Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Pharm ; 21(2): 688-703, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38243899

RESUMEN

Persistent pain is a significant healthcare problem with limited treatment options. The high incidence of comorbid chronic pain and depression significantly reduces life quality and complicates the treatment of both conditions. Antidepressants are less effective for pain and depression than for depression alone and they induce severe side effects. Opioids are highly efficacious analgesics, but rapid development of tolerance, dependence, and debilitating side effects limit their efficacy and safe use. Leucine-enkephalin (Leu-ENK), the endogenous delta opioid receptor agonist, controls pain and mood and produces potent analgesia with reduced adverse effects compared to conventional opioids. High proteolytic instability, however, makes Leu-ENK ineffective after systemic administration and limits its clinical usefulness. KK-103, a Leu-ENK prodrug, was developed to overcome these limitations of Leu-ENK via markedly increased plasma stability in mice. We showed rapid and substantially increased systemic adsorption and blood plasma exposure of KK-103 compared to Leu-ENK. We also observed brain uptake of radiolabeled KK-103 after systemic administration, indicating a central effect of KK-103. We then established KK-103's prolonged antinociceptive efficacy in the ramped hot plate and formalin test. In both models, KK-103 produced a comparable dose to the maximum antinociceptive-effect relationship. The pain-alleviating effect of KK-103 primarily resulted from activating the delta opioid receptor after the likely conversion of KK-103 to Leu-ENK in vivo. Finally, KK-103 produced an antidepressant-like activity comparable to the antidepressant desipramine, but with minimal gastrointestinal inhibition and no incidence of sedation.


Asunto(s)
Encefalina Leucina , Profármacos , Ratones , Animales , Receptores Opioides delta/uso terapéutico , Profármacos/farmacología , Profármacos/uso terapéutico , Dolor/tratamiento farmacológico , Analgésicos/farmacología , Analgésicos/uso terapéutico , Antidepresivos/farmacología , Antidepresivos/uso terapéutico
2.
Nano Lett ; 22(24): 10040-10048, 2022 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-36521033

RESUMEN

Inspired by the natural phenomenon of phenolic-protein interactions, we translate this "naturally evolved interaction" to a "phenolic acid derivative based albumin bound" technology, through the synthesis of phenolic acid derivatives comprising a therapeutic cargo linked to a phenolic motif. Phenolic acid derivatives can bind to albumin and form nanocomplexes after microfluidic mixing. This strategy has been successfully applied to different types of anticancer drugs, including taxanes, anthraquinones, etoposides, and terpenoids. Paclitaxel was selected as a model drug for an in-depth study. Three novel paclitaxel-phenolic acid conjugates have been synthesized. Molecular dynamics simulations provide insights into the self-assembled mechanisms of phenolic-protein nanocomplexes. The nanocomplexes show improved pharmacokinetics, elevated tolerability, decreased neurotoxicity, and enhanced anticancer efficacies in multiple murine xenograft models of breast cancer, in comparison with two clinically approved formulations, Taxol (polyoxyethylated castor oil-formulated paclitaxel) and Abraxane (nab-paclitaxel). Such a robust system provides a broadly applicable platform for the development of albumin-based nanomedicines and has great potential for clinical translation.


Asunto(s)
Neoplasias de la Mama , Nanopartículas , Humanos , Animales , Ratones , Femenino , Albúmina Sérica Humana , Paclitaxel/uso terapéutico , Paclitaxel/farmacocinética , Albúminas/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Nanopartículas/uso terapéutico
3.
Mol Pharm ; 19(6): 1778-1785, 2022 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-34546758

RESUMEN

Hemolytic toxicity caused by primaquine (PQ) is a high-risk condition that hampers the wide use of PQ to treat liver-stage malaria. This study demonstrated that phospholipid-free small unilamellar vesicles (PFSUVs) composed of Tween80 and cholesterol could encapsulate and deliver PQ to the hepatocytes with reduced exposure to the red blood cells (RBCs). Nonionic surfactant (Tween80) and cholesterol-forming SUVs with a mean diameter of 50 nm were fabricated for delivering PQ. Drug release/retention, drug uptake by RBCs, pharmacokinetics, and liver uptake of PFSUVs-PQ were evaluated in invitro and invivo models in comparison to free drugs. Additionally, the stress effect on RBCs induced by free PQ and PFSUVs-PQ was evaluated by examining RBC morphology. PFSUVs provided >95% encapsulation efficiency for PQ at a drug-to-lipid ratio of 1:20 (w/w) and stably retained the drug in the presence of serum. When incubated with RBCs, PQ uptake in the PFSUVs group was reduced by 4- to 8-folds compared to free PQ. As a result, free PQ induced significant RBC morphology changes, while PFSUVs-PQ showed no such adverse effect. Intravenously (i.v.) delivered PFSUVs-PQ produced a comparable plasma profile as free PQ, given i.v. and orally, while the liver uptake was increased by 4.8 and 1.6-folds, respectively, in mice. Within the liver, PFSUVs selectively targeted the hepatocytes, with no significant blood or liver toxicity in mice. PFSUVs effectively targeted PQ to the liver and reduced RBC uptake compared to free PQ, leading to reduced RBC toxicity. PFSUVs exhibited potential in improving the efficacy of PQ for treating liver-stage malaria.


Asunto(s)
Antimaláricos , Malaria , Animales , Antimaláricos/uso terapéutico , Hemólisis , Hígado , Malaria/tratamiento farmacológico , Ratones , Fosfolípidos , Polímeros/uso terapéutico , Primaquina/uso terapéutico , Liposomas Unilamelares
4.
Mol Pharm ; 19(6): 1882-1891, 2022 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-35506592

RESUMEN

Nanomedicines including lipid- and polymer-based nanoparticles and polymer-drug conjugates enable targeted drug delivery for the treatment of numerous diseases. Quantitative analysis of components in nanomedicines is routinely performed to characterize the products to ensure quality and property consistency but has been mainly focused on the active pharmaceutical ingredients (APIs) in academic publications. It has been increasingly recognized that excipients in nanomedicines are critical in determining the product quality, stability, consistency, and safety. APIs are often analyzed by high-performance liquid chromatography (HPLC), and it would be convenient if the same method can be applied to excipients to robustly quantify all components in nanomedicines. Here, we report the development of a HPLC method that combined an evaporative light scattering (ELS) detector with an UV-vis detector to simultaneously analyze drugs and excipients in nanomedicines. This method was tested on diverse nanodrug delivery systems, including a niosomal nanoparticle encapsulating a phytotherapeutic, a liposome encapsulating an immune boosting agent, and a PEGylated peptide. This method can be utilized for a variety of applications, such as monitoring drug loading, studying drug release, and storage stability. The information obtained from the analyses is of importance for nanomedicine formulation development.


Asunto(s)
Excipientes , Luz , Cromatografía Líquida de Alta Presión/métodos , Excipientes/química , Liposomas , Polímeros , Dispersión de Radiación
5.
Small ; 15(43): e1901782, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31490617

RESUMEN

It is reported that cholesterol (Chol) and TWEEN 80 at a molar ratio of 5:1 can form small unilamellar vesicles (SUVs) using a staggered herringbone micromixer. These phospholipid-free SUVs (PFSUVs) can be actively loaded with a model drug for targeting hepatocytes via the endogenous apolipoprotein mechanism. PFSUVs particles with compositions of Chol:TWEEN 80 ranging between 1.5:1 and 5:1 (mol/mol) can be produced with a mean diameter of ≈80 nm, but only the high-Chol formulations (3:1 and 5:1) can retain a transmembrane gradient of ammonium sulfate for active loading of doxorubicin (DOX). Under cryo-transmission electron microscopy, PFSUVs-DOX displays a unilamellar bilayer structure with DOX molecules forming spindle-shape aggregates inside the aqueous core. Relative to PEGylated liposomal doxorubicin (PLD) that exhibits little interaction with cells in various conditions, the cellular uptake of PFSUVs-DOX is dependent on the presence of serum and enhanced with an increased concentration of apolipoproteins. After intravenous injection, the vast majority of PFSUVs-DOX accumulates in the liver and DOX is detected in all liver cells (predominantly the hepatocytes), while PLD is captured only by the sinusoidal cells (i.e., macrophages). This report discloses an innovative lipid bilayer vesicle for highly efficient and selective hepatocyte targeting.


Asunto(s)
Sistemas de Liberación de Medicamentos , Hígado/citología , Hígado/metabolismo , Fosfolípidos/metabolismo , Animales , Doxorrubicina/farmacocinética , Doxorrubicina/farmacología , Endocitosis/efectos de los fármacos , Femenino , Ratones Endogámicos BALB C , Polietilenglicoles/química , Receptores de LDL/metabolismo , Distribución Tisular/efectos de los fármacos , Liposomas Unilamelares
6.
Mol Pharm ; 16(9): 3957-3967, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31381352

RESUMEN

Curcumin exhibits potent anticancer activity via various mechanisms, but its in vivo efficacy has been hampered by poor solubility. Nanotechnology has been employed to deliver curcumin, but most of the reported systems suffered from low drug loading capacity and poor stability. Here, we report the development and optimization of a liposomal formulation for curcumin (Lipo-Cur) using an automated microfluidic technology. Lipo-Cur exhibited a mean diameter of 120 nm with a low polydispersity index (<0.2) and superior loading capacity (17 wt %) compared to other reported liposomal systems. Lipo-Cur increased the water solubility of curcumin by 700-fold, leading to 8-20-fold increased systemic exposure compared to the standard curcumin suspension formulation. When coadministered with cisplatin to tumor-bearing mice, Lipo-Cur augmented the antitumor efficacy of cisplatin in multiple mouse tumor models and decreased the nephrotoxicity. This is the first report demonstrating the dual effects of curcumin enabled by a nanoformulation in enhancing the efficacy and reducing the toxicity of a chemo-drug in animal models under a single and low dose administration.


Asunto(s)
Antineoplásicos/uso terapéutico , Cisplatino/uso terapéutico , Curcumina/química , Dimiristoilfosfatidilcolina/química , Sistemas de Liberación de Medicamentos/métodos , Liposomas/uso terapéutico , Neoplasias/tratamiento farmacológico , Animales , Antineoplásicos/administración & dosificación , Línea Celular Tumoral , Cisplatino/administración & dosificación , Curcumina/administración & dosificación , Curcumina/farmacocinética , Dimiristoilfosfatidilcolina/administración & dosificación , Modelos Animales de Enfermedad , Composición de Medicamentos/métodos , Liberación de Fármacos , Quimioterapia Combinada , Femenino , Liposomas/administración & dosificación , Liposomas/química , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Nanopartículas/química , Nanotecnología/métodos , Solubilidad , Distribución Tisular
7.
Bioconjug Chem ; 28(5): 1505-1518, 2017 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-28437080

RESUMEN

Polymer conjugation is an attractive approach for delivering insoluble and highly toxic drugs to tumors. However, most reports in the literature only disclose the optimal composition without emphasizing rational design or composition optimization to achieve maximized biological effects. In this study, we aimed to demonstrate that composition of a polymer conjugate would determine its physiochemical characteristics, tumor penetration, and, ultimately, the in vivo efficacy. We also aimed to examine whether the tumor spheroid model could generate comparable results with the in vivo tumor model in terms of tumor penetration and efficacy of the various polymer conjugates. We have designed a polymer conjugate delivery system for a chemotherapeutic drug podophyllotoxin (PPT) by covalently conjugating PPT and polyethylene glycol (PEG) with acetylated carboxymethyl cellulose to yield conjugates containing various amounts of PPT and PEG. Depending on the composition, these conjugates self-assembled into nanoparticles (NPs) with different physicochemical properties. Conjugates with an increased PPT content formed particles with an increased diameter. In the present study, we selected three conjugates representing compositions containing high, medium, and low drug content, and compared their particle formation, drug release kinetics, their ability to penetrate tumor spheroid and in vivo s.c. tumor, and finally their antitumor efficacy in spheroid culture and an in vivo s.c. tumor model. We found that the low drug content conjugate formed smaller NPs (20 nm) compared to the high drug content conjugates (30-120 nm), and displayed faster drug release kinetics (5%/day vs 1-3%/day), improved tumor penetration, and enhanced antitumor efficacy in both the spheroid model and s.c. tumor model. In particular, the low drug content conjugate preferentially accumulated in the hypovascular region within the tumor, inducing complete regression of s.c. tumors and the metastasis to the lungs. Our data indicate composition optimization is needed to select the optimal conjugate, and tumor spheroid culture is a robust screening tool to help select the optimal formulation.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Carboximetilcelulosa de Sodio/química , Portadores de Fármacos/química , Podofilotoxina/química , Polímeros/farmacología , Esferoides Celulares/efectos de los fármacos , Animales , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/metabolismo , Proliferación Celular/efectos de los fármacos , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Nanopartículas/química , Polímeros/química , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Mol Pharm ; 14(6): 1969-1979, 2017 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-28460165

RESUMEN

Mefloquine (Mef), a poorly soluble and highly bitter drug, has been used for malaria prophylaxis and treatment. The dosage form for Mef is mostly available as adult tablets, and thus children under the age of 5 suffer from poor medication adherence. We have developed a stable, rapidly dissolvable, and palatable pediatric formulation for Mef using liposomes composed of 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) and cholesterol with a mean diameter of ∼110 nm. Mef was actively loaded into the liposomes via an ammonium sulfate gradient using the solvent-assisted loading technology (SALT) developed in our lab. Complete loading of Mef inside the liposomal core was achieved at a high drug-to-lipid ratio (D/L) of 0.1-0.2 (w/w), and the final drug content in the formulation was ∼8 mg/mL, well above the solubility of Mef (<0.6 mg/mL in simulated fluids). The strong bitterness of Mef was masked by the liposomal encapsulation as measured by an electronic tongue. Incubating the Mef-liposomes (Mef-Lipo) in the simulated gastric fluid (pH 1.2) and the simulated intestinal fluid containing 3 mM sodium taurocholate (pH 6.8) induced changes in liposome size and the polydispersity, resulting in drug release (∼40% in 2 h). However, no drug release from the Mef-Lipo was measured in the bile salt-free intestinal fluid or simulated saliva (0% in 3 h). These data suggest that drug release from the Mef-Lipo was mediated by a low pH and the presence of a surfactant. Pancreatic lipase did not degrade DSPC in the Mef-Lipo after 8 h of incubation nor induce Mef release from the liposomes, indicating that lipid digestion played a minor role for drug release from the Mef-Lipo. In order to improve long-term room temperature storage, the Mef-Lipo was lyophilized to obtain a solid formulation, which was completely dissolvable in water in 10 s and displayed similar in vitro profiles of release as the liquid form. The lyophilized Mef-Lipo was stable at room temperature for >3 months. In mice, orally delivered liquid and lyophilized Mef-Lipo displayed comparable absorption with bioavailability (BA) of 81-86%, while the absorption of the standard Mef suspension was significantly lower with BA of 70% and 20% decreased maximal plasma concentration and area under the curve. Our data suggest that the Mef-Lipo was a stable, palatable, and bioavailable formulation that might be suitable for pediatric use.


Asunto(s)
Liposomas/química , Mefloquina/química , Administración Oral , Animales , Dimetilsulfóxido/química , Sistemas de Liberación de Medicamentos/métodos , Femenino , Malaria/tratamiento farmacológico , Mefloquina/uso terapéutico , Ratones , Ratones Endogámicos BALB C , Fosfatidilcolinas/química , Solubilidad
9.
Bioconjug Chem ; 27(1): 226-37, 2016 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-26673036

RESUMEN

The chemotherapeutic gemcitabine was actively and stably loaded into lipid nanoparticles through the formation of a prodrug. Gemcitabine was chemically modified to increase the lipophilicity and introduce a weak base moiety for remote loading. Several derivatives were synthesized and screened for their potential to be good liposomal drug candidates for remote loading by studying their solubility, stability, cytotoxicity, and loading efficiency. Two morpholino derivatives of GEM (22 and 23) were chosen as the preferred prodrugs for this purpose as they possessed the best loading efficiencies (100% for drug-to-lipid ratio of 0.36 w/w). This is a considerable improvement over a passive loading strategy where typical loading efficiencies are on the order of ∼10-20% for a drug-to-lipid ratio of ∼0.01. Liposomes loaded with these two prodrugs were studied in an s.c. tumor model in vivo and showed improved therapeutic effect over free GEM (∼2-fold) and saline control (8- to 10-fold). This work demonstrates how chemical modification of a known hydrophilic drug can lead to improved loading, stability, and drug delivery in vivo.


Asunto(s)
Desoxicitidina/análogos & derivados , Liposomas/química , Profármacos/síntesis química , Animales , Línea Celular Tumoral , Técnicas de Química Sintética , Desoxicitidina/química , Desoxicitidina/farmacología , Sistemas de Liberación de Medicamentos , Estabilidad de Medicamentos , Femenino , Concentración 50 Inhibidora , Ratones , Ratones Endogámicos BALB C , Neoplasias Experimentales/tratamiento farmacológico , Solubilidad , Gemcitabina
10.
Pharm Res ; 33(5): 1104-14, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26758590

RESUMEN

PURPOSE: This study was aimed at developing a new active loading method to stably encapsulate staurosporine (STS), a water insoluble drug, into lipid-based nanoparticles (LNPs) for drug targeting to tumors. METHODS: A limited amount of DMSO was included during the active loading process to prevent precipitation and facilitate the loading of insoluble STS into the aqueous core of a LNP. The drug loading kinetics under various conditions was studied and the STS-LNPs were characterized by size, drug-to-lipid ratio, drug release kinetics and in vitro potency. The antitumor efficacy of the STS-LNPs was compared with free STS in a mouse model. RESULTS: The drug loading efficiency reached 100% within 15 min of incubation at a drug-to-lipid ratio of 0.31 (mol) via an ammonium gradient. STS formed nano-aggregates inside the aqueous core of the LNPs and was stably retained upon storage and in the presence of serum. A 3-fold higher dose of the STS-LNPs could be tolerated by BALB/c mice compared with free STS, leading to nearly complete growth inhibition of a multidrug resistant breast tumor, while free STS only exhibited moderate activity. CONCLUSION: This simple and efficient drug loading method produced a stable LNP formulation for STS that was effective for cancer treatment.


Asunto(s)
Lípidos/química , Liposomas/química , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/administración & dosificación , Estaurosporina/administración & dosificación , Animales , Línea Celular Tumoral , Dimetilsulfóxido/química , Sistemas de Liberación de Medicamentos , Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Femenino , Humanos , Liposomas/ultraestructura , Ratones Endogámicos BALB C , Modelos Moleculares , Nanopartículas/ultraestructura , Neoplasias/patología , Tamaño de la Partícula , Inhibidores de Proteínas Quinasas/uso terapéutico , Estaurosporina/uso terapéutico
11.
Pharm Res ; 32(10): 3261-8, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25964047

RESUMEN

PURPOSE: This study was aimed at exploring the use of liposomes to deliver aquated cisplatin (ACP), a metabolite of CDDP, with increased potency and toxicity. Three liposomal formulations were compared for delivery of ACP to a multidrug resistant tumor. METHODS: Three different liposomes (DMPC, DPPC and DSPC as the main lipid components) were loaded with ACP by the thin-film hydration method. In vitro drug release was assessed over 72 h at 37°C in PBS. The pharmacokinetics of free CDDP and the three ACP liposomes was determined using ICP-AES and their efficacy against EMT6-AR1 multidrug resistant murine breast tumor was compared. RESULTS: The DSPC formulation, composed of a C18 acyl chain lipid, exhibited the slowest drug release (~2%) after 72 h at 37°C, compared to the other two formulations with decreased carbon chain lengths (C16 and C14; 7 and 25% release respectively). The pharmacokinetic profile was improved with all liposomal formulations relative to free CDDP, with clearance reduced by 500-fold for DSPC, 200-fold for DPPC and 130-fold for DMPC. The DSPC formulation displayed the highest drug accumulation in the tumor with 2-fold, 3-fold and 100-fold increases compared to DPPC, DMPC and free CDDP respectively. The DSPC formulation significantly inhibited the EMT6-AR1 tumor growth by ~90%, while the other formulations displayed no statistically significant improved activity compared to saline. CONCLUSION: These results suggest that the DSPC liposomal formulation is a promising formulation for MDR tumor therapy over DMPC and DPPC formulations and free drug.


Asunto(s)
Cisplatino/química , Cisplatino/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Liposomas/química , Neoplasias/tratamiento farmacológico , Animales , Proliferación Celular/efectos de los fármacos , Química Farmacéutica/métodos , Portadores de Fármacos/química , Femenino , Ratones , Ratones Endogámicos BALB C , Fosfatidilcolinas/química , Distribución Tisular/efectos de los fármacos
12.
Mol Pharm ; 11(8): 2592-9, 2014 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-24564177

RESUMEN

Taxanes are a class of anticancer agents with a broad spectrum and have been widely used to treat a variety of cancer. However, its long-term use has been hampered by accumulating toxicity and development of drug resistance. The most extensively reported mechanism of resistance is the overexpression of P-glycoprotein (Pgp). We have developed a PEGylated carboxymethylcellulose conjugate of docetaxel (Cellax), which condenses into ∼120 nm nanoparticles. Here we demonstrated that Cellax therapy did not upregulate Pgp expression in MDA-MB-231 and EMT-6 breast tumor cells, whereas a significant increase in Pgp expression was measured with native docetaxel (DTX) treatment. Treatment with DTX led to 4-7-fold higher Pgp mRNA expression and 2-fold higher Pgp protein expression compared with Cellax treatment in the in vitro and in vivo system, respectively. Cellax also exhibited significantly increased efficacy compared with that of DTX in a taxane-resistant breast tumor model. Against the highly Pgp expressing EMT6/AR1 cells, Cellax exhibited a 6.5 times lower IC50 compared with that of native DTX, and in the in vivo model, Cellax exhibited 90% tumor growth inhibition, while native DTX had no significant antitumor activity.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/química , Carboximetilcelulosa de Sodio/química , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Nanopartículas/química , Taxoides/química , Animales , Antineoplásicos , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Docetaxel , Sistemas de Liberación de Medicamentos , Femenino , Humanos , Concentración 50 Inhibidora , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos NOD , Ratones SCID , Fenotipo , Polímeros/química , ARN Mensajero/metabolismo , Taxoides/administración & dosificación
13.
J Control Release ; 366: 864-878, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38272399

RESUMEN

Enabling non-invasive delivery of proteins across the mucosal barriers promises improved patient compliance and therapeutic efficacies. Cell-penetrating peptides (CPPs) are emerging as a promising and versatile tool to enhance protein and peptide permeation across various mucosal barriers. This review examines the structural and physicochemical attributes of the nasal, buccal, sublingual, and oral mucosa that hamper macromolecular delivery. Recent development of CPPs for overcoming those mucosal barriers for protein delivery is summarized and analyzed. Perspectives regarding current challenges and future research directions towards improving non-invasive transmucosal delivery of macromolecules for ultimate clinical translation are discussed.


Asunto(s)
Péptidos de Penetración Celular , Humanos , Péptidos de Penetración Celular/química , Sistemas de Liberación de Medicamentos , Proteínas/metabolismo , Administración a través de la Mucosa , Mucosa Bucal/metabolismo
14.
J Control Release ; 372: 362-371, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38909698

RESUMEN

Peritoneal carcinomatosis (PC) is characterized by a high recurrence rate and mortality following cytoreductive surgery and hyperthermic intraperitoneal chemotherapy (HIPEC), primarily due to incomplete cancer elimination. To enhance the standard of care for PC, we developed two cationic liposomal formulations aimed at localizing a toll-like receptor agonist, resiquimod (R848), in the peritoneal cavity to activate the immune system locally to specifically eradicate residual tumor cells. These formulations effectively extended R848 retention in the peritoneum by >10-fold, resulting in up to a 2-fold increase in interferon α (IFN-α) induction in the peritoneal fluid, without increasing the plasma levels. In a CT26 colon cancer model with peritoneal metastases, these liposomal R848 formulations, when combined with oxaliplatin (OXA)-an agent used in HIPEC that induces immunogenic cell death-increased tumor infiltration of effector immune cells, including DCs, CD4, and CD8 T cells. This led to the complete elimination of PC in 60-70% of the mice, while the control mice reached humane endpoints by 30 days. The cured mice developed specific antitumor immunity, as re-challenging them with the same tumor cells did not result in tumor establishment. However, inoculation with a different tumor line led to tumor development. Additionally, exposing CT26 tumor antigens to the splenocytes isolated from the cured mice induced the expansion of CD4 and CD8 T cells and the release of IFN-γ, demonstrating long-term immune memory to the specific tumor. The anti-tumor efficacy of these liposomal R848 formulations was mediated via CD8 T cells with different levels of involvement of CD4 and B cells, and the combination with an anti-PD-1 antibody achieved a cure rate of 90%.


Asunto(s)
Imidazoles , Liposomas , Ratones Endogámicos BALB C , Oxaliplatino , Neoplasias Peritoneales , Animales , Neoplasias Peritoneales/secundario , Neoplasias Peritoneales/tratamiento farmacológico , Neoplasias Peritoneales/inmunología , Imidazoles/administración & dosificación , Línea Celular Tumoral , Femenino , Oxaliplatino/administración & dosificación , Antineoplásicos/administración & dosificación , Antineoplásicos/uso terapéutico , Cationes , Ratones , Neoplasias del Colon/inmunología , Neoplasias del Colon/patología , Neoplasias del Colon/tratamiento farmacológico
15.
J Control Release ; 368: 290-302, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38423473

RESUMEN

Therapeutic proteins often require needle-based injections, which compromise medication adherence especially for those with chronic diseases. Sublingual administration provides a simple and non-invasive alternative. Herein, two novel peptides (lipid-conjugated protamine and a protamine dimer) were synthesized to enable sublingual delivery of proteins through simple physical mixing with the payloads. It was found that the novel peptides promoted intracellular delivery of proteins via increased pore formation on the cell surface. Results from in vitro models of cell spheroids and human sublingual tissue substitute indicated that the novel peptides enhanced protein penetration through multiple cell layers compared to protamine. The novel peptides were mixed with insulin or semaglutide and sublingually delivered to mice for blood glucose (BG) control. The effects of these sublingual formulations were comparable to the subcutaneous preparations and superior to protamine. In addition to peptide drugs, the novel peptides were shown to enable sublingual absorption of larger proteins with molecular weights from 22 to 150 kDa in mice, including human recombinant growth hormone (rhGH), bovine serum albumin (BSA) and Immunoglobulin G (IgG). The novel peptides given sublingually did not induce any measurable toxicities in mice.


Asunto(s)
Inmunoglobulina G , Péptidos , Animales , Ratones , Humanos , Administración Sublingual , Protaminas
16.
Biomaterials ; 308: 122567, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38603825

RESUMEN

Frequent injections of anti-CD124 monoclonal antibody (αCD124) over long periods of time are used to treat chronic rhinosinusitis with nasal polyps (CRSwNP). Needle-free, intranasal administration (i.n.) of αCD124 is expected to provide advantages of localized delivery, improved efficacy, and enhanced medication adherence. However, delivery barriers such as the mucus and epithelium in the nasal tissue impede penetration of αCD124. Herein, two novel protamine nanoconstructs: allyl glycidyl ether conjugated protamine (Nano-P) and polyamidoamine-linked protamine (Dendri-P) were synthesized and showed enhanced αCD124 penetration through multiple epithelial layers compared to protamine in mice. αCD124 was mixed with Nano-P or Dendri-P and then intranasally delivered for the treatment of severe CRSwNP in mice. Micro-CT and pathological changes in nasal turbinates showed that these two nano-formulations achieved ∼50 % and ∼40 % reductions in nasal polypoid lesions and eosinophil count, respectively. Both nano-formulations provided enhanced efficacy in suppressing nasal and systemic Immunoglobulin E (IgE) and nasal type 2 inflammatory biomarkers, such as interleukin 13 (IL-13) and IL-25. These effects were superior to those in the protamine formulation group and subcutaneous (s.c.) αCD124 given at a 12.5-fold higher dose. Intranasal delivery of protamine, Nano-P, or Dendri-P did not induce any measurable toxicities in mice.


Asunto(s)
Anticuerpos Monoclonales , Pólipos Nasales , Protaminas , Rinosinusitis , Animales , Femenino , Ratones , Administración Intranasal , Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Monoclonales/farmacología , Enfermedad Crónica , Ratones Endogámicos BALB C , Pólipos Nasales/tratamiento farmacológico , Pólipos Nasales/patología , Protaminas/química , Rinosinusitis/tratamiento farmacológico
17.
Mol Pharm ; 10(12): 4499-508, 2013 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-24152292

RESUMEN

The majority of ultrafast temperature sensitive liposome (uTSL) formulations reported in the literature deliver the highly membrane permeable drug, doxorubicin (DOX). Here we report on the study of the uTSL formulation, HaT (Heat activated cytoToxic, composed of the phospholipid DPPC and the surfactant Brij78) loaded with the water-soluble, but poorly membrane permeable anticancer drugs, gemcitabine (GEM) and oxaliplatin (OXA). The HaT formulation displayed ultrafast release of these drugs in response to temperature, whereas attempts with LTSL (Lyso-lipid Temperature Sensitive Liposome, composed of DPPC, MSPC, and DSPE-PEG) were unsuccessful. HaT-GEM and HaT-OXA both released >80% of the encapsulated drug within 2 min at 40-42 °C, with <5% drug leakage at 37 °C after 30 min in serum. The pharmacokinetic profile of both drugs was improved by formulating with HaT relative to the free drug, with clearance reduced by 50-fold for GEM and 3-fold for OXA. HaT-GEM and HaT-OXA both displayed improved drug uptake in the heated tumor relative to the unheated tumor (by 9-fold and 3-fold, respectively). In particular, HaT-GEM showed 25-fold improved delivery to the heated tumor relative to free GEM and significantly enhanced antitumor efficacy with complete tumor regression after a single dose of HaT-GEM. These data suggest that uTSL technology can also be used to deliver nonmembrane permeable drugs via an intravascular ultrafast release mechanism to great effect.


Asunto(s)
Antineoplásicos/farmacología , Desoxicitidina/análogos & derivados , Liposomas/farmacología , Compuestos Organoplatinos/farmacología , Animales , Antineoplásicos/química , Antineoplásicos/farmacocinética , Línea Celular Tumoral , Química Farmacéutica/métodos , Desoxicitidina/química , Desoxicitidina/farmacocinética , Desoxicitidina/farmacología , Femenino , Liposomas/química , Liposomas/farmacocinética , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Compuestos Organoplatinos/química , Compuestos Organoplatinos/farmacocinética , Oxaliplatino , Fosfolípidos/química , Polietilenglicoles/química , Tensoactivos/química , Temperatura , Distribución Tisular , Gemcitabina
18.
Int J Pharm ; 646: 123425, 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37739096

RESUMEN

Chronic pain negatively affects patient's quality of life and poses a significant economic burden. First line pharmaceutical treatment of chronic pain, including NSAIDs or antidepressants, is often inefficient to reduce pain, or produces intolerable adverse effects. In such cases, opioids are frequently prescribed for their potent analgesia, but chronic opioid use is also frequently associated with debilitating side effects that may offset analgesic benefits. Nonetheless, opioids continue to be widely utilized due to the lack of effective alternative analgesics. Since their discovery in 1975, a class of endogenous opioids called enkephalins (ENKs) have been investigated for their ability to relieve pain with significantly reduced adverse effects compared to conventional opioids. Their low metabolic stability and inability to cross biological membranes, however, make ENKs ineffective analgesics. Over past decades, much effort has been invested to overcome these limitations and develop ENK-based pain therapies. This review summarizes and describes chemical modifications and ENK delivery technologies utilizing ENK conjugates, nanoparticles and ENK gene delivery approaches and discusses valid lessons, challenges, and future directions of this evolving field.

19.
Drug Deliv Transl Res ; 13(1): 105-134, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35697894

RESUMEN

Most of the current antitumor therapeutics were developed targeting the cancer cells only. Unfortunately, in the majority of tumors, this single-dimensional therapy is found to be ineffective. Advanced research has shown that cancer is a multicellular disorder. The tumor microenvironment (TME), which is made by a complex network of the bulk tumor cells and other supporting cells, plays a crucial role in tumor progression. Understanding the importance of the TME in tumor growth, different treatment modalities have been developed targeting these supporting cells. Recent clinical results suggest that simultaneously targeting multiple components of the tumor ecosystem with drug combinations can be highly effective. This type of "multidimensional" therapy has a high potential for cancer treatment. However, tumor-specific delivery of such multi-drug combinations remains a challenge. Nanomedicine could be utilized for the tumor-targeted delivery of such multidimensional therapeutics. In this review, we first give a brief overview of the major components of TME. We then highlight the latest developments in nanoparticle-based combination therapies, where one drug targets cancer cells and other drug targets tumor-supporting components in the TME for a synergistic effect. We include the latest preclinical and clinical studies and discuss innovative nanoparticle-mediated targeting strategies.


Asunto(s)
Ecosistema , Microambiente Tumoral , Nanomedicina , Combinación de Medicamentos
20.
Adv Healthc Mater ; 12(11): e2202368, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36631971

RESUMEN

The favorable properties of antimicrobial peptides (AMPs) to rapidly kill pathogens are often limited by unfavorable pharmacokinetics due to fast degradation and renal clearance rates. Here, a prodrug strategy linking proline-rich AMP Onc72 to polyethylene glycol (PEGs) with average molecular weights of 5 and 20 kDa via a peptide linker containing a protease cleavage site is tested for the first time in vivo. Onc72 is released from these 5k- and 20k-prodrugs in mouse serum with half-life times (t1/2 ) of 8 and 14 h, respectively. Importantly, PEGylation protects Onc72 from proteolytic degradation providing a prolonged release of Onc72, balancing the degradation of free Onc72, and leading to relatively stable Onc72 concentrations and high antibacterial activities. The prodrugs are not hemolytic on human erythrocytes and show only slight cytotoxic effects on human cell lines indicating promising safety margins. When administered subcutaneously to female CD-1 mice, the prodrugs elimination t1/2 are 66 min and ≈5.5 h, respectively, compared to 43 min of free Onc72. The maximal Onc72 plasma levels are obtained ≈1 and ≈8 h postadministration, respectively. In conclusion, the prodrugs provide extended elimination t1/2 and a constant release of Onc72 in mice, potentially limiting adverse effects and increasing efficacy.


Asunto(s)
Antineoplásicos , Profármacos , Ratones , Femenino , Humanos , Animales , Profármacos/química , Péptidos , Polietilenglicoles/química , Antibacterianos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA