functions are limited by wired external power or wireless energy harvesters via near-field coupling. Here, materials' strategies and fabrication schemes that enable a high-performance fully biodegradable magnesium-molybdenum trioxide battery as an alternative approach for an in vivo on-board power supply are reported. The battery can deliver a stable high output voltage as well as prolonged lifetime that could satisfy requirements of representative implantable electronics. The battery is fully biodegradable and demonstrates desirable biocompatibility. The battery system provides a promising solution to advanced energy harvesters for self-powered transient bioresorbable implants as well as eco-friendly electronics.


Asunto(s)
Suministros de Energía Eléctrica , Prótesis e Implantes , Animales , Línea Celular , Electrodos , Ratones , Imagen Óptica , Ratas Sprague-Dawley
19.
Biochem Biophys Res Commun ; 477(1): 115-122, 2016 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-27289021

RESUMEN

Myostatin (Mstn) is an inhibitor of myogenesis, regulating the number and size of skeletal myocytes. In addition to its myogenic regulatory function, Mstn plays important roles in the development of adipose tissues and in metabolism. In the present study, an Mstn knockout rat model was generated using the zinc finger nuclease (ZFN) technique in order to further investigate the function and mechanism of Mstn in metabolism. The knockout possesses a frame shift mutation resulting in an early termination codon and a truncated peptide of 109 amino acids rather than the full 376 amino acids. The absence of detectable mRNA confirmed successful knockout of Mstn. Relative to wild-type (WT) littermates, Knockout (KO) rats exhibited significantly greater body weight, body circumference, and muscle mass. However, no significant differences in grip force was observed, indicating that Mstn deletion results in greater muscle mass but not greater muscle fiber strength. Additionally, KO rats were found to possess less body fat relative to WT littermates, which is consistent with previous studies in mice and cattle. The aforementioned results indicate that Mstn knockout increases muscle mass while decreasing fat content, leading to observed increases in body weight and body circumference. The Mstn knockout rat model provides a novel means to study the role of Mstn in metabolism and Mstn-related muscle hypertrophy.


Asunto(s)
Miostatina/fisiología , Tejido Adiposo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Femenino , Masculino , Miostatina/genética , Fenotipo , Ratas , Ratas Transgénicas
20.
Int J Syst Evol Microbiol ; 66(3): 1105-1111, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26653143

RESUMEN

A novel endophytic actinobacterium, designated strain IP6SC6T, was isolated from surface-sterilized bark of Bruguiera gymnorhiza collected from Zhanjiang Mangrove Forest National Nature Reserve in Guangdong, China. Cells of strain IP6SC6T were Gram-stain-positive, aerobic, non-spore-forming, non-motile rods. Strain IP6SC6T grew at 20-42 °C (optimum, 37 °C), at pH 6.0-9.0 (optimum, pH 7.0) and in the presence of 0-8 % (w/v) NaCl (optimum, 0-2 %). Chemotaxonomic analyses showed that the isolate possessed meso-diaminopimelic acid as the diamino acid of the peptidoglycan, galactose and glucose as whole-cell sugars, and MK-8(H4) as the predominant menaquinone. The major polar lipids were diphosphatidylglycerol, phosphatidylinositol and an unknown lipid. The major fatty acids were iso-C15 : 0, anteiso-C15 : 0, anteiso-C17 : 0 and iso-C16 : 0. The G+C content of the genomic DNA was 72.5 mol%. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain IP6SC6T belonged to the genus Phycicoccus and shared the highest sequence similarity with Phycicoccus jejuensis NRRL B-24460T (96.97 %). On the basis of phylogenetic analysis and phenotypic and chemotaxonomic characteristics, strain IP6SC6T represents a novel species of the genus Phycicoccus, for which the name Phycicoccus endophyticus sp. nov. is proposed. The type strain is IP6SC6T ( = DSM 100020T = CGMCC 4.7300T).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA