Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cancer Control ; 31: 10732748241270583, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39152700

RESUMEN

OBJECTIVE: The aim of this study was to analyze the clinical significance and prognostic value of CD8+ T cell-related regulatory genes in hepatocellular carcinoma (HCC). METHODS: This was a retrospective study. We combined TCGA-LIHC and single-cell RNA sequencing data for Lasso-Cox regression analysis to screen for CD8+ T cell-associated genes to construct a novel signature. The expression of the signature genes was detected at cellular and tissue levels using qRT-PCR, immunohistochemistry, and tissue microarrays. The CIBERSORT algorithm was then used to assess the immune microenvironmental differences between the different risk groups and a drug sensitivity analysis was performed to screen for potential HCC therapeutic agents. RESULTS: An 8-gene CD8 + T cell-associated signature (FABP5, GZMH, ANXA2, KLRB1, CD7, IL7R, BATF, and RGS2) was constructed. Survival analysis showed that high-risk patients had a poorer prognosis in all cohorts. Tumor immune microenvironment analysis revealed 22 immune cell types that differed significantly between patients in different risk groups, with patients in the low-risk group having an immune system that was more active in terms of immune function. Patients in the high-risk group were more prone to immune escape and had a poorer response to immunotherapy, and AZD7762 was screened as the most sensitive drug in the high-risk group. Finally, preliminary experiments have shown that BATF has a promoting effect on the proliferation, migration and invasion of HuH-7 cells. CONCLUSIONS: The CD8+ T-cell-associated signature is expected to be a tool for optimizing individual patient decision-making and monitoring protocols, and to provide new ideas for treatment and prognostic assessment of HCC.


Asunto(s)
Linfocitos T CD8-positivos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Microambiente Tumoral , Humanos , Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/mortalidad , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/mortalidad , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Pronóstico , Microambiente Tumoral/inmunología , Estudios Retrospectivos , Masculino , Femenino , Persona de Mediana Edad , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Regulación Neoplásica de la Expresión Génica
2.
Molecules ; 29(13)2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38998942

RESUMEN

Mixed oxygen ion and electron-conducting materials are viable cathodes for solid oxide fuel cells due to their excellent oxygen transport kinetics and mixed electrical conductivity, which ensure highly efficient operation at low and medium temperatures. However, iron-based double perovskite oxides usually exhibit poor electrocatalytic activity due to low electron and oxygen ion conductivity. In this paper, Ca is doped in PrBaFe2O5+δ A-site to improve the electrochemical performance of PrBaFe2O5+δ. Results show that replacing Pr with Ca does not change the crystal structure, and the Ca doping effectively increases the adsorbed oxygen content and accelerates the migration and diffusion rate of O2- to the electrolyte|cathode interface. The polarization resistance of the symmetric cell PC0.15BF|CGO|PC0.15BF is 0.033 Ω·cm2 at 800 °C, which is about 56% lower than that of PBF, confirming the enhancement of the mixed conduction of oxygen ions and electrons. In addition, the anode-supported single cell has a peak power density of 512 mW·cm-2 at 800 °C.

3.
Small ; 19(20): e2207445, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36840662

RESUMEN

Poor carrier transport capacity and numerous surface defects of charge transporting layers (CTLs), coupled with misalignment of energy levels between perovskites and CTLs, impact photoelectric conversion efficiency (PCE) of inverted perovskite solar cells (PSCs) profoundly. Herein, a collaborative passivation strategy is proposed based on 4-(chloromethyl) benzonitrile (CBN) as a solution additive for fabrication of both [6,6]-phenyl-C61-butyric acid methylester (PCBM) and poly(triarylamine) (PTAA) CTLs. This additive can improve wettability of PTAA and reduce the agglomeration of PCBM particles, which enhance the PCE and device stability of the PSCs. As a result, a PCE exceeding 20% with a remarkable short circuit current of 23.9 mA cm-2 , and an improved fill factor of 81% is obtained for the CBN- modified inverted PSCs. Devices maintain 80% and 70% of the initial PCE after storage under 30% and 85% humidity ambient conditions for 1000 h without encapsulation, as well as negligible light state PCE loss. This strategy demonstrates feasibility of the additive engineering to improve interfacial contact between the CTLs and perovskites for fabrication of efficient and stable inverted PSCs.

4.
Cell Mol Biol (Noisy-le-grand) ; 69(9): 43-51, 2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37807335

RESUMEN

Lactobacillus acidophilus is widely used as a food additive or medication in our daily lives. The objective of this study was to investigate the effects of L. acidophilus and L. reuteri on bone mass in OVX mice and their associated mechanisms. Fifty 6-week-old female C57BL/6J mice were subjected to five different treatments: sham surgery, OVX surgery, OVXandL. reuteri fed, OVXandL. acidophilus fed, OVXandboth L. reuteri and L. acidophilus co-fed, respectively. Serum samples were collected, and IL-1ß,IL-6,TNF-α, and OCN levels were determined. The bone volume fraction and trabecular number, trabecular thickness, trabecular separation, and cortical thickness of the mice were analyzed by micro-CT in both femurs. Mice feces were taken for Illumina high-throughput sequencing to analyze the microbial composition and characteristics. After probiotic feeding, the bone volume fraction, the trabecular number, and the trabecular thickness increased, and the trabecular separation decreased in OVX mice. IL-1ß, IL-6, and TNF-α in the blood significantly decreased. The observed Chao1 and ACE indexes increased significantly. Changes in intestinal microorganisms occurred in all groups of mice. The change of index in the gut microbes, may indicate that the bone mass of OVX mice is changing. L. acidophilus shares the same role as L. reuteri in preventing bone loss in OVX mice. The mechanism of action may be through inhibition of the activation of inflammatory factors in the osteoclast activation pathway in bone metabolism, modulation of gut microbial diversity, and alteration of the richness of specific microorganisms that lead to attenuation of bone loss.


Asunto(s)
Microbioma Gastrointestinal , Limosilactobacillus reuteri , Probióticos , Ratones , Femenino , Animales , Humanos , Lactobacillus acidophilus , Factor de Necrosis Tumoral alfa , Interleucina-6 , Ratones Endogámicos C57BL , Probióticos/farmacología , Probióticos/uso terapéutico , Ovariectomía
5.
Growth Factors ; 37(1-2): 76-84, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-31215273

RESUMEN

To investigate (1) the effect of vascular endothelial growth factor B (VEGFB) on lipid accumulation and the alteration of fatty acids and fatty acid-related enzymes in C2C12 myotubes incubated with fatty acids and (2) the regulatory effect of VEGFB on skeletal muscle lipid metabolism. Mouse C2C12 myotubes were incubated with oleic acid (OA) and palmitic acid (PA), and differentiated mature C2C12 myotubes were treated with VEGFB. Oil-red O staining, BODIPY staining and cell triglycerides (TG) content were examined. Total RNA was isolated, and real-time PCR analysis was performed. Treatment with 100 µM OA and 50 µM PA induced lipid droplet accumulation and increased TG content (p < .01), and 100 ng/mL VEGFB reduced lipid droplet accumulation and decreased TG content (p < .01). Treatment with 100 ng/mL VEGFB significantly induced the mRNA expression of fatty acid transport protein 1 (FATP1) (p < .01) and FATP4 (p < .01). Treatment with 100 ng/mL VEGFB significantly induced the mRNA expression of adipose TG lipase and hormone-sensitive lipase (p < .01) as well as carnitine palmitoyltransferase I (p < .01), peroxisome proliferator-activated receptor-γ coactivator-1α (p < .01), acyl-coa dehydrogenase very long chain (p < .05), acyl-coa synthetase long-chain family member 1 (p < .01), peroxisomal acyl-coenzyme A oxidase 1 (p < .05), and mitochondrial uncoupling protein 3 (p < .01). VEGFB enhanced FATP1and FATP4 expression, promoted C2C12 myotube fatty acid oxidation and TG decomposition, and inhibited C2C12 myotube fatty acid re-esterification, thus inhibiting lipid accumulation in C2C12 myotubes incubated with fatty acids.


Asunto(s)
Metabolismo de los Lípidos , Fibras Musculares Esqueléticas/metabolismo , Ácido Oléico/farmacología , Ácido Palmítico/farmacología , Factor B de Crecimiento Endotelial Vascular/farmacología , Animales , Línea Celular , Proteínas de Transporte de Ácidos Grasos/genética , Proteínas de Transporte de Ácidos Grasos/metabolismo , Gotas Lipídicas/metabolismo , Ratones , Fibras Musculares Esqueléticas/efectos de los fármacos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo
6.
J Org Chem ; 81(13): 5330-6, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27266916

RESUMEN

The excited nπ* and ππ* triplets of two benzophenone (BP) and two anthraquinone (AQ) derivatives have been observed in acetonitrile, isopropanol, and mixed aqueous solutions using time-resolved resonance Raman spectroscopic and nanosecond transient absorption experiments. These experimental results, combined with results from density functional theory calculations, reveal the effects of solvent and substituents on the properties, relative energies, and chemical reactivities of the nπ* and ππ* triplets. The triplet nπ* configuration was found to act as the reactive species for a subsequent hydrogen atom transfer reaction to produce a ketyl radical intermediate in the isopropanol solvent, while the triplet ππ* undergoes a proton-coupled electron transfer (PCET) in aqueous solutions to produce a ketyl radical intermediate. This PCET reaction, which occurs via a concerted proton transfer (to the excited carbonyl group) and electron transfer (to the excited phenyl ring), can account for the experimental observation by several different research groups over the past 40 years of the formation of ketyl radicals after photolysis of a number of BP and AQ derivatives in aqueous solutions, although water is considered to be a relatively "inert" hydrogen-donor solvent.

7.
J Am Chem Soc ; 137(32): 10391-8, 2015 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-26198984

RESUMEN

Oxenium ions are important reactive intermediates in synthetic chemistry and enzymology, but little is known of the reactivity, lifetimes, spectroscopic signatures, and electronic configurations of these unstable species. Recent advances have allowed these short-lived ions to be directly detected in solution from laser flash photolysis of suitable photochemical precursors, but all of the studies to date have focused on aryloxenium ions having closed-shell singlet ground state configurations. To study alternative spin configurations, we synthesized a photoprecursor to the m-dimethylamino phenyloxenium ion, which is predicted by both density functional theory and MRMP2 computations to have a triplet ground state electronic configuration. A combination of femtosecond and nanosecond transient absorption spectroscopy, nanosecond time-resolved Resonance Raman spectroscopy (ns-TR(3)), cryogenic matrix EPR spectroscopy, computational analysis, and photoproduct studies allowed us to trace essentially the complete arc of the photophysics and photochemistry of this photoprecursor and permitted a first look at a triplet oxenium ion. Ultraviolet photoexcitation of this precursor populates higher singlet excited states, which after internal conversion to S1 over 800 fs are followed by bond heterolysis in ∼1 ps, generating a hot closed-shell singlet oxenium ion that undergoes vibrational cooling in ∼50 ps followed by intersystem crossing in ∼300 ps to generate the triplet ground state oxenium ion. In contrast to the rapid trapping of singlet phenyloxenium ions by nucleophiles seen in prior studies, the triplet oxenium ion reacts via sequential H atom abstractions on the microsecond time domain to ultimately yield the reduced m-dimethylaminophenol as the only detectable stable photoproduct. Band assignments were made by comparisons to computed spectra of candidate intermediates and comparisons to related known species. The triplet oxenium ion was also detected in the ns-TR(3) experiments, permitting a more clear assignment and identifying the triplet state as the π,π* triplet configuration. The triplet ground state of this ion was further supported by photolysis of the photoprecursor in an ethanol glass at ∼4 K and observing a triplet species by cryogenic EPR spectroscopy.

8.
J Am Chem Soc ; 137(6): 2400-8, 2015 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-25625429

RESUMEN

Electrochemical methods are combined with shell-isolated nanoparticle-enhanced Raman spectroscopy (EC-SHINERS) for a comprehensive study of pyridine adsorption on Au(111), Au(100) and Au(110) single crystal electrode surfaces. The effects of crystallographic orientation, pyridine concentration, and applied potential are elucidated, and the formation of a second pyridine adlayer on Au(111) is observed spectroscopically for the first time. Electrochemical and SHINERS results correlate extremely well throughout this study, and we demonstrate the potential of EC-SHINERS for thorough characterization of processes occurring on single crystal surfaces. Our method is expected to open up many new possibilities in surface science, electrochemistry and catalysis. Analytical figures of merit are discussed.

9.
Anal Chem ; 87(7): 3791-9, 2015 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-25751526

RESUMEN

Shell-isolated gold nanoparticles (SHINs) were employed to record shell-isolated nanoparticle-enhanced Raman spectra (SHINERS) of a passive layer formed at a gold surface during gold leaching from thiosulfate solutions. The (3-aminopropyl)triethoxysilane (APTES) and a sodium silicate solution were used to coat gold nanoparticles with a protective silica layer. This protective silica layer prevented interactions between the thiosulfate electrolyte and the gold core of the SHINs when the SHINs-modified gold electrode was immersed into the thiosulfate lixiviant. The SHINERS spectra of the passive layer, formed from thiosulfate decomposition, contained bands indicative of hydrolyzed APTES. We have demonstrated how to exploit the presence of these APTES bands as an internal standard to compensate for fluctuations of the surface enhancement of the electric field of the photon. We have also developed a procedure that allows for removal of the interfering APTES bands from the SHINERS spectra. These methodological advancements have enabled us to identify the species forming the passive layer and to determine that the formation of elemental sulfur, cyclo-S8, and polymeric sulfur chains is responsible for inhibition of gold dissolution in oxygen rich thiosulfate solutions.

10.
ACS Omega ; 9(23): 24633-24642, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38882097

RESUMEN

SrFe1-x Si x O3-δF y cathode materials (x = 0.05, 0.1, 0.15; y = 0, 0.1, 0.5) were prepared via a solid-state method. X-ray diffraction results show that the synthesized F doping samples were perovskite structure. X-ray photoelectron spectroscopy findings show that F- anions were doped into SrFe1-x Si x O3-δ. Transmission electron microscopy and energy-dispersive spectroscopy were performed to analyze the microstructure and element distribution in the materials, respectively. Double-layer composite cathode symmetric cells were prepared through a screen printing method. Scanning electron microscopy images revealed that the double-layer composite cathode adhered well to the electrolyte. The doping with F- can increase the coefficient of thermal expansion of SrFe1-x Si x O3-δ. The electrochemical impedance spectroscopy results indicate that the oxygen transport capacity of the SrFe0.95Si0.05O3-δ material can be improved by doping with F-, but such a method can decrease the oxygen transport capacity of SrFe0.9Si0.1O3-δ. At 800 °C, the peak power density of the single cell supported by an anode and SrFe0.9Si0.1O3-δF0.1 as the cathode reached 388.91 mW/cm2. Thus, the incorporation of F- into SrFe1-x Si x O3-δ cathode materials can improve their electrochemical performance and enable their application as cathode materials for solid-oxide fuel cells.

11.
J Cancer ; 15(3): 729-736, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38213731

RESUMEN

Objective: The aim of this study is to explore the value of combined detection of ABO blood group and tumor markers in the diagnosis of gastric cancer. Methods: A total of 3650 gastric cancer patients treated in our center from January 2015 to December 2019, and 5822 controls were recruited, and divided into training set and validation set according to 7:3. The diagnostic and predictive model of gastric cancer was constructed by binary logistic regression method in the training set. The diagnostic value of the prediction model for gastric cancer was evaluated by calculating the prediction probability P value and drawing the Receiver operating characteristic (ROC) curve, and was verified in the validation set. Results: The Area under the curve (AUC) of the diagnosis and prediction model in the training set was 0.936 (95%CI: 0.926-0.941), the sensitivity was 81.66%, and the specificity was 98.61%. In the validation set, the AUC was 0.941 (95%CI: 0.932-0.950), the sensitivity was 82.33%, and the specificity was 99.02%. Furthermore, the diagnostic model obtained in this study had a high diagnostic value for early gastric cancer patients in the healthy population (AUC of training set, validation set and total population were 0.906, 0.920 and 0.908, respectively). Conclusions: We constructed a diagnostic model for gastric cancer including blood group and tumor markers, which has high reference value for the diagnosis of gastric cancer patients, and the model can better distinguish early gastric cancer from healthy people.

12.
Discov Oncol ; 15(1): 353, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39150637

RESUMEN

BACKGROUND: M2-like tumor-associated macrophages (M2-like TAMs) play key roles in tumor progression and the immune response. However, the clinical significance and prognostic value of M2-like TAMs-associated regulatory genes in gastric cancer (GC) have not been clarified. METHODS: Herein, we identified M2-like TAM-related genes by weighted gene coexpression network analysis of TCGA-STAD and GSE84437 cohort. Lasso-Cox regression analyses were then performed to screen for signature genes, and a novel signature was constructed to quantify the risk score for each patient. Tumor mutation burden (TMB), survival outcomes, immune cells, and immune function were analyzed in the risk groups to further reveal the immune status of GC patients. A gene-drug correlation analysis and sensitivity analysis of anticancer drugs were used to identify potential therapeutic agents. Finally, we verified the mRNA expression of signature genes in patient tissues by qRT-PCR, and analyzed the expression distribution of these genes by IHC. RESULTS: A 4-gene (SERPINE1, MATN3, CD36, and CNTN1) signature was developed and validated, and the risk score was shown to be an independent prognostic factor for GC patients. Further analyses revealed that GC patients in the high-risk group had a worse prognosis than those in the low-risk group, with significant differences in TMB, clinical features, enriched pathways, TIDE score, and tumor microenvironment features. Finally, we used qRT-PCR and IHC analysis to verify mRNA and protein level expression of signature genes. CONCLUSION: These findings highlight the importance of M2-like TAMs, provide a new perspective on individualized immunotherapy for GC patients.

13.
Transl Androl Urol ; 13(7): 1188-1205, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39100837

RESUMEN

Background: Adrenocortical carcinoma (ACC) is a rare and highly aggressive malignant tumor. Currently, there is a lack of reliable prognostic markers in clinical practice. Extensive research has shown that long non-coding RNA (lncRNA) are critical factors in the initiation and progression of cancer, closely associated with early diagnosis and prognosis. Previous studies have identified that ZFHX4 antisense RNA 1 (ZFHX4-AS1) is aberrantly expressed in various cancers and is associated with poor outcomes. This study investigates whether ZFHX4-AS1 affects the prognosis of ACC patients and, if so, the potential mechanisms involved. Methods: In this study, utilizing four multi-center cohorts from The Cancer Genome Atlas (TCGA) program and Gene Expression Omnibus (GEO), we validated the prognostic capability of ZFHX4-AS1 in ACC patients through Kaplan-Meier survival analysis, cox regression models, and nomograms. Then, we explored the biological functions of ZFHX4-AS1 using gene set enrichment analysis (GSEA), competing endogenous RNA (ceRNA) networks, and analyses of somatic mutations and copy number variation (CNV). Finally, in vitro experiments were conducted to further validate the impact of ZFHX4-AS1 on proliferation and migration capabilities of ACC cell lines. Results: Survival analysis indicated that patients in the high ZFHX4-AS1 expression group of ACC had worse prognosis. Cox regression analyses suggested that ZFHX4-AS1 levels were independent risk factors for prognosis. Subsequently, we constructed nomograms based on clinical features and ZFHX4-AS1 levels, demonstrating good predictive performance under the time-dependent receiver operating characteristic (ROC) curve. Analysis based on somatic mutations and CNV revealed that CTNNB1 and 9p21.3-Del drove the expression of ZFHX4-AS1. Cell Counting Kit-8 (CCK-8), colony formation, and Transwell assays confirmed that knockdown of ZFHX4-AS1 inhibited proliferation and migration of ACC cells. Conclusions: This study demonstrates that ZFHX4-AS1 has a reliable predictive value for the prognosis of ACC patients and is a promising biomarker.

14.
Int Immunopharmacol ; 139: 112723, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39053228

RESUMEN

BACKGROUND: Owing to the heterogeneity of prostate cancer (PCa), the clinical indicators traditionally fall short of meeting the requirements for personalized medicine. The realm of RNA modification has emerged as an increasingly relevant domain, shedding light on its pivotal role in tumor heterogeneity. However, the specific contributions of RNA modification regulators within the context of PCa remain largely unexplored. METHODS: In this study, we undertook a literature review to summarize the common 8 types of RNA modifications (ac4c, AI, APA, m1A, m5c, m6A, m7G, Ψ) encompassing a total of 84 regulators. Moreover, we integrated multi-center cohorts with Ridge regression to develop the Regulators' Co-Expression Score (RMRCoeS). Then we assessed the role of RMRCoeS in several clinical aspects such as biochemical recurrence (BCR), responses to chemotherapy, androgen receptor signaling inhibitor (ARSI) therapy and immunotherapy in PCa. Finally, we validated the cancer-promoting performance of five hub genes through immunohistochemistry and in vitro assays. RESULTS: Within the mutation landscape of RNA modification regulators, we observed a relatively low overall mutation rate. Remarkably, RMRCoeS, comprising 81 RNA modification regulators, exhibited a notable capability for accurately predicting the prognosis and therapeutic responses in PCa patients subjected to BCR, chemotherapy, ARSI therapy, and immunotherapy. A high RMRCoeS was indicative of a poor prognosis and unfavorable therapy responses. Functional enrichment analysis unveiled that RMRCoeS may exert its influence on PCa progression through various metabolic pathways. Furthermore, a higher RMRCoeS showed a positive correlation with elevated CNV mutations. Lastly, we validated the oncogene effects of CPSF4, WBSCR22, RPUSD3, TRMT61A, and NSUN5-five hub regulators-within the context of PCa. CONCLUSION: The function of different RNA modifications is interconnected. Comprising eight distinct RNA modifications' regulators, RMRCoeS exhibits multifaceted roles in various aspects of PCa, including disease progression, prognosis, and responses to multiple therapies. Furthermore, we provide the initial validation of the oncogene effect associated with WBSCR22, RPUSD3, TRMT61A and NSUN5 in PCa. Our findings offer novel insights into the significance of RNA modifications in PCa personalized medicine.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Recurrencia Local de Neoplasia , Neoplasias de la Próstata , Humanos , Masculino , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/terapia , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Recurrencia Local de Neoplasia/genética , Pronóstico , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , ARN/genética , ARN/metabolismo , Línea Celular Tumoral , Mutación , Inmunoterapia/métodos , Medicina de Precisión , Multiómica
15.
Front Cell Infect Microbiol ; 14: 1401462, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39091675

RESUMEN

Introduction: Bacterial urinary tract infections (UTI) are among the most common infectious diseases worldwide. The rise of multidrug-resistant (MDR) uropathogenic Escherichia coli (UPEC) UTI cases is a significant threat to healthcare systems. Several probiotic bacteria have been proposed as an alternative to combat MDR UTI. Lactic acid bacteria in the genus Limosilactobacillus are some of the most studied and used probiotics. However, strain-specific effects play a critical role in probiotic properties. L. reuteri KUB-AC5 (AC5), isolated from the chicken gut, confers antimicrobial and immunobiotic effects against some human pathogens. However, the antibacterial and immune modulatory effects of AC5 on UPEC have never been explored. Methods: Here, we investigated both the direct and indirect effects of AC5 against UPEC isolates (UTI89, CFT073, and clinical MDR UPEC AT31) in vitro. Using a spot-on lawn, agar-well diffusion, and competitive growth assays, we found that viable AC5 cells and cell-free components of this probiotic significantly reduced the UPEC growth of all strains tested. The human bladder epithelial cell line UM-UC-3 was used to assess the adhesion and pathogen-attachment inhibition properties of AC5 on UPEC. Results and discussion: Our data showed that AC5 can attach to UM-UC-3 and decrease UPEC attachment in a dose-dependent manner. Pretreatment of UPEC-infected murine macrophage RAW264.7 cells with viable AC5 (multiplicity of infection, MOI = 1) for 24 hours enhanced macrophage-killing activity and increased proinflammatory (Nos2, Il6, and Tnfa) and anti-inflammatory (Il10) gene expression. These findings indicate the gut-derived AC5 probiotic could be a potential urogenital probiotic against MDR UTI.


Asunto(s)
Limosilactobacillus reuteri , Macrófagos , Probióticos , Escherichia coli Uropatógena , Probióticos/farmacología , Escherichia coli Uropatógena/efectos de los fármacos , Escherichia coli Uropatógena/inmunología , Limosilactobacillus reuteri/fisiología , Animales , Ratones , Macrófagos/inmunología , Macrófagos/microbiología , Humanos , Urotelio/microbiología , Infecciones Urinarias/microbiología , Infecciones Urinarias/prevención & control , Línea Celular , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/prevención & control , Células RAW 264.7 , Células Epiteliales/microbiología , Pollos , Adhesión Bacteriana/efectos de los fármacos
16.
Artículo en Inglés | MEDLINE | ID: mdl-36674110

RESUMEN

The suitability of human settlements is critical for quality of life and regional development. As comprehensive evaluations and research on the suitability of human settlements are lacking, a comprehensive evaluation of human settlements in the Yangtze River Delta (YRD) was carried out in 2020 by combining natural and human environmental elements based on multi-source data such as digital elevation models, Landsat remote sensing images, meteorological station data, and points of interest, other multi-source data, and constructions of the human settlements' suitability indexes. The results showed the following: (1) The spatial suitability of the natural environment in the YRD is significantly affected by the topographic conditions and distance from the sea, showing an increasing spatial differentiation from southwest to northeast, with Shanghai and Yancheng having the best natural environment suitability. (2) The suitability of the human environment in urban areas is better than that in non-urban areas and shows a decreasing trend from the south to the north circle. Shanghai, Zhoushan, and Huaibei have the best human environment suitability. (3) The comprehensive suitability of human settlements includes both the spatial differentiation characteristics of the suitability of natural and human environments. Shanghai and Zhoushan have the mosy comprehensive suitability for human settlements, while Huaibei and Xuzhou have the worst. (4) Land with a comprehensive suitability for human settlements of greater than 0.580 accounts for 23.60% of the total and contains 30.08% of the population and 32.31% of the economy, indicating that areas with a high suitability index have been fully utilized, and the populations and economies with human settlements suitability have a high degree of matching.


Asunto(s)
Calidad de Vida , Ríos , Humanos , China/epidemiología , Ciudades
17.
ACS Omega ; 8(6): 5545-5552, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36816642

RESUMEN

Ln2-x Y x CuO4+δ (Ln = Pr, Nd, Sm; x = 0, 0.025, 0.05, 0.1) cathode materials were synthesized using a sol-gel method and calcination at 1000 °C for 24 h. The phase structure, coefficient of thermal expansion (CTE), electrical conductivity, and electrochemical impedance of cathode materials were characterized. X-ray diffraction (XRD) patterns show that the cell volume of each cathode material decreases with the increase in the Y3+ doping amount and has good chemical compatibility with the Sm0.2Ce0.8O1.9 electrolyte. The thermal expansion test shows that the increase in Y3+ doping reduces the average CTE of Ln2CuO4+δ. The conductivity test shows that Y3+ doping increases the conductivity of Ln2CuO4+δ, and Pr1.975Y0.025CuO4+δ has the highest conductivity of 256 S·cm-1 at 800 °C. The AC impedance test shows that Y3+ doping reduces the polarization impedance of Ln2CuO4+δ, and Pr1.9Y0.1CuO4+δ has a minimum area-specific resistance (ASR) of 0.204 Ω·cm2 at 800 °C. In conclusion, Pr1.975Y0.025CuO4+δ has the best performance and is more suitable as a cathode material for a solid oxide fuel cell (SOFC).

18.
RSC Adv ; 13(23): 15624-15633, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37228672

RESUMEN

Nd0.6Sr0.4Co1-xCuxO3-δ (x = 0, 0.05, 0.1, 0.15, 0.2) (NSCCx) was prepared by replacing Co with Cu. Its chemical compatibility, electrical conductivity, and electrochemical properties were studied by X-ray powder diffractometry, scanning electron microscopy, and X-ray photoelectron spectroscopy. The conductivity, AC impedance spectra, and output power of the single cell were tested in an electrochemical workstation. Results showed that the thermal expansion coefficient (TEC) and electrical conductivity of the sample decreased with the increase in Cu content. The TEC of NSCC0.1 decreased by 16.28% in the temperature range of 35 °C-800 °C, and its conductivity was 541 S cm-1 at 800 °C. Furthermore, a single cell was constructed with NSCCx as the cathode, NiO-GDC as the anode, and GDC as the electrolyte. The peak power of the cell at 800 °C was 444.87 mW·cm-2, which was similar to that of the undoped sample. Compared with the undoped NSCC, NSCC0.1 showed lower TEC while maintaining its output power. Therefore, this material can be used as a cathode for solid oxide fuel cells.

19.
RSC Adv ; 13(44): 30606-30614, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37859775

RESUMEN

This study aims to investigate the implications of transition-metal Zn doping at the B-site on the crystal structure, average thermal expansion coefficient (TEC), electrocatalytic activity, and electrochemical performance of LaBaFe2O5+δ by preparing LaBaFe2-xZnxO5+δ (x = 0, 0.05, 0.1, 0.15, 0.2, LBFZx). The X-ray diffraction (XRD) results show that Zn2+ doping does not change the crystal structure, the unit cell volume increases, and the lattice expands. The X-ray photoelectron spectroscopy (XPS) and mineral titration results show that the oxygen vacancy concentration and Fe4+ content gradually increase with the increase in doping amount. TEC decreases with the increase in Zn2+ doping amount, and the TEC of LBFZ0.2 is 11.4 × 10-6 K-1 at 30-750 °C. The conductivity has the best value of 103 S cm-1 at the doping amount of x = 0.1. The scanning electron microscopy (SEM) images demonstrate that the electrolyte CGO(Gd0.1Ce0.9O1.95) becomes denser after high-temperature calcination, and the cathode material is well attached to the electrolyte. The electrochemical impedance analysis shows that Zn2+ doping at the B-site can reduce the (Rp) polarization resistance, and the Rp value of the symmetric cell with LaBaFe1.8Zn0.2O5+δ as cathode at 800 °C is 0.014 Ω cm2. The peak power density (PPD) value of the anode-supported single cell is 453 mW cm-2, which shows excellent electrochemical performance.

20.
Langmuir ; 28(24): 9140-6, 2012 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-22506587

RESUMEN

Au-seed Ag-growth nanoparticles of controllable diameter (50-100 nm), and having an ultrathin SiO(2) shell of controllable thickness (2-3 nm), were prepared for shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). Their morphological, optical, and material properties were characterized; and their potential for use as a versatile Raman signal amplifier was investigated experimentally using pyridine as a probe molecule and theoretically by the three-dimensional finite-difference time-domain (3D-FDTD) method. We show that a SiO(2) shell as thin as 2 nm can be synthesized pinhole-free on the Ag surface of a nanoparticle, which then becomes the core. The dielectric SiO(2) shell serves to isolate the Raman-signal enhancing core and prevent it from interfering with the system under study. The SiO(2) shell also hinders oxidation of the Ag surface and nanoparticle aggregation. It significantly improves the stability and reproducibility of surface-enhanced Raman scattering (SERS) signal intensity, which is essential for SERS applications. Our 3D-FDTD simulations show that Ag-core SHINERS nanoparticles yield at least 2 orders of magnitude greater enhancement than Au-core ones when excited with green light on a smooth Ag surface, and thus add to the versatility of our SHINERS method.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA