RESUMEN
Pyroptosis has been regarded as caspase-1-mediated monocyte death that induces inflammation, showing a critical and detrimental role in the development of cerebral ischemia-reperfusion injury (IRI). MARCH1 is an E3 ubiquitin ligase that exerts potential anti-inflammatory functions. Therefore, the study probed into the significance of MARCH1 in inflammation and pyroptosis elicited by cerebral IRI. Middle cerebral artery occlusion/reperfusion (MCAO/R)-treated mice and oxygen glucose deprivation/reoxygenation (OGD/R)-treated hippocampal neurons were established to simulate cerebral IRI in vivo and in vitro. MARCH1 and PCSK9 expression was tested in MCAO/R-operated mice, and their interaction was identified by means of the cycloheximide assay and co-immunoprecipitation. The functional roles of MARCH1 and PCSK9 in cerebral IRI were subsequently determined by examining the neurological function, brain tissue changes, neuronal viability, inflammation, and pyroptosis through ectopic expression and knockdown experiments. PCSK9 expression was increased in the brain tissues of MCAO/R mice, while PCSK9 knockdown reduced brain damage and neurological deficits. Additionally, inflammation and pyroptosis were inhibited in OGD/R-exposed hippocampal neurons upon PCSK9 knockdown, accompanied by LDLR upregulation and NLRP3 inflammasome inactivation. Mechanistic experiments revealed that MARCH1 mediated ubiquitination and degradation of PCSK9, lowering PCSK9 protein expression. Furthermore, it was demonstrated that MARCH1 suppressed inflammation and pyroptosis after cerebral IRI by downregulating PCSK9 both in vivo and in vitro. Taken together, the present study demonstrate the protective effect of MARCH1 against cerebral IRI through PCSK9 downregulation, which might contribute to the discovery of new therapies for improving cerebral IRI.
Asunto(s)
Inflamación , Proproteína Convertasa 9 , Piroptosis , Daño por Reperfusión , Ubiquitina-Proteína Ligasas , Animales , Daño por Reperfusión/genética , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Piroptosis/genética , Proproteína Convertasa 9/genética , Proproteína Convertasa 9/metabolismo , Ratones , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Neuronas/metabolismo , Neuronas/patología , Masculino , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Regulación hacia Abajo , Infarto de la Arteria Cerebral Media/genética , Infarto de la Arteria Cerebral Media/metabolismo , Infarto de la Arteria Cerebral Media/patología , Hipocampo/metabolismo , Hipocampo/patología , Modelos Animales de Enfermedad , Ratones Endogámicos C57BLRESUMEN
Avian colibacillosis is a bacterial disease caused by avian pathogenic Escherichia coli (APEC) that results in great losses in the poultry industry every year. Individual Silkie chickens of the same breed that are given the same feed in the same feeding conditions have different levels of resistance or susceptibility to APEC. Differences in gut microbes, gut metabolites, and gene expression in the spleen of APEC-resistant and APEC-susceptible chickens were compared, and multiple omics associations were analyzed to explore the mechanism of resistance to APEC in Silkie chickens. Compared with those in the APEC-susceptible group, the APEC-resistant group showed significantly increased abundances of many gut microorganisms, including Bacillus, Thermoactinomyces, Arthrobacter, and Ureibacillus, which were positively correlated with norvaline, l-arginine, and valyl-glycine levels. Intestinal tryptophan, indole, and indole derivative-related differentially abundant metabolites played an active role in combatting APEC infection. In the spleen, "response to stimulus" was the most significantly enriched GO term, and "cytokineâcytokine receptor interaction" was the most significantly enriched KEGG pathway. The arginine biosynthesis and PPAR signaling pathways were the KEGG pathways that were significantly enriched with differentially abundant metabolites and differentially expressed genes. This study provides new insight into the prevention and treatment of APEC infection in Silkie chickens and lays a foundation to study the mechanism of APEC infection in poultry.
Asunto(s)
Infecciones por Escherichia coli , Microbiota , Enfermedades de las Aves de Corral , Animales , Escherichia coli/genética , Pollos/microbiología , Transcriptoma , Infecciones por Escherichia coli/microbiología , Metaboloma , Indoles , Enfermedades de las Aves de Corral/microbiologíaRESUMEN
Given the critical nature of anti-doping efforts, the detection of stimulant substances is shifting from accurate qualitative analysis to precise quantitative analysis. Additionally, the use of liquid chromatography-high-resolution mass spectrometry (LC-HRMS) in detecting stimulants is becoming more widespread. However, the lack of isotope-labeled internal standards is causing increasing issues with quantitative accuracy. Furthermore, challenges such as the mass spectrometric response of small molecules and the separation of isomers present additional difficulties. We have developed a quantitative method for stimulant substances containing amine or phenol hydroxyl groups, using a dual-label derivatization system. This method offers a new perspective for analyzing and detecting low molecular weight substances, isomers, or those with poor LC-MS response, and proposes a solution to the problem of missing isotope-labeled internal standards. Methodological validation has shown that this approach has promising application potential.
RESUMEN
Honeybee (Apis mellifera) ingestion of toxic nectar plants can threaten their health and survival. However, little is known about how to help honeybees mitigate the effects of toxic nectar plant poisoning. We exposed honeybees to different concentrations of Bidens pilosa flower extracts and found that B. pilosa exposure significantly reduced honeybee survival in a dose-dependent manner. By measuring changes in detoxification and antioxidant enzymes and the gut microbiome, we found that superoxide dismutase, glutathione-S-transferase and carboxylesterase activities were significantly activated with increasing concentrations of B. pilosa and that different concentrations of B. pilosa exposure changed the structure of the honeybee gut microbiome, causing a significant reduction in the abundance of Bartonella (p < 0.001) and an increase in Lactobacillus. Importantly, by using Germ-Free bees, we found that colonization by the gut microbes Bartonella apis and Apilactobacillus kunkeei (original classification as Lactobacillus kunkeei) significantly increased the resistance of honeybees to B. pilosa and significantly upregulated bee-associated immune genes. These results suggest that honeybee detoxification systems possess a level of resistance to the toxic nectar plant B. pilosa and that the gut microbes B. apis and A. kunkeei may augment resistance to B. pilosa stress by improving host immunity.
Asunto(s)
Bidens , Microbioma Gastrointestinal , Abejas , Animales , Microbioma Gastrointestinal/genética , Néctar de las Plantas/farmacología , FloresRESUMEN
Estrogens and their metabolites (EMs) are involved in chronic liver disease and gut microbiota regulates estrogen metabolism, whereas the role of enterogenous EMs in liver disease is still elusive. Because of the extremely low level of EMs in portal serum and the EMs contain multiple pairs of isomers, an accurate determination of portal serum EMs is urgently needed. This study established a quantitative detection method for portal serum EMs and applied to non-alcoholic fatty liver disease (NAFLD) related hepatic fibrosis mice model. The serum was derived with a novel derivatization reagent 4-acetyl aminobenzene sulfonyl chloride, and a UPLC-ESI-MS system was used for quantification of 15 EMs in 120 min. Compared with normal group, the concentrations of E1, E2 in model group were significantly decreased by 4-8 times, all the C2 and C4 substitution products (2-OHE1, 2-OHE2, 2-MeOE1, 4-OHE1, 4-MeOE1, 4-OHE2, 4-MeOE2, 2-MeOE2) were significantly decreased by 2-22 times. However, the C16 and C17 substitution products (E3, 16-epiE3, 17-epiE3, 16-ketoE2) levels were increased by 3-5 times (P < 0.01). This study elucidated the changes of enterogenous EMs which entered the liver via portal vein in NAFLD - related hepatic fibrosis and provided methodological platform for other related studies on estrogen metabolism.
Asunto(s)
Estrógenos , Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Cirrosis HepáticaRESUMEN
INTRODUCTION: Sepsis is a life-threatening inflammatory state that can result in septic acute kidney injury (SAKI). Circular RNAs (circRNAs) are implicated in various inflammatory diseases including SAKI. This study investigated the effect of circHIPK3 on inflammatory responses and cell senescence in Candida albicans-induced SAKI. METHODS: circHIPK3 expression and inflammatory factors in the serum of SAKI patients and healthy volunteers were detected. The murine and cell models of SAKI were established by C. albicans and lipopolysaccharide induction, respectively. The effect of circHIPK3 on SAKI inflammatory responses and cell senescence was measured using ELISA, SA-ß-gal staining, CCK-8, RT-qPCR, and Western blot. The binding relationships among circHIPK3, miR-124-3p, or miR-148b-3p and KLF6 or DNMT1/3a were confirmed. The binding of KLF6 and NLRP3 was determined, and the methylation level of the Klotho promoter was detected. Functional rescue experiments were performed to verify the effect of miR-124-3p or miR-148b-3p on SAKI. RESULTS: circHIPK3 was highly expressed in SAKI. circHIPK3 silencing alleviated kidney injury in SAKI mice and enhanced SAKI cell viability by alleviating inflammatory responses and cell senescence. Mechanically, circHIPK3 upregulated KLF6 expression by competitively binding to miR-124-3p, thereby promoting the binding of KLF6 and NLRP3, activating NLRP3/caspase-1-mediated pyroptosis, and eventually aggravating SAKI inflammatory responses. circHIPK3 upregulated DNMT1/3a expression by competitively binding to miR-148b-3p, thus elevating the methylation level of Klotho promoter and accelerating SAKI cell senescence. Downregulation of miR-124-3p or miR-148b-3p attenuated the protective effect of circHIPK3 silencing on SAKI. CONCLUSION: circHIPK3 aggravated SAKI inflammatory responses via miR-124-3p/KLF6 and accelerated SAKI cell senescence via miR-148b-3p/DNMT1/3a.
Asunto(s)
Lesión Renal Aguda , MicroARNs , Lesión Renal Aguda/genética , Animales , Candida albicans/genética , Candida albicans/metabolismo , Caspasas , Senescencia Celular/genética , Lipopolisacáridos , Ratones , MicroARNs/genética , Proteína con Dominio Pirina 3 de la Familia NLR , ARN Circular/genética , SincalidaRESUMEN
The directed self-assembly of electronic circuits using functional metallic inks has attracted intensive attention because of its high compatibility with extensive applications ranging from soft printed circuits to wearable devices. However, the typical resolution of conventional self-assembly technologies is not sufficient for practical applications in the rapidly evolving additively manufactured electronics (AMEs) market. Herein, an ultrahigh-resolution self-assembly strategy is reported based on a dual-surface-architectonics (DSA) process. Inspired by the Tokay gecko, the approach is to endow submicrometer-scale surface regions with strong adhesion force toward metallic inks via a series of photoirradiation and chemical polarization treatments. The prepared DSA surface enables the directed self-assembly of electronic circuits with unprecedented 600 nm resolution, suppresses the coffee-ring effect, and results in a reliable conductivity of 14.1 ± 0.6 µΩ cm. Furthermore, the DSA process enables the layer-by-layer fabrication of fully printed organic thin-film transistors with a short channel length of 1 µm, which results in a large on-off ratio of 106 and a high field-effect mobility of 0.5 cm2 V-1 s-1 .
Asunto(s)
Transistores Electrónicos , Dispositivos Electrónicos Vestibles , Conductividad Eléctrica , Electrónica , TintaRESUMEN
BACKGROUND: Anterior resection syndrome (ARS) is characterized by the diverse and interchangeable evacuatory symptoms that may occur following distal colorectal resection. We aimed to investigate the effect and potential mechanisms of ozone perfusion on rats with anterior rectal resection (ARR). MATERIAL AND METHODS: After establishment of rat ARR model, 20, 40 and 80 ug/ml ozone was used to treat rats by enema administration. The pathological examination of intestinal tissue was detected using hematoxylin-eosin staining. The rate of loose stools, minimum threshold volume of abdominal withdrawal reflex (AWR) and Bristol grade were used to evaluate the degree of abnormal defecation function. Subsequently, the levels of oxidative stress- and inflammation-related markers, 5-hydroxytryptamine (5-HT), inducible nitric oxide synthase (iNOS) and nitric oxide (NO) in the serum and intestinal tissue were determined with the corresponding kits. Meanwhile, the expression of nuclear factor kappa B (NF-κB) p65, transient receptor potential vanilloid (TRPV)1, TRPV4, iNOS and 5-HT receptor 3A (5-HTR3A) was determined with RT-qPCR and western blotting. RESULTS: Ozone administration (20 and 40 ug/ml) significantly alleviated the pathological changes of intestinal tissue-induced by ARR, accompanied by the decreased loose stools rate, Bristol score and increased abdominal withdraw reflex. However, 80 ug/ml of ozone intervention played opposite roles in the aforementioned changes with 20 and 40 ug/ml of ozone. Additionally, remarkably elevated reactive oxygen species (ROS), malonaldehyde (MDA), superoxide dismutase (SOD), 5-HT, iNOS and NO levels were observed in the ozone-treated groups (20 and 40 ug/ml), while high dose of ozone drastically improved ROS, MDA, 5-HT, iNOS and NO levels but reduced the activity of SOD. Consistently, the contents of inflammatory factors were decreased after low and middle doses of ozone administration. However, high dose of ozone aggravated the inflammatory injury. Moreover, 20 and 40 ug/ml ozone upregulated TRPV1 and TRPV4 expression but downregulated 5-HTR3A expression, which was restored after 80 ug/ml of ozone intervention. Remarkably, the levels of NF-κB p65 and iNOS were dose-dependently enhanced following ozone treatment. CONCLUSIONS: Taken together, low concentration of ozone attenuated intestinal injury induced by ARR via balancing oxidative stress and inflammation, but high concentration of ozone exacerbated the intestinal injury, which might be related to the 5-HT and TRPV signaling.
Asunto(s)
Ozono , Animales , Inflamación , FN-kappa B/metabolismo , Estrés Oxidativo , Ratas , Transducción de Señal , Canales Catiónicos TRPVRESUMEN
One of the major challenges regarding the sulfur cathode of Li-S batteries is to achieve high sulfur loading, fast Li ions transfer, and the suppression of lithium polysulfides (LiPSs) shuttling. This issue can be solved by the development of molybdenum carbide decorated N-doped carbon hierarchical double-shelled hollow spheres (Mo2 C/C HDS-HSs). The mesoporous thick inner shell and the central void of the HDS-HSs achieve high sulfur loading, facilitate the ion/electrolyte penetration, and accelerate charge transfer. The microporous thin outer shell suppresses LiPSs shuttling and reduces the charge/mass diffusion distance. The double-shelled hollow structure accommodates the volume expansion during lithiation. Furthermore, Mo2 C/C composition renders the HDS-HSs cathode with improved conductivity, enhanced affinity to LiPSs, and accelerated kinetics of LiPSs conversion. The structural and compositional advantages render the Mo2 C/C/S HDS-HSs electrode with high specific capacity, excellent rate capability, and ultra-long cycling stability in the composed Li-S batteries.
RESUMEN
Copper nanowires (CuNWs) are considered a promising alternative to indium tin oxide due to their cost-effectiveness as well as high conductivity and transparency. However, the practical applications of copper-based conductors are greatly limited due to their rapid oxidation in atmosphere. Herein, a facile adsorption and decomposition process is developed for galvanic replacement free and large-scale synthesis of highly stable Cu@Ag core-shell nanowires. First, Ag-amine complex ([Ag(NH2R)2]+) as silver source adsorbs on CuNWs surface, and Cu@Ag-amine complex core-shell structure is formed. After that, Ag-amine complex is easily decomposed to pure Ag shell through a simple thermal annealing under air. By adjusting the concentration of Ag-aminein CuNWs solution, Cu@Ag core-shell nanowires with different thickness of silver shell can be easily obtained. The obtained core-shell nanowires exhibit high stability for at least 500 h at high temperature (140 °C) and high humidity (85 °C, 85% RH) due to the protection of Ag shell. More importantly, the conductivity and transparency of Cu@Ag nanowires-based conductors is similar to that of pure CuNWs. The large-scale and facile synthesis of Cu@Ag core-shell nanowires provides a new method to prepare stable metallic core-shell nanowires.
RESUMEN
OBJECTIVE: To study the effects of minimal residual disease (MRD) level on day 33 of remission induction and IKZF1 genotype on the survival of children with B-lineage acute lymphoblastic leukemia (B-ALL). METHODS: A total of 152 children with newly-diagnosed B-ALL who had complete remission after the first cycle of the chemotherapy and had complete follow-up information were enrolled in this study. According to the MRD detection by flow cytometry on day 33 of remission induction, they were divided into three groups: standard-risk (SR) group (MRD <10-4; n=60), intermediate-risk (IR) group (10-4≤ MRD <10-2; n=55), and high-risk (HR) group (MRD ≥10-2; n=37). Nested RT-PCR was used to determine the IKZF1 genotype of all children before chemotherapy. The effects of MRD level on day 33 of remission induction and IKZF1 genotype on the recurrence-free survival (RFS) of children with B-ALL were analyzed. RESULTS: There were 7 common IKZF1 subtypes in all the 152 children with B-ALL: IK1, IK2/3, IK4, IK6, IK8, IK9, and IK10. Of the 152 children, 130 had functional subtypes of IKZF1 and 22 had non-functional subtypes of IKZF1. During the follow-up period, relapse occurred in 26 (17%) children, and the recurrence rate was highest in the HR group (P<0.05). However, there was no significant difference in the recurrence rate between the SR group and the IR group (P>0.05). The cumulative recurrence rate of the children with non-functional subtypes of IKZF1 was significantly higher than that of those with functional types of IKZF1 (P<0.01). The predicted 5-year RFS rates in the SR, IR, and HR groups were (94.2±2.9)%, (86.7±3.8)%, and (56.2±4.5)% respectively (P<0.05). The 5-year RFS rate of the children with functional subtypes of IKZF1 was significantly higher than that of those with non-functional subtypes of IKZF1 (P<0.01). There was no significant difference in the predicted 5-year RFS rate between the children with functional subtypes of IKZF1 and those with non-functional subtypes of IKZF1 in the SR group (P>0.05). However, the predicted 5-year RFS rate of the children with functional subtypes of IKZF1 was significantly higher than that of those with non-functional subtypes of IKZF1 in the IR group and the HR group (P<0.05). CONCLUSIONS: B-ALL children with non-functional subtypes of IKZF1 have a high recurrence rate, and the recurrence rate will be even higher in B-ALL children with non-functional subtypes of IKZF1 and MRD ≥10-4 on day 33 of chemotherapy.
Asunto(s)
Factor de Transcripción Ikaros/genética , Neoplasia Residual/genética , Neoplasia Residual/mortalidad , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/mortalidad , Protocolos de Quimioterapia Combinada Antineoplásica , Niño , Preescolar , Femenino , Genotipo , Humanos , Masculino , Neoplasia Residual/terapia , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Pronóstico , Recurrencia , Inducción de Remisión , SobrevidaRESUMEN
BACKGROUND Acute lymphocytic leukemia (ALL) in children is a clonal disease of bone marrow hematopoietic stem cells. This study aimed to explore the associations between MTHFR or TS genetic polymorphisms and susceptibility to acute lymphocytic leukemia (ALL) in children. MATERIAL AND METHODS This case-control study included 79 ALL patients (case group) and 102 non-ALL patients (control group). Post-PCR genomic DNA sequencing revealed MTHFR C677T and MTHFR A1298C genotypes and TS polymorphisms. The χ² test was used to compare differences in MTHFR and TS polymorphisms (including genotypic and allelic distributions) between groups. Logistic regression analysis was used to determine genetic polymorphisms and ALL risk associations. RESULTS The results indicated that TS 3R allele frequency was significantly higher in the case group than in the control group (χ²=7.45, P<0.05). The MTHFR C677T and MTHFR A1298C polymorphisms were not associated with ALL risk. Compared to the TS 2R/2R genotype, subjects carrying TS 2R/3R were twice as likely to develop ALL, and the TS 3R/3R+3R/4R genotype carried a 4-fold higher risk of developing ALL (OR=1.96, CI: 1.14-3.36). CONCLUSIONS The TS genetic polymorphisms increase the ALL risk. The TS 3R allele was a risk factor for ALL. There were no associations between MTHFR C677T or MTHFR A1298C polymorphisms and ALL susceptibility.
Asunto(s)
Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/enzimología , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Timidilato Sintasa/genética , Regiones no Traducidas 5'/genética , Alelos , Secuencia de Bases , Estudios de Casos y Controles , Niño , Preescolar , Femenino , Frecuencia de los Genes/genética , Estudios de Asociación Genética , Humanos , Masculino , Metilenotetrahidrofolato Reductasa (NADPH2)/genética , Análisis de Secuencia de ADNRESUMEN
An efficient and convenient one-pot domino reaction for the direct synthesis of pyrrolo[1,2-a]quinoxalines has been developed. This approach utilizes an imine formation reaction, SEAr reaction and cleavage of C-C bonds catalyzed by a Brønsted acid. ß-Diketones and ß-keto esters are both well tolerated to give the corresponding products in moderate to excellent yields.
RESUMEN
BACKGROUND: Salmonella enterica subsp. enterica serovar Enteritidis (S. Enteritidis) is one of the most prevalent Salmonella serotypes that cause gastroenteritis worldwide and the most prevalent serotype causing Salmonella infections in China. A rapid molecular typing method with high throughput and good epidemiological discrimination is urgently needed for detecting the outbreaks and finding the source for effective control of S. Enteritidis infections. METHODS: In this study, 194 strains which included 47 from six outbreaks that were well-characterized epidemiologically were analyzed with pulse field gel electrophoresis (PFGE) and multilocus variable number tandem repeat analysis (MLVA). Seven VNTR loci published by the US Center for Disease Control and Prevention (CDC) were used to evaluate and develop MLVA scheme for S. Enteritidis molecular subtyping by comparing with PFGE, and then MLVA was applied to the suspected outbreaks detection. All S. Enteritidis isolates were analyzed with MLVA to establish a MLVA database in Shenzhen, Guangdong province, China to facilitate the detection of S. Enteritidis infection clusters. RESULTS: There were 33 MLVA types and 29 PFGE patterns among 147 sporadic isolates. These two measures had Simpson indices of 0.7701 and 0.8043, respectively, which did not differ significantly. Epidemiological concordance was evaluated by typing 47 isolates from six epidemiologically well-characterized outbreaks and it did not differ for PFGE and MLVA. We applied the well established MLVA method to detect two S. Enteritidis foodborne outbreaks and find their sources successfully in 2014. A MLVA database of 491 S. Enteritidis strains isolated from 2004 to 2014 was established for the surveillance of clusters in the future. CONCLUSIONS: MLVA typing of S. Enteritidis would be an effective tool for early warning and epidemiological surveillance of S. Enteritidis infections.
Asunto(s)
Técnicas de Tipificación Bacteriana/métodos , Tipificación Molecular/métodos , Infecciones por Salmonella/microbiología , Salmonella enteritidis/genética , Salmonella enteritidis/aislamiento & purificación , China/epidemiología , Brotes de Enfermedades , Electroforesis en Gel de Campo Pulsado , Estudios Epidemiológicos , Humanos , Repeticiones de Minisatélite , Filogenia , Infecciones por Salmonella/epidemiología , Salmonella enteritidis/clasificaciónRESUMEN
BACKGROUND: Small colony variants (SCVs), constituting a slow-growing subpopulation of bacteria that facilitates persistence in lethal environmental conditions, are able to revert to the phenotype of rapid growth for further proliferation and transmission. Salmonella enterica serotype Typhimurium is one of the most important foodborne pathogens. This study investigated the genetic mechanisms how SCVs induced by streptomycin reverted to the fast-growing phenotype and the phenotypic changes of SCVs among their complete life cycle in S. Typhimurium. METHODS: Salmonella Typhimurium SCVs were obtained by streptomycin treatment and their revertants were collected in the absence of antibiotics. The fitness, antimicrobial susceptibility, biofilm formation, and the biofilm-related genes expression were analyzed in comparison to their wild type strain, and the whole genome sequencing was performed to identify the genetic changes in the life cycle of S. Typhimurium SCVs. RESULTS: Small colony variants were characterized by an increased antimicrobial resistance to streptomycin (64-fold), imipenem (twofold), and gentamicin (fourfold). A significant increase in biofilm production with higher expression of csgB was observed in SCVs (P < 0.01). The genetic alterations of all SCVs occurred in ubiE gene (coenzyme Q8 and menaquinone synthesis) with frameshift mutations. However, all fast-growing revertants again lost the trait of increased biofilm production (P > 0.05), in which two modes of the genetic changes for reversing to the rapidly growing form were observed: four revertants harbored a secondary mutation in ubiE, which reinstated most of the amino acid sequence of the ubiE, and other four revertants harbored a mutation in prfB. CONCLUSIONS: Salmonella Typhimurium could switch to the phenotype of SCVs under the treatment of streptomycin by a mutation in ubiE, partially combined with increased production of biofilm, and these SCVs could escape from growth restriction by a compensatory mutation in prfB or a new mutation in ubiE. These findings may contribute to establishing phenotype-directed treatments against SCVs of S. Typhimurium.
Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/genética , Biopelículas/efectos de los fármacos , Regulación Bacteriana de la Expresión Génica , Genoma Bacteriano , Salmonella typhimurium/efectos de los fármacos , Estreptomicina/farmacología , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Mutación del Sistema de Lectura , Variación Genética , Gentamicinas/farmacología , Secuenciación de Nucleótidos de Alto Rendimiento , Imipenem/farmacología , Metiltransferasas/genética , Metiltransferasas/metabolismo , Pruebas de Sensibilidad Microbiana , Factores de Terminación de Péptidos/genética , Factores de Terminación de Péptidos/metabolismo , Fenotipo , Salmonella typhimurium/genética , Salmonella typhimurium/crecimiento & desarrolloRESUMEN
OBJECTIVE: To investigate the influence of thymidylate synthase (TS) gene polymorphisms on high-dose methotrexate (HD-MTX)-related toxicities in childhood acute lymphoblastic leukemia (ALL). METHODS: A total of 73 children who were diagnosed with ALL between March 2011 and March 2013 were included into this study. Genomic DNAs were extracted from their peripheral blood. And then the genotypes of TS 5'-UTR were determined by direct DNA sequencing after PCR. The toxicity response of 73 patients receiving HD-MTX chemotherapy were observed and recorded, and plasma MTX concentrations at 42-48 hours after chemotherapy were measured. RESULTS: The main HD-MTX-related toxicities of 73 patients receiving HD-MTX chemotherapy were neutropenia, decreased hemoglobin level, thrombocytopenia, liver toxicity, mucosal damage, and gastrointestinal reactions. There were no significant differences in the incidence rate of HD-MTX-related toxicities between children with different TS 5'-UTR genotypes after chemotherapy (P>0.05). TS 5'-UTR genotype was not significantly correlated with plasma MTX concentrations at 42-48 hours after chemotherapy (P>0.05). CONCLUSIONS: TS gene polymorphisms have no influence on the incidence of HD-MTX-related toxicities in childhood ALL.
Asunto(s)
Antimetabolitos Antineoplásicos/efectos adversos , Metotrexato/efectos adversos , Polimorfismo Genético , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Timidilato Sintasa/genética , Niño , Preescolar , Femenino , Genotipo , Humanos , Lactante , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras/genéticaRESUMEN
BACKGROUND: Although chemokine stromal cell-derived factor 1 (SDF-1) and its receptor CXCR4 induce degradation of articular cartilage in rheumatoid arthritis (RA) and osteoarthritis (OA), the association between the SDF-1/CXCR4 pathway and degradation of the cartilaginous endplate and nucleus pulposus has not been thoroughly clarified. We investigated the expression of SDF-1 and CXCR4 in intervertebral discs (IVDs). METHODS: SDF-1 and CXCR4 levels in human IVDs and the rat L5/6 motion segment were quantified by enzyme-linked immunosorbent assay. SDF-1 staining was quantified using a microscope and Image-Pro Plus software. Integrated optical density (IOD) served as the measurement parameter. The number of CXCR4 immunoreactive cells was expressed as a percentage of the total number of cells. RESULTS: SDF-1 and CXCR4 were both expressed in IVDs, and the levels of SDF-1 and CXCR4 were both significantly higher in the degeneration group than in the normal group of human (or rat) discs. Both nucleus pulposus cells and cartilaginous endplate cells expressed the CXCR4 protein. Furthermore, a positive correlation was observed between the SDF-1 IOD value and the percentage of CXCR4-positive disc cells in the nucleus pulposus and cartilaginous endplate. The SDF-1 IOD values were significantly higher in the outer annular fibrosus and bone/endplate junction region than in the nucleus pulposus and cartilaginous endplate in the rat specimens. CONCLUSIONS: Our findings suggest upregulated expression of SDF-1 and its receptor CXCR4 in degenerated IVD.
Asunto(s)
Quimiocina CXCL12/biosíntesis , Degeneración del Disco Intervertebral/genética , Osteoartritis/genética , Receptores CXCR4/biosíntesis , Animales , Condrocitos/metabolismo , Condrocitos/patología , Regulación de la Expresión Génica , Humanos , Degeneración del Disco Intervertebral/patología , Osteoartritis/patología , Ratas , Transducción de Señal/genéticaRESUMEN
On the basis of the atomic graph-theoretical index - aEAID (atomic Extended Adjacency matrix IDentification) and molecular adjacent topological index - ATID (Adjacent Topological IDentification) suggested by one of the authors (Zhang Q), a highly selective atomic topological index - aATID (atomic Adjacent Topological IDentification) index was suggested to identify the equivalent atoms in this study. The aATID index of an atom was derived from the number of the attached hydrogen atoms of the atom but omitting bond types. In this case, the suggested index can be used to identify equivalent atoms in chemistry but perhaps not equivalent in the molecular graph. To test the uniqueness of aATID indices, the virtual atomic data sets were derived from alkanes containing 15-20 carbon atoms and the isomers of Octogen, as well as a real data set was derived from the NCI database. Only four pairs of atoms from alkanes containing 20 carbons can't be discriminated by aATID, that is, four pairs of degenerates were found for this data set. To solve this problem, the aATID index was modified by introducing distance factors between atoms, and the 2-aATID index was suggested. Its uniqueness was examined by 5,939,902 atoms derived from alkanes containing 20 carbons and further 16,166,984 atoms from alkanes of 21 carbons, and no degenerates were found. In addition, another large real data set of 16,650,688 atoms derived from the PubChem database was also used to test the uniqueness of both aATID and 2-aATID. As a result, each atom was successfully discriminated by any of the two indices. Finally, the suggested aATID index was applied to the identification of duplicate atoms as data pretreatment for QSPR (Quantitative Structure-Property Relationships) studies.
Asunto(s)
Alcanos , Relación Estructura-Actividad Cuantitativa , Isomerismo , Alcanos/química , Carbono/químicaRESUMEN
Avian pathogenic Escherichia coli (APEC) is a bacterial disease that harms the poultry industry worldwide, but its effect on Chinese Silkie has not been reported. Studies on whether there are differences in Silkie individual resistance to APEC and the regulatory role of spleen miRNAs lay the foundation for strategies against APEC. Therefore, 270 Silkie chickens were infected with the median lethal dose of an E. coli O1, O2, and O78 mixture. These chickens were divided into a susceptible group (Group S) and a recovery group (Group R) according to whether they survived 15 days postinfection (dpi). Moreover, 90 uninfected APEC Silkie served as controls (Group C). The splenic miRNA expression profile was examined to evaluate the role of miRNAs in the APEC infection response. Of the 270 Silkies infected with APEC, 144 were alive at 15 dpi. Cluster analysis and principal component analysis (PCA) of splenic miRNAs revealed that the four Group R replicates were clustered with the three Group C replicates and were far from the three Group S replicates. Differentially expressed (DE) miRNAs, especially gga-miR-146b-5p, play essential roles in immune and inflammatory responses to APEC. Functional enrichment analyses of DEmiRNAs suggested that suppression of immune system processes (biological processes) might contribute to susceptibility to APEC and that FoxO signaling pathways might be closely associated with the APEC infection response and postinfection repair. This study paves the way for screening anti-APEC Silkies and provides novel insights into the regulatory role of miRNAs in APEC infection.
Asunto(s)
Infecciones por Escherichia coli , MicroARNs , Enfermedades de las Aves de Corral , Animales , Escherichia coli/genética , Pollos/genética , Bazo/metabolismo , MicroARNs/farmacología , Infecciones por Escherichia coli/microbiología , Enfermedades de las Aves de Corral/microbiologíaRESUMEN
A comprehensive study of the overall flavor and taste profile of different radishes is lacking. This study systematically compared the volatile profile of six radish varieties using HS-GC-IMS and their correlation with the E-nose analysis. Organic acids and amino acids were quantified, and their association with the E-tongues analysis was explored. A total of 73 volatile compounds were identified, with diallyl sulfide and dimethyl disulfide being the primary sulfides responsible for the unpleasant flavor in radish. Compared to other varieties, cherry radishes boast a significantly higher concentration of allyl isothiocyanate, which likely contributes to their characteristic radish flavor. Moreover, oxalic acid was identified as the most abundant organic acid in radish, accounting for over 97% of its content, followed by malic acid and succinic acid. In conclusion, the distinct flavor and taste characteristics of different radish varieties partially explain their suitability for diverse culinary preferences.