Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biomed Sci ; 30(1): 45, 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37370086

RESUMEN

BACKGROUND: Emerging research has reported that circular RNAs (circRNAs) play important roles in cardiac cell death after myocardial ischemia and reperfusion (I/R). Ferroptosis, a new form of cell death discovered in recent years, has been proven to participate in the regulation of myocardial I/R. This study used circRNA sequencing to explore the key circRNA in the regulation of cardiac ferroptosis after I/R and study the mechanisms of potential circRNA function. METHODS: We performed circRNA sequencing to explore circRNAs differentially expressed after myocardial I/R. We used quantitative polymerase chain reactions to determine the circRNA expression in different tissues and detect the circRNA subcellular localization in the cardiomyocyte. Gain- and loss-of-function experiments were aimed to examine the function of circRNAs in cardiomyocyte ferroptosis and cardiac tissue damage after myocardial I/R. RNA pull-down was applied to explore proteins interacting with circRNA. RESULTS: Here, we identified a ferroptosis-associated circRNA (FEACR) that has an underlying regulatory role in cardiomyocyte ferroptosis. FEACR overexpression suppressed I/R-induced myocardial infarction and ameliorated cardiac function. FEACR inhibition induces ferroptosis in cardiomyocytes and FEACR overexpression inhibits hypoxia and reoxygenation-induced ferroptosis. Mechanistically, FEACR directly bound to nicotinamide phosphoribosyltransferase (NAMPT) and enhanced the protein stability of NAMPT, which increased NAMPT-dependent Sirtuin1 (Sirt1) expression, which promoted the transcriptional activity of forkhead box protein O1 (FOXO1) by reducing FOXO1 acetylation levels. FOXO1 further upregulated the transcription of ferritin heavy chain 1 (Fth1), a ferroptosis suppressor, which resulted in the inhibition of cardiomyocyte ferroptosis. CONCLUSIONS: Our finding reveals that the circRNA FEACR-mediated NAMPT-Sirt1-FOXO1-FTH1 signaling axis participates in the regulation of cardiomyocyte ferroptosis and protects the heart function against I/R injury. Thus, FEACR and its downstream factors could be novel targets for alleviating ferroptosis-related myocardial injury in ischemic heart diseases.


Asunto(s)
Ferroptosis , Isquemia Miocárdica , Daño por Reperfusión Miocárdica , Humanos , ARN Circular/genética , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/metabolismo , Ferroptosis/genética , Nicotinamida Fosforribosiltransferasa/genética , Nicotinamida Fosforribosiltransferasa/metabolismo , Sirtuina 1/genética , Sirtuina 1/metabolismo , Miocitos Cardíacos/metabolismo , Apoptosis
2.
Cell Tissue Bank ; 2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36797536

RESUMEN

The purpose of this study was to investigate whether 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) combined with n-hydroxysuccinimide (NHS) can repair tendon damage caused by peracetic acid-ethanol and gamma irradiation sterilization. The semitendinosus tendons of 15 New Zealand white rabbits were selected as experimental materials, and the tendons were sterilized in a solution containing 1% (v/w) peracetic acid and 24% (v/w) ethanol. After 15 kGy gamma irradiation sterilization, the tendons were randomly divided into three groups (n = 10). The tendons were repaired with EDCs of 0, 2.5 and 5 mM combined with 5 mM NHS for 6 h, the tendons were temporarily stored at - 80 ± °C. The arrangement and spatial structure of collagen fibers were observed by light microscopy and scanning electron microscopy, the collagen type and collagen crimp period were observed under a polarizing microscope, and the collagen fibril diameter and its distribution were measured by transmission electron microscopy, from which the collagen fibril index and mass average diameter were calculated. The resistance of collagen to enzymolysis was detected by the free hydroxyproline test, and tensile fracture and cyclic loading tests of each group of tendons were carried out, from which the elastic modulus, maximum stress, maximum strain, strain energy density and cyclic creep strain were calculated. The obtained results showed that the gap between loose collagen fibers in the 0 mM control group was wider, the parallel arrangement of tendons in the 2.5 and 5 mM groups was more uniform and regular and the fiber space decreased, the crimp period in the 5 mM group was lower than that in the 0 mM group (P < 0.05), and the concentration of hydroxyproline in the 5 mM group (711.64 ± 77.95 µg/g) was better than that in the control group (1150.57 ± 158.75 µg/g). The elastic modulus of the 5 mM group (424.73 ± 150.96 MPa) was better than that of the 0 mM group (179.09 ± 37.14 MPa). Our results show that EDC combined with NHS can repair damaged tendons after peracetic acid-ethanol and gamma radiation treatment, and 5 mM EDC has better morphological performance, anti-enzymolysis ability and biomechanical properties than 2.5 mM EDC.

3.
Cell Tissue Bank ; 24(4): 747-758, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37133795

RESUMEN

Decalcified bone matrix (DBM) is a widely used alternative material for bone transplantation. In the DBM production process, an effective particle size and the highest utilization rate of raw materials can be achieved only through multiple high-speed circulating comminution. The rat posterolateral lumbar fusion model (PLF) is the most mature small animal model for the initial evaluation of the efficacy of graft materials for bone regeneration and spinal fusion. To evaluate the differences in the in vivo osteogenic effects of DBM pulverization through 1, 5, 9, and 14 high-speed cycles, sixty athymic rats were divided into six groups: single cycling crushing (CC1), 5 cycles of crushing (CC5), 9 cycles of crushing (CC9), 13 cycles of crushing (CC13), autogenous bone graft (ABG) and negative control (NC). Posterolateral lumbar fusion was performed. Six weeks after surgery, the bilateral lumbar fusion of athymic rats was evaluated through manual palpation, X-ray, micro-CT and histological sections. Rank data were tested by the rank-sum test, and nonparametric data were tested by the Kruskal‒Wallis H test. The manual palpation and X-ray results showed that the fusion rate did not significantly differ between the CC1, CC5, CC9, CC13 and ABG groups. However, cavities appeared in CC9 and CC13 on the micro-CT image. The bone mass (BV/TV) of CC1, CC5, CC9 and CC13 was better than that of the ABG group, while almost no osteogenesis was observed in the NC group. Histologically, there was no obvious difference between the four groups except that the CC9 group and CC13 group had more fibrous tissues in the new bone. In conclusion, DMB with different cycling crushing times has no obvious difference in fusion rate of PLF, but it is slightly better than the ABG group.


Asunto(s)
Matriz Ósea , Fusión Vertebral , Ratas , Animales , Matriz Ósea/trasplante , Ratas Desnudas , Vértebras Lumbares/cirugía , Huesos , Fusión Vertebral/métodos , Trasplante Óseo/métodos
4.
Environ Monit Assess ; 194(2): 68, 2022 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-34994857

RESUMEN

Atmospheric wet deposition (AWD) is closely related to air quality, and excessive deposition poses risks to ecological systems and human health. Seasonal and interannual variations in acidity, electric conductivity (EC), ionic composition, fluxes, sources, and atmospheric transport of AWD were analyzed at an urban site in Xi'an from 2016 to 2019. The annual volume-weighted mean (VWM) pH and EC values were 6.8 and 40.6 µS cm-1, respectively. NO3- (47%) was the most dominant anion, while Ca2+ (34%) was the most dominant cation. The analysis of fractional acidity (FA) and neutralization factors (NFs) showed that 96% of the acidity was neutralized by alkaline constituents, especially Ca2+ and NH4+. The annual AWD flux of total ions was 125.9 kg ha-1 year-1, and NO3-, NO2-, SO42- and NH4+ fluxes accounted for approximately 70%, indicating considerable sulfur (9.1 kg ha-1 year-1) and nitrogen (22.0 kg ha-1 year-1) deposition. Under dilution by precipitation, the EC and major ion concentrations were lower, while the pH and fluxes were higher, in summer and autumn, and the opposite results were observed in spring and winter. The source apportionment via by positive matrix factorization (PMF) revealed that the six sources of major ions were confirmed as follows: vehicular emissions (38.1%), agriculture (22.3%), fossil fuel combustion (13.8%), crust (12.9%), marine (9.6%), and biomass burning (3.3%). And on the basis of back trajectory analysis, the air masses of precipitation were primarily from the northwest in spring and winter, from the southeast in summer, and from various directions in autumn, and they transported different natural and anthropogenic pollutants along their paths, thereby affecting the chemical composition and fluxes of AWD.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , China , Monitoreo del Ambiente , Humanos , Estaciones del Año , Emisiones de Vehículos
5.
Zhongguo Zhong Xi Yi Jie He Za Zhi ; 36(2): 188-90, 2016 Feb.
Artículo en Zh | MEDLINE | ID: mdl-27078995

RESUMEN

OBJECTIVE: To explore the correlation between electronic bronchus mirror and Chinese medical syndrome typing of Mycoplasma pneumonia children. METHODS: Totally 198 Mycoplasma pneumonia children inpatients were assigned to three syndrome types according to Chinese medical syndrome typing and self-formulated typing standards of electronic bronchus mirror, i.e., Fei-qi accumulation of damp and heat syndrome, Fei-qi accumulation of toxicity and heat syndrome, deficient vital qi leading to lingering of pathogen syndrome. The correlation between electronic bronchus mirror and Chinese medical syndrome typing was explored. RESULTS: As for comparison between electronic bronchus mirror and Chinese medical syndrome typing, Kappa value (K^) was 0.645 and Spearman coefficient correlation (r) was 0.653 (P < 0.01) for Fei-qi accumulation of damp and heat syndrome; K^ was 0.724 and r(s) was 0.727 (P < 0.01) for Fei-qi accumulation of toxicity and heat syndrome; K^ was 0.506 and r(s) was 0.515 (P < 0.01) for deficient vital qi leading to lingering of pathogen syndrome. CONCLUSION: Chinese medical syndrome typing of Mycoplasma pneumonia children was moderately in line with inspection typing under electronic bronchoscope with significant correlation.


Asunto(s)
Broncoscopía , Medicina Tradicional China , Neumonía por Mycoplasma/diagnóstico , Niño , Humanos , Pacientes Internos , Neumonía por Mycoplasma/clasificación
6.
Biomolecules ; 14(3)2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38540687

RESUMEN

Disulfidptosis is a newly discovered form of programmed cell death that is induced by disulfide stress. It is closely associated with various cancers, including head and neck squamous cell carcinoma (HNSCC). However, the factors involved in the modulation of disulfidptosis-related genes (DRGs) still remain unknown. In this study, we established and validated a novel risk score model composed of 11 disulfidptosis-related lncRNAs (DRLs) based on 24 DRGs in HNSCC. The results revealed strong correlations between the 11-DRL prognostic signature and clinicopathological features, immune cell infiltration, immune-related functions, and disulfidptosis-associated pathways, including NADPH and disulfide oxidoreductase activities. Furthermore, we studied and verified the involvement of ALMS1-IT1, one of the 11 model DRLs, in the disulfidptosis of HNSCC cell lines. A series of assays demonstrated that ALMS1-IT1 modulated cell death under starvation conditions in a pentose phosphate pathway (PPP)-dependent manner. Knockdown of ALMS1-IT1 inhibited the PPP, contributing to a decline in NADPH levels, which resulted in the formation of multiple intermolecular disulfide bonds between actin cytoskeleton proteins and the collapse of F-actin in the cytoplasm. Therefore, ALMS1-IT1, which is highly expressed in SLC7A11high cells, can be considered a promising therapeutic target for disulfidptosis-focused treatment strategies for cancer and other diseases.


Asunto(s)
Neoplasias de Cabeza y Cuello , ARN Largo no Codificante , Humanos , Pronóstico , ARN Largo no Codificante/genética , NADP , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Disulfuros , Neoplasias de Cabeza y Cuello/genética , Proteínas de Ciclo Celular
7.
Cancer Res ; 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38657100

RESUMEN

Adenoid cystic carcinoma (ACC) is a rare malignant epithelial neoplasm that arises in secretory glands and commonly metastasizes to the lungs. MYBL1 is frequently overexpressed in ACC and has been suggested to be a driver of the disease. Here, we identified a circRNA derived from MYBL1 pre-mRNA that accompanied overexpression of MYBL1 in ACC. Overexpression of circMYBL1 was correlated with increased lung metastasis and poor overall survival in ACC patients. Ectopic circMYBL1 overexpression promoted malignant phenotypes and lung metastasis of ACC cells. Mechanistically, circMYBL1 formed a circRNA-protein complex with CCAAT enhancer binding protein beta (CEBPB), which inhibited ubiquitin-mediated degradation and promoted nuclear translocation of CEBPB. In the nucleus, circMYBL1 increased the binding of CEBPB to the CD44 promoter region and enhanced its transcription. In addition, circMYBL1 was enriched in small extracellular vesicles (sEVs) isolated from the plasma of ACC patients. Treatment with sEVs containing circMYBL1 in sEVs enhanced pro-metastatic phenotypes of ACC cells, elevated the expression of CD44 in human pulmonary microvascular endothelial cells (HPMECs), and enhanced the adhesion between HPMECs and ACC cells. Moreover, circMYBL1 encapsulated in sEVs increased the arrest of circulating ACC cells in the lung and enhanced the lung metastatic burden. This data suggests that circMYBL1 is a tumor-promoting circRNA that could serve as a potential biomarker and therapeutic target in ACC.

8.
PhytoKeys ; 220: 65-73, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37251607

RESUMEN

Aeschynanthussmaragdinus F.Wen & J.Q.Qin, a new species of Gesneriaceae from the monsoon rain forest in Mangbang township, Tengchong City, Yunnan Province, China, is described and illustrated here. It morphologically resembles A.chiritoides C.B.Clarke in size, shape and hairs on the leaf blades. But it can easily be distinguished from the latter by the green corolla limb with brownish-red to maroon lower lobes. At the same time, the hairs of the pedicel and calyx lobes, the length of the staminode and the size of the seed grain can also help distinguish both. It is provisionally assessed as Data Deficient (DD), according to the IUCN Red List Categories and Criteria, because field surveys for this new taxon have not been completed.

9.
Aging Dis ; 14(5): 1834-1852, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37196116

RESUMEN

Lens fibrosis is one of the leading causes of cataract in the elderly population. The primary energy substrate of the lens is glucose from the aqueous humor, and the transparency of mature lens epithelial cells (LECs) is dependent on glycolysis for ATP. Therefore, the deconstruction of reprogramming of glycolytic metabolism can contribute to further understanding of LEC epithelial-mesenchymal transition (EMT). In the present study, we found a novel pantothenate kinase 4 (PANK4)-related glycolytic mechanism that regulates LEC EMT. The PANK4 level was correlated with aging in cataract patients and mice. Loss of function of PANK4 significantly contributed to alleviating LEC EMT by upregulating pyruvate kinase M2 isozyme (PKM2), which was phosphorylated at Y105, thus switching oxidative phosphorylation to glycolysis. However, PKM2 regulation did not affect PANK4, demonstrating the downstream role of PKM2. Inhibition of PKM2 in Pank4-/- mice caused lens fibrosis, which supports the finding that the PANK4-PKM2 axis is required for LEC EMT. Glycolytic metabolism-governed hypoxia inducible factor (HIF) signaling is involved in PANK4-PKM2-related downstream signaling. However, HIF-1α elevation was independent of PKM2 (S37) but PKM2 (Y105) when PANK4 was deleted, which demonstrated that PKM2 and HIF-1α were not involved in a classic positive feedback loop. Collectively, these results indicate a PANK4-related glycolysis switch that may contribute to HIF-1 stabilization and PKM2 phosphorylation at Y105 and inhibit LEC EMT. The mechanism elucidation in our study may also shed light on fibrosis treatments for other organs.

10.
Cell Death Differ ; 30(7): 1786-1798, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37286744

RESUMEN

The mitochondrial transmembrane (TMEM) protein family has several essential physiological functions. However, its roles in cardiomyocyte proliferation and cardiac regeneration remain unclear. Here, we detected that TMEM11 inhibits cardiomyocyte proliferation and cardiac regeneration in vitro. TMEM11 deletion enhanced cardiomyocyte proliferation and restored heart function after myocardial injury. In contrast, TMEM11-overexpression inhibited neonatal cardiomyocyte proliferation and regeneration in mouse hearts. TMEM11 directly interacted with METTL1 and enhanced m7G methylation of Atf5 mRNA, thereby increasing ATF5 expression. A TMEM11-dependent increase in ATF5 promoted the transcription of Inca1, an inhibitor of cyclin-dependent kinase interacting with cyclin A1, which suppressed cardiomyocyte proliferation. Hence, our findings revealed that TMEM11-mediated m7G methylation is involved in the regulation of cardiomyocyte proliferation, and targeting the TMEM11-METTL1-ATF5-INCA1 axis may serve as a novel therapeutic strategy for promoting cardiac repair and regeneration.


Asunto(s)
Miocitos Cardíacos , Procesamiento Proteico-Postraduccional , Animales , Ratones , Proliferación Celular/genética , Metilación , Miocitos Cardíacos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
11.
Adv Sci (Weinh) ; 10(34): e2304329, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37870216

RESUMEN

PIWI-interacting RNAs (piRNAs) are highly expressed in various cardiovascular diseases. However, their role in cardiomyocyte death caused by ischemia/reperfusion (I/R) injury, especially necroptosis, remains elusive. In this study, a heart necroptosis-associated piRNA (HNEAP) is found that regulates cardiomyocyte necroptosis by targeting DNA methyltransferase 1 (DNMT1)-mediated 5-methylcytosine (m5 C) methylation of the activating transcription factor 7 (Atf7) mRNA transcript. HNEAP expression level is significantly elevated in hypoxia/reoxygenation (H/R)-exposed cardiomyocytes and I/R-injured mouse hearts. Loss of HNEAP inhibited cardiomyocyte necroptosis and ameliorated cardiac function in mice. Mechanistically, HNEAP directly interacts with DNMT1 and attenuates m5 C methylation of the Atf7 mRNA transcript, which increases Atf7 expression level. ATF7 can further downregulate the transcription of Chmp2a, an inhibitor of necroptosis, resulting in the reduction of Chmp2a level and the progression of cardiomyocyte necroptosis. The findings reveal that piRNA-mediated m5 C methylation is involved in the regulation of cardiomyocyte necroptosis. Thus, the HNEAP-DNMT1-ATF7-CHMP2A axis may be a potential target for attenuating cardiac injury caused by necroptosis in ischemic heart disease.


Asunto(s)
Miocitos Cardíacos , Daño por Reperfusión , Ratones , Animales , Miocitos Cardíacos/metabolismo , ARN Mensajero/metabolismo , ARN de Interacción con Piwi , Necroptosis/genética , Metilación , Daño por Reperfusión/metabolismo , Factores de Transcripción Activadores/metabolismo
12.
Technol Cancer Res Treat ; 21: 15330338221105718, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35668701

RESUMEN

With advances in tumor treatment, metastasis to bone is increasing, and surgery has become the only choice for most terminal patients. However, spinal surgery has a high risk and is prone to heavy bleeding. Controlled hypotension during surgery has outstanding advantages in reducing intraoperative bleeding and ensuring a clear field of vision, thus avoiding damage to important nerves and vessels. Antihypertensive drugs should be carefully selected after considering the patient's age, different diseases, etc, and a single or combined regimen can be used. Hypotension also inevitably leads to a decrease in perfusion of important organs, so the threshold of hypotension and the maintenance time of hypotension should be strictly limited, and the monitoring of important organs during the operation is particularly important. Information such as blood perfusion, blood oxygen saturation, cardiac output, and neurophysiological conduction potential changes should be obtained in a timely fashion, which will help to reduce the risk of hypotension. In short, when applying controlled hypotension, it is necessary to choose an appropriate threshold and duration, and appropriate monitoring should be conducted during the operation to ensure the safety of the patient.


Asunto(s)
Hipotensión Controlada , Hipotensión , Neoplasias de la Columna Vertebral , Humanos , Hipotensión/etiología , Hipotensión/prevención & control , Neoplasias de la Columna Vertebral/cirugía
13.
Technol Cancer Res Treat ; 21: 15330338221107208, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35702739

RESUMEN

The life expectancy of patients with advanced cancer has been prolonged with the development of systemic treatment technology. Spinal metastasis is one of the common ways of metastasis of advanced tumors, leading to spinal cord compression and compression fractures, which often lead to a significant reduction in patients' quality of life and physical function. Therefore, surgical treatment is still needed for functional recovery and local control. Separation surgery has been known since 2014 when it was purposed. Combined with radiotherapy, it can achieve an ideal goal of local control. This paper gives a brief introduction to separation surgery, hoping to increase the reader's understanding and consider this method in the course of treatment.


Asunto(s)
Compresión de la Médula Espinal , Neoplasias de la Columna Vertebral , Humanos , Calidad de Vida , Compresión de la Médula Espinal/etiología , Compresión de la Médula Espinal/radioterapia , Compresión de la Médula Espinal/cirugía , Neoplasias de la Columna Vertebral/radioterapia , Neoplasias de la Columna Vertebral/secundario , Neoplasias de la Columna Vertebral/cirugía
14.
Technol Cancer Res Treat ; 21: 15330338221122642, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36214255

RESUMEN

According to the Global Cancer Statistics 2020 report, breast cancer is the most commonly diagnosed cancer worldwide. Patients with mammary cancer live longer due to the continuous optimization of chemotherapy, targeted drugs, and hormone therapy, which will inevitably lead to an increase in the prevalence of metastatic bone tumors. Bone metastasis affects approximately 8% of patients with mammary cancer, with the spine being the most common site. Metastatic neoplasms can invade the centrum and its attachments, leading to local pain, spinal instability, vertebral pathological fractures, spinal cord compression, impaired neurological function, and paralysis, ultimately reducing the quality of life. Multidisciplinary and personalized management using analgesic drugs, endocrine therapy, corticosteroid therapy, chemotherapy, bisphosphonates, immunotherapy, targeted drugs, radiotherapy, and surgery has been advocated for the treatment of spinal metastases. Multiple paradigms and systems have been proposed to determine suitable treatments. In the early stages, the occurrence of metastasis indicates a terminal stage of the tumor process in patients with malignant tumors, implying that their lifespan is limited. As a result, the choice of treatment is heavily influenced by longevity. However, with the development of treatment methods, the lifespan of patients with tumors has considerably increased in recent years. This leads to the choice of patient's treatment, which depends not only on the patient's survival, but also on the radiotherapy or postoperative functional outcomes. Nevertheless, they fall short of determining the variables that affect survival and functional outcomes in histology-specific subgroups of breast cancer. To accurately predict the bone survival and functional outcomes of patients with breast cancer spine metastases a review of prognostic factors was performed.


Asunto(s)
Neoplasias Óseas , Neoplasias de la Mama , Neoplasias Primarias Secundarias , Fracturas de la Columna Vertebral , Neoplasias de la Columna Vertebral , Corticoesteroides/uso terapéutico , Neoplasias Óseas/secundario , Neoplasias de la Mama/patología , Difosfonatos/uso terapéutico , Femenino , Hormonas/uso terapéutico , Humanos , Pronóstico , Calidad de Vida , Neoplasias de la Columna Vertebral/secundario
15.
PhytoKeys ; 215: 65-71, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36761097

RESUMEN

Microchiritaminor (Gesneriaceae), a new species from the limestone area in Son La Province, north-western Vietnam, is described here. The new species resembles M.hamosa, but it differs by the combination of corolla tube shape, stamens number and the length of pistil. Detailed morphological description, together with photographic plates, information on phenology, distribution, ecology and preliminary conservation status of the new species are presented.

16.
Carbohydr Res ; 501: 108276, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33662813

RESUMEN

With the development of dye and printing, production wastewater has become one of the most primary pollution sources of water and soil pollution. Most of the dyes are toxic substances, which have the "three-way" effect of carcinogenic, teratogenic and mutagenic. Therefore, it is a very difficult but significant issue to deal with the dye in the wastewater. Here, we report a study on low-cost, high-capacity hydrogels that remove water-soluble dyes. The hydrogel is prepared by crosslinking the ß-cyclodextrin and functional monomer: acrylamido and 2-acrylamide-2-methylpropane sulfonic acid by aqueous solution polymerization, meanwhile, alkaline hydrolysis is also an important step for adsorption performance. After alkaline hydrolysis, the amide and sulfonic groups in the hydrogel were converted into carboxylate and sulfonate, which was beneficial to the adsorption of cationic dyes. This polymer could remove 96.58% methylene blue (400 mg/L) and only requires 0.02 wt%. Its maximum adsorption capacity for methylene blue could reach 2638.22 mg/g under equilibrium condition. It is the most powerful adsorbent used to treat dye wastewater, according to the report. It also provides some references for hydrogel treatment of dye wastewater.


Asunto(s)
Hidrogeles/química , Azul de Metileno/aislamiento & purificación , Contaminantes Químicos del Agua/aislamiento & purificación , beta-Ciclodextrinas/química , Adsorción , Azul de Metileno/química , Estructura Molecular , Tamaño de la Partícula , Propiedades de Superficie , Contaminantes Químicos del Agua/química
17.
Nanotechnology ; 21(26): 265601, 2010 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-20522924

RESUMEN

The purpose of this study was to develop nanoparticles made of cholesterol-conjugated carboxymethyl curdlan (CCMC) entrapping epirubicin (EPB) and establish their in vitro and in vivo potential. CCMC was synthesized and characterized by Fourier transform infrared spectra (FT-IR) and proton nuclear magnetic resonance spectra ((1)H NMR). The degrees of substitution (DS) of the cholesterol moiety were 2.3, 3.5 and 6.4, respectively. EPB-loaded CCMC-3.5 nanoparticles were prepared by the remote loading method. The physicochemical characteristics, drug loading efficiency and drug release kinetics of EPB-loaded CCMC-3.5 nanoparticles were characterized. The in vitro release profiles revealed that EPB release was sensitive to the pH as well as the drug loading contents. The cellular cytotoxicity and cellular uptake were accessed by using human cervical carcinoma (HeLa) cells. The EPB-loaded CCMC-3.5 nanoparticles were found to be more cytotoxic and have a broader distribution within the cells than the free EPB. The in vivo pharmacokinetics and biodistribution were investigated after intravenous injection in rats. Promisingly, a 4.0-fold increase in the mean residence time (MRT), a 4.31-fold increase in the half-life time and a 6.69-fold increase in the area under the curve (AUC 0-->infinity) of EPB were achieved for the EPB-loaded CCMC-3.5 self-assembled nanoparticles compared with the free EPB. The drug level was significantly increased in liver at 24 and 72 h; however, it decreased in heart at 8 and 24 h compared with the free EPB. The in vivo anti-tumor study indicated that the EPB-loaded CCMC-3.5 self-assembled nanoparticles showed greater anti-tumor efficacy than the free EPB. Taken together, the novel CCMC self-assembled nanoparticles might have potential application as anti-cancer drug carriers in a drug delivery system due to good results in vitro and in vivo.


Asunto(s)
Colesterol/química , Portadores de Fármacos/química , Epirrubicina/farmacología , Nanopartículas/química , beta-Glucanos/química , Animales , Muerte Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Epirrubicina/administración & dosificación , Epirrubicina/farmacocinética , Células HeLa , Humanos , Inyecciones Intravenosas , Masculino , Ratones , Microscopía Confocal , Nanopartículas/ultraestructura , Neoplasias/patología , Tamaño de la Partícula , Ratas , Ratas Wistar , Espectrofotometría Infrarroja , Distribución Tisular/efectos de los fármacos
18.
Huan Jing Ke Xue ; 41(12): 5295-5305, 2020 Dec 08.
Artículo en Zh | MEDLINE | ID: mdl-33374045

RESUMEN

In this study, the aerosol number size distribution in the range of 10 nm-10 µm was collected from August 16 to October 04, 2019 at Ordos using a wide-range particle spectrometer (WPS). Combined with PM (PM2.5 and PM10), pollution gases, meteorological data, and the HYSPLIT model, the characteristics and impact factors of new particle formation (NPF) were discussed. The results indicated that there were 19 NPF events during the observation period, which have different effects on diurnal variation in aerosol number concentration in different modes. The NPF events caused a sharp increase in the number concentration of nucleation and Aitken mode aerosols, but had little effect on the number concentration of accumulation and coarse mode aerosols. The temperature, wind speed, and total solar radiation during NPF days were usually higher than those in non-NPF days, and the RH during NPF days was lower. On NPF days, the mass concentrations of PM2.5, PM10, CO, and NO2 were lower than those on non-NPF days, while the mass concentrations of O3 and SO2 were higher. NPF events were observed in 40.0% of northern air masses and 29.6% of southern air masses. There were significant differences in meteorological elements in different NPF event air mass types. The southern NPF event air mass type had the lowest wind speed and the highest RH, with averages of (2.4±1.5) m·s-1 and (48.8±10.8)%, respectively. The northern NPF event air mass type had the highest wind speed and total solar radiation, with averages of (4.2±1.9) m·s-1 and (664.5±255.6) W·m-2, respectively. The western air mass type of NPF event had the lowest RH, with an average of (29.8±12.7)%. The formation rates of new particles in the different air mass types of NPF events were similar, ranging from 1.5 to 1.8 cm-3·s-1. The largest growth rate was (12.7±13.6) nm·h-1 in the southern NPF event air mass type, which was 1.2 times and 1.4 times higher than the NPF events of northern air masses and western air masses.

19.
Sci Rep ; 8(1): 6916, 2018 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-29720685

RESUMEN

A flexible and stable biomimetic SERS substrate was successfully fabricated by depositing gold (Au) nanoislands on the dragonfly wings (DW) via a simple DC magnetron sputtering system. Characterizations of the Au/DW nanostructure indicated that the optimum Au/DW-45 (sputtering time was 45 min) substrate owns high sensitivity, good stability and outstanding reproducibility. The limit of detection (LOD) for Rhodamine 6 G (R6G) was as low as 10-7 M and enhancement factor (EF) was calculated to be 2.8 × 106. 70-day-duration stability tests showed that Raman intensity of R6G reduced only by 12.9% after aging for 70 days. The maximum relative standard deviations (RSD) of SERS intensities from 100 positions of Au/DW-45 substrate were less than 8.3%, revealing outstanding uniformity and reproducibility. Moreover, the flexible Au/DW-45 bioscaffold arrays were employed to solve the vital problem of pesticide residues. By directly sampling from tomato peels via a "press and peel off" approach, cypermethrin has been rapidly and reliably determined with a LOD centered at 10-3 ng/cm2 and a correlation coefficient (R2) of 0.987. The positive results demonstrated that the Au-based DW biomimetic arrays may offer an efficient SERS platform for the identification of various pesticide residues on real samples.

20.
Thromb Res ; 170: 142-147, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30193195

RESUMEN

INTRODUCTION: Both Global Registry of Acute Coronary Events (GRACE) risk score and CYP2C19 metabolizer status can independently predict major adverse cardiac events (MACEs) in patients with acute coronary syndrome (ACS) undergoing percutaneous coronary intervention (PCI). We investigated whether their combination could better predict MACE occurrence in patients with ACS undergoing PCI. MATERIALS AND METHODS: This retrospective cohort study included 548 consecutive patients with ACS undergoing PCI. A cumulative MACE curve was calculated using the Kaplan-Meier method. Multivariate Cox regression was used to identify MACE predictors. The predictive value of GRACE risk score alone and CYP2C19 metabolizer status was estimated by the area under the receiver operating characteristic curve (AUC), net reclassification improvement (NRI), and integrated discrimination improvement (IDI). RESULTS: In a median of 28.58 months, 17 patients (3%) were lost to follow-up, and 62 (11.3%) experienced MACEs. Multivariate Cox regression analysis showed that both GRACE score and CYP2C19 metabolizer status were independent MACE predictors (hazard ratio 1.019, 95% CI 1.011-1.027, p < 0.001; hazard ratio 2.383, 95% CI 1.601-3.547, p < 0.001, respectively). Kaplan-Meier analysis showed that CYP2C19 PM increased the MACE risk (log rank test = 10.848, p = 0.004). The GRACE score adjustment by CYP2C19 metabolizer status enhanced the predictive value (AUC increased from 0.682 for GRACE score alone to 0.731 for GRACE score plus CYP2C19 metabolizer). This result was further verified by IDI and NRI. CONCLUSIONS: CYP2C19 metabolizer status and GRACE score are readily available predictive approaches for MACEs, and their combination derives a more accurate long-term MACE prediction in clopidogrel-treated patients with ACS undergoing PCI.


Asunto(s)
Síndrome Coronario Agudo/genética , Citocromo P-450 CYP2C19/genética , Intervención Coronaria Percutánea/métodos , Síndrome Coronario Agudo/patología , Anciano , Estudios de Cohortes , Citocromo P-450 CYP2C19/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Estudios Retrospectivos , Medición de Riesgo , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA