Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Appl Opt ; 62(19): 5064-5068, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37707207

RESUMEN

Perovskite has emerged as an outstanding light-absorbing material, leading to significant advancements in solar cell efficiency. Further improvements can be made by restructuring the internal optical properties of perovskite. In this study, we investigate the impact of gold triangle nanostructures on perovskite absorption rates, and we explore the optimization of surface plasmon resonance to enhance its solar absorption efficiency. Our numerical simulations revealed that stacking gold triangle nanostructures in the perovskite film resulted in a significant increase in its absorption rate. Finally, comparative testing showed that the solar spectral absorption rate of a 200 nm thick perovskite film increased by 41.5%.

2.
Pestic Biochem Physiol ; 197: 105683, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38072540

RESUMEN

Wild Brassica juncea is a troublesome weed that infests wheat fields in China. Two suspected wild B. juncea populations (19-5 and 19-6) resistant to acetolactate synthase (ALS) inhibitors were collected from wheat fields in China. To clarify their resistance profiles and resistance mechanism, the resistance levels of populations 19-5 and 19-6 to ALS-inhibiting herbicides and their underlying target-site resistance mechanism were investigated. The results showed that the 19-5 population exhibited resistance to tribenuron-methyl, pyrithiobac­sodium and florasulam, while the 19-6 population was resistant to tribenuron-methyl, pyrithiobac­sodium, imazethapyr and florasulam. Using the homologous cloning method, two ALS genes were identified in wild B. juncea, with one gene (ALS1) encoding 652 amino acids and the other (ALS2) encoding 655 amino acids. Pro-197-Arg mutation on ALS2 and Trp-574-Leu mutation on ALS1, together with the combination of these two mutations in a single plant, were observed in both 19-5 and 19-6 populations. ALS2 enzymes carrying the Pro-197-Arg mutation were cross-resistant to tribenuron-methyl, pyrithiobac­sodium, imazerthapyr and florasulam, with resistance index (RI) values of 6.23, 32.81, 7.97 and 1162.50, respectively. Similarly, ALS1 enzymes with Trp-574-leu substitutions also displayed high resistance to these four herbicides (RI values ranging from 132.61 to 3375.00). In addition, the combination of Pro-197-Arg (ALS2) and Trp-574-Leu (ALS1) mutations increased the resistance level of the ALS enzyme to ALS inhibitors, with its RI values 3.83-214.19, 6.88-37.34, 1.91-31.82 and 2.03-5.90-fold higher than a single mutation for tribenuron-methyl, pyrithiobac­sodium, imazerthapyr and florasulam, respectively. Collectively, Pro-197-Arg mutation on ALS2, Trp-574-Leu mutation on ALS1 and the combination of Pro-197-Arg (ALS2) and Trp-574-Leu (ALS1) mutations in wild B. juncea could endow broad-spectrum resistance to ALS inhibitors, which might provide guides for establishing effective strategies to prevent or delay such resistance evolution in this weed.


Asunto(s)
Acetolactato Sintasa , Herbicidas , Acetolactato Sintasa/metabolismo , Planta de la Mostaza/genética , Planta de la Mostaza/metabolismo , Herbicidas/farmacología , Mutación , Aminoácidos , Sodio , Resistencia a los Herbicidas/genética
3.
Pestic Biochem Physiol ; 197: 105656, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38072531

RESUMEN

Barnyardgrass (Echinochloa crus-galli (L.) P. Beauv.), one of the worst weeds in paddy fields in China, has been frequently reported evolving resistance to acetyl-CoA carboxylase (ACCase) inhibiting herbicides. However, in the previous research, more attention was paid to target-site resistance (TSR) mechanisms, the non-target-site resistance (NTSR) mechanisms have not been well-established. In this study, the potential mechanism of resistance in a metamifop-resistant E. crus-galli collected from Kunshan city, Jiangsu Province, China was investigated. Dose-response assays showed that the phenotypic resistant population (JS-R) has evolved 4.3-fold resistance to metamifop compared with the phenotypic susceptible population (YN-S). The ACCase CT gene sequencing and relative ACCase gene expression levels studies showed that no mutations were detected in the ACCase CT gene in both YN-S and JS-R, and there was no significant difference in the relative ACCase gene expression between YN-S and JS-R. After the pre-processing of glutathione-S-transferase (GSTs) inhibitor NBD-Cl, the resistance level of JS-R to metamifop was reversed 18.73%. Furthermore, the GSTs activity of JS-R plants was significantly enhanced compared to that of YN-S plants. UPLC-MS/MS revealed that JS-R plants had faster metabolic rates to metamifop than YN-S plants. Meanwhile, the JS-R popultion exhibited resistant to cyhalofop-butyl and penoxsulam. In summary, this study presented a novel discovery regarding the global emergence of metabolic resistance to metamifop in E. crus-galli. The low-level resistance observed in the JS-R population was not found to be related to TSR but rather appeared to be primarily associated with the overexpression of genes in the GSTs metabolic enzyme superfamily.


Asunto(s)
Echinochloa , Herbicidas , Echinochloa/metabolismo , Cromatografía Liquida , Espectrometría de Masas en Tándem , Herbicidas/toxicidad , Herbicidas/metabolismo , Resistencia a los Herbicidas/genética
4.
Int J Mol Sci ; 24(9)2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37175957

RESUMEN

Gene mutation is a basic evolutionary mechanism in plants under selection pressure of herbicides. Such mutation has pleiotropic effects on plant growth. We systemically investigated the effects of Pro106Leu (P106L), Pro106Ser (P106S), and Thr102Ile + Pro106Ser (TIPS) mutations on EPSPS functionality and fitness traits in Eleusine indica at the biochemical and physiological levels. The affinity of natural EPSPS for glyphosate was 53.8 times higher than that for phosphoenolpyruvate (PEP), as revealed by the dissociation constant; the constant decreased in both the P106L (39.9-fold) and P106S (46.9-fold) mutants but increased in the TIPS (87.5-fold) mutant. The Km (PEP) values of the P106L, P106S, and TIPS mutants were 2.4-, 0.7-, and 4.1-fold higher than that of natural EPSPS, corresponding to resistance levels of 2.5, 1.9, and 11.4, respectively. The catalytic efficiency values (maximum reaction rates) were 0.89-, 0.94-, and 0.26-fold higher than that of natural EPSPS. The levels of metabolites related to amino acids and nucleotides were significantly reduced in the mutated plants. The fitness costs were substantial for the biomass, total leaf area, seed number, and seedling emergence throughout the growth period in the plants with P106L and TIPS mutations. These results provide insights into EPSPS kinetics and their effect on plant growth.


Asunto(s)
Eleusine , Herbicidas , Eleusine/genética , Eleusine/metabolismo , 3-Fosfoshikimato 1-Carboxiviniltransferasa/genética , Resistencia a los Herbicidas/genética , Regulación de la Expresión Génica de las Plantas , Mutación , Herbicidas/farmacología , Herbicidas/metabolismo , Glifosato
5.
Int J Mol Sci ; 24(8)2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37108267

RESUMEN

The green foxtail, Setaria viridis (L.) P. Beauv. (Poales: Poaceae), is a troublesome and widespread grass weed in China. The acetolactate synthase (ALS)-inhibiting herbicide nicosulfuron has been intensively used to manage S. viridis, and this has substantially increased the selection pressure. Here we confirmed a 35.8-fold resistance to nicosulfuron in an S. viridis population (R376 population) from China and characterized the resistance mechanism. Molecular analyses revealed an Asp-376-Glu mutation of the ALS gene in the R376 population. The participation of metabolic resistance in the R376 population was proved by cytochrome P450 monooxygenases (P450) inhibitor pre-treatment and metabolism experiments. To further elucidate the mechanism of metabolic resistance, eighteen genes that could be related to the metabolism of nicosulfuron were obtained bythe RNA sequencing. The results of quantitative real-time PCR validation indicated that three ATP-binding cassette (ABC) transporters (ABE2, ABC15, and ABC15-2), four P450 (C76C2, CYOS, C78A5, and C81Q32), and two UDP-glucosyltransferase (UGT) (UGT13248 and UGT73C3), and one glutathione S-transferases (GST) (GST3) were the major candidates that contributed to metabolic nicosulfuron resistance in S. viridis. However, the specific role of these ten genes in metabolic resistance requires more research. Collectively, ALS gene mutations and enhanced metabolism may be responsible for the resistance of R376 to nicosulfuron.


Asunto(s)
Herbicidas , Setaria (Planta) , Setaria (Planta)/genética , Compuestos de Sulfonilurea/farmacología , Piridinas , Análisis de Secuencia de ARN , Resistencia a los Herbicidas/genética , Herbicidas/farmacología
6.
Curr Issues Mol Biol ; 45(1): 141-150, 2022 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-36661497

RESUMEN

Goosegrass (Eleusine indica) is one of the worst agricultural weeds in China. Molecular markers were developed for genetic diversity and population structure analyses. In this study, we identified 8391 expressed sequence tag-simple sequence repeat (EST-SSR) markers from the de novo assembled unigenes of E. indica. Mononucleotides were the most abundant type of repeats (3591, 42.79%), followed by trinucleotides (3162, 37.68%). The most dominant mononucleotide and trinucleotide repeat motifs were A/T (3406, 40.59%) and AAT/ATT (103, 1.5%), respectively. Fourteen pairs of EST-SSR primers were verified and used to analyze the genetic diversity and population structure of 59 goosegrass populations. A total of 49 alleles were amplified, with the number of alleles (Na) ranging from two to eleven per locus, and the effective number of alleles (Ne) ranged from 1.07 to 4.53. The average polymorphic information content (PIC) was 0.36. Genetic structure analysis (K = 2) and principal coordinate analysis divided 59 E. indica populations into two groups in a manner similar to the unweighted pair-group method (Dice genetic similarity coefficient = 0.700). This study developed a set of EST-SSR markers in E. indica and successfully analyzed the diversity and population genetic structures of 59 E. indica populations in China.

7.
Environ Res ; 212(Pt D): 113592, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35654160

RESUMEN

As a result of anthropogenic pollution, the nitrogen nutrients load in urban rivers has increased, potentially raising the risk of river eutrophication. Here, we studied how anthropogenic impacts alter nitrogen metabolism in river sediments by comparing the metagenomic function of microbial communities between relatively primitive and human-disturbed sediments. The contents of organic matter (OM), total nitrogen (TN), NO3--N and NO2--N were higher in primitive site than in polluted sites, which might be due to vegetation density, sediment type, hydrology, etc. Whereas, NH4+-N content was higher in midstream and downstream, indicating that nitrogen loading increased in the anthropogenic regions and subsequently leading higher NH4+-N. Hierarchical cluster analyses revealed significant changes in the community structure and functional potential between the primitive and human-affected sites. Metagenomic analysis demonstrated that Demequina, Streptomyces, Rubrobacter and Dechloromonas were the predominant denitrifiers. Ardenticatena and Dechloromonas species were the most important contributors to dissimilatory nitrate reduction. Furthermore, anthropogenic pollution significantly increased their abundance, and resulting in a decrease in NO3-, NO2--N and an increase in NH4+-N contents. Additionally, the SOX metabolism of Dechloromonas and Sulfuritalea may involve in the sulfur-dependent autotrophic denitrification process by coupling the conversion of thiosulfate to sulfate with the reduction of NO3--N to N2. From pristine to anthropogenic pollution sediments, the major nitrifying bacteria harboring Hao transitioned from Nitrospira to Nitrosomonas. This study sheds light on the consequences of anthropogenic activities on nitrogen metabolism in river sediments, allowing for better management of nitrogen pollution and eutrophication in river.


Asunto(s)
Microbiota , Nitrógeno , Bacterias/genética , Bacterias/metabolismo , China , Desnitrificación , Sedimentos Geológicos/química , Nitrógeno/análisis , Dióxido de Nitrógeno
8.
Pestic Biochem Physiol ; 188: 105260, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36464365

RESUMEN

Commelina communis L. is a troublesome weed in agronomic fields and increasingly threatens the yield security of corn in north-eastern China. Previously, we found that a C. communis population (JL-1) has evolved resistance to atrazine. Although the potential genetic and enzymic differences contributing to atrazine resistance in this population have been investigated, the specific molecular mechanisms underlying C. communis resistance are still poorly understood. Here, the expression level of the target gene PsbA and the non-target-site resistance (NTSR) mechanism for this population were studied. The results showed that the decline in chlorophyll content in JL-1 leaves was less than in the susceptible JS-10 population following atrazine treatment. JL-1 exhibited an enhanced expression of the PsbA gene compared with JS-10 of 7.28- and 14.28-fold higher at 0 and 24 h after treatment with atrazine, respectively. The cytochrome P450 monooxygenase (P450) inhibitor piperonyl butoxide (PBO) increased the phytotoxicity of atrazine in both populations of C. communis. Seven candidate genes associated with NTSR of Jl-1 were identified through RNA-seq and validated by quantitative real-time PCR, including 5 upregulated genes involved in herbicide metabolism. In addition, the activities of glutathione S-transferases and P450s in JL-1 were increased compared with JS-10. Collectively, PsbA gene overexpression and enhanced metabolism are likely to be responsible for JL-1 resistance to atrazine.


Asunto(s)
Atrazina , Commelina , Herbicidas , Atrazina/toxicidad , Herbicidas/farmacología , China , Clorofila
9.
Environ Res ; 196: 110913, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33639142

RESUMEN

Acinetobacter johnsonii is a potentially opportunistic pathogen widely distributed in nosocomial and natural environments, but little attention has been paid to this bacillus. Here A. johnsonii strains from Ba River with different pollution levels were isolated. In this study, we found that the increasing anthropogenic contaminants accounted for the emergence of multidrug-resistant (MDR) A. johnsonii strains. Correlation analysis results showed that the resistance phenotype of strains could be generated by co-selection of heavy metals or non-corresponding antibiotics. The whole genome sequence analysis showed that the relative heavy pollution of water selects strains containing more survival-relevant genes. We found that only some genes like blaOXA-24 were responsible for its corresponding resistance profile. Additionally, the tolerance profiles toward heavy metals also attribute to the expression of efflux pumps rather than corresponding resistance genes. In summary, our finding revealed that the resistance profiles of A. johnsonii could be generated by cross or co-selection of anthropogenic contaminants and mediated by efflux pumps instead of corresponding resistance determinants. Our study also has deep-sight into the adaptive preference of bacteria in natural environments, and contributes to surveillance studies and MDR- A. johnsonii monitoring worldwide.


Asunto(s)
Acinetobacter , Farmacorresistencia Bacteriana Múltiple , Acinetobacter/genética , Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Pruebas de Sensibilidad Microbiana , Fenotipo , Ríos
10.
Pestic Biochem Physiol ; 171: 104738, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33357560

RESUMEN

American sloughgrass (Beckmannia syzigachne Steud.) has become a dominant weed in fields with rice-wheat rotation. Moreover, herbicide resistance has rendered weed control difficult. We identified a biotype showing resistance to ALS inhibitor mesosulfuron-methyl with a resistant index 3.3, but without any ALS mutation. This study aims to identify and confirm the factors associated with non-target site resistance of this biotype to mesosulfuron-methyl using RNA-Seq. 118,111 unigenes were assembled, and 50.9% of these were annotated across seven databases. Eleven contigs related to metabolic resistance were identified based on differential expression via RNA-Seq which include a novel resistance-related transcription factor (MYC3) and two disease resistance proteins were also identified (At1g58602 and At1g15890). Fold changes in expression of these genes in comparison M-R vs. M-S ranged from 3.9 to 11.6, as confirmed by qPCR. The expression of a contig annotated as cytochrome P450 (CYP86B1) in resistant individuals was over 3 times higher than that in sensitive individuals at 0-72 h after mesosulfuron-methyl treatment. A similar trend was noted for three other genes annotated as glutathione S-transferase (GST), namely GST-T3, GST-U6, and GST-U14; the expression of GST-U6 in resistant individuals was up to 142.3 times higher than that in sensitive individuals at 24 h after mesosulfuron-methyl treatment. In addition, GST activity in resistant individuals was 2.1 to 5.3 times higher than that in sensitive individuals. The GR50 of resistant biotype decreased from 24.4 to 11.3 g a.i. ha-1 after P450 inhibitor malathion treatment. This study identified a cytochrome P450 gene CYP86B1 and three GST genes GST-T3, GST-U6, and GST-U14 that have higher expression in mesosulfuron-methyl resistant B. syzigachne, suggesting that both P450- and GST-based activities could be involved in resistance.


Asunto(s)
Herbicidas , RNA-Seq , Resistencia a los Herbicidas/genética , Herbicidas/toxicidad , Compuestos de Sulfonilurea
11.
Pestic Biochem Physiol ; 176: 104862, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34119213

RESUMEN

Glyphosate and Acetyl-coenzyme A Carboxylase (ACCase) inhibitors are popular herbicides that control goosegrass. However, some populations are difficult to control due to resistance resulting from the increasing selection pressure. The objectives of this research were to detect the multiple resistance levels, resistance mechanisms, and fitness costs of two goosegrass populations collected in China. The resistance indices of two resistant populations (denominated as R1 and R2) to glyphosate were 3.8 and 2.3, respectively; and it was 18.0 and 14.2 to quizalofop-p-ethyl, respectively. Shikimate accumulation in R1 and R2 populations was only 8% of that of the susceptible population after glyphosate treatment. A Pro-106-Ala mutation in EPSPS and an Asp-2078-Gly mutation in ACCase were present in both resistant populations. Both the expression level of EPSPS and ACCase in resistant populations were similar to that of susceptible populations. The leaf area of the individuals in wild-type populations was more than three times of the leaf area in the resistant populations. Similarly, resistant plants were 45-49% shorter, had 70-76% less fresh shoot weight, and 67-69% fewer seeds than wild-type plants. Goosegrass populations have evolved multiple resistance to glyphosate and the ACCase inhibitor quizalofop-p-ethyl in China. The Pro-106-Ala mutation in the EPSPS and the Asp-2078-Gly mutation in the ACCase were responsible for this resistance. In addition, a fitness cost exists in the resistant populations, and more work should conduct to clear which mutation is responsible for the fitness penalty.


Asunto(s)
Eleusine , Herbicidas , 3-Fosfoshikimato 1-Carboxiviniltransferasa/genética , Acetil-CoA Carboxilasa/genética , China , Eleusine/genética , Eleusine/metabolismo , Regulación de la Expresión Génica de las Plantas , Glicina/análogos & derivados , Resistencia a los Herbicidas/genética , Herbicidas/toxicidad , Mutación , Propionatos , Quinoxalinas , Glifosato
12.
Pestic Biochem Physiol ; 175: 104848, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33993966

RESUMEN

Tausch's goatgrass (Aegilops tauschii Coss.), is a major weed species, infesting wheat (Triticum aestivum) fields in China. 2,4-D isooctyl ester is widely used for broadleaf weed control and selected as a tool to study the differences between, A. tauschii and T. aestivum. In this study, we measured the growth responses of these species to 2,4-D isooctyl ester and found that T. aestivum was more sensitive to the herbicide than A. tauschii. To clarify the reasons for this difference, we measured the leaf-mediated deposition, absorption and metabolism of 2,4-D isooctyl ester and the expression of auxin receptor transport inhibitor response (TIR1) gene in T. aestivum and A. tauschii. The results indicated that the deposition of 2,4-D isooctyl ester droplets may be lower on A. tauschii than on T. aestivum, because of the increased contact angle and greater density of trichomes on the leaves of the former. A distinct increase in 2,4-D isooctyl ester uptake was detected in T. aestivum during the entire experimental period, and the rate was 2.2-fold greater than that in A. tauschii at 6 h after treatment. Compared with A. tauschii, T. aestivum exhibited a greater accumulation of primary metabolite 2,4-D in plants, which may be responsible for the different responses of the two species. Additionally, the absolute expression level of TIR1 was clearly greater in T. aestivum than that in A. tauschii. These data will be helpful to further understand the differences between T. aestivum and A. tauschii, which may provide a unique perspective for the development and identification of new target compounds that are effective against this weed species.


Asunto(s)
Aegilops , Ácido 2,4-Diclorofenoxiacético/análogos & derivados , China , Ésteres , Hojas de la Planta , Triticum
13.
Int J Mol Sci ; 22(20)2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34681677

RESUMEN

Aegilops tauschii (Coss.) is an aggressive and serious annual grass weed in China. Its DD genome is a rich source of genetic material and performs better under different abiotic stress conditions (salinity, drought, temperature, etc.). Reverse-transcribed quantitative polymerase chain reaction (RT-qPCR) is a reliable technique for reference gene selection and validation. This work aimed to evaluate the stability of reference gene expression in Ae. tauschii under different abiotic stresses (salinity, drought, hot, and cold) and developmental stages (seedling and development). The results show that the ubiquitin-conjugating enzyme E2 36-like (UBC36) and protein microrchidia 2-like (HSP) are the most stable genes under control and salinity conditions, respectively. Under drought stress conditions, UBC36 is more stable as compared with others. Glyceraldehyde-3-phosphate dehydrogenase (GADPH) is the most stable reference gene during heat stress conditions and thioredoxin-like protein (YLS) under cold stress condition. Phosphate2A serine/threonine-protein phosphatase 2A (PP2A) and eukaryotic translation initiation factor 3 (ETIF3) are the most stable genes at seedling and developmental stages. Intracellular transport protein (CAC) is recommended as the most stable gene under different abiotic stresses and at developmental stages. Furthermore, the relative expression levels of NHX1 and DREB under different levels of salinity and drought stress conditions varied with the most (HSP and UBC36) and least (YLS and ACT) stable genes. This study provides reliable reference genes for understanding the tolerance mechanisms in Ae. tauschii under different abiotic stress conditions.


Asunto(s)
Aegilops/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Reacción en Cadena en Tiempo Real de la Polimerasa/normas , Estrés Fisiológico , Aegilops/fisiología , Sequías , Estándares de Referencia , Salinidad , Temperatura
14.
Pestic Biochem Physiol ; 164: 203-208, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32284128

RESUMEN

Goosegrass is one of the most widespread weeds in orchards and tea plantations in China, and glyphosate is a popular herbicide used to control it. However, high glyphosate selection pressure has led to some populations becoming resistant. The objectives of this research were to determine resistance levels and possible resistance mechanisms of goosegrass populations from several tea plantations in Zhejiang Province in China. The resistance indexes in four goosegrass populations (SH, SY, CA and CX) ranged from 4.9 to 13.4, and lower shikimate accumulation in these populations compared with a glyphosate-susceptible (GS) population confirmed their resistance to glyphosate. No mutations in the target gene EPSPS were found in populations SH and SY, however, the expression of EPSPS in these two populations was 9.3 and 29.7 times higher than that in the GS population, respectively. In the CX population, a P106S mutation in EPSPS was found in 6.7% of the individuals and another 80.0% of individuals had EPSPS amplification. In population CA, all the individuals had a P106A mutation and 86.7% of them had amplification in EPSPS. The EPSPS copy numbers ranged from 5.2 to 62.3 in these four resistant populations. There was a positive correlation between signal intensities of primary anti-EPSPS antibody and the copy number of the EPSPS protein, as indicated by immunoblot analysis. In population CA, with high-level resistance to glyphosate, both P106A mutation and amplification in EPSPS evolved in the same individuals in this population.


Asunto(s)
Eleusine , Herbicidas , 3-Fosfoshikimato 1-Carboxiviniltransferasa , China , Regulación de la Expresión Génica de las Plantas , Glicina/análogos & derivados , Resistencia a los Herbicidas , Mutación , Glifosato
15.
Pestic Biochem Physiol ; 166: 104571, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32448425

RESUMEN

Cyperus difformis has evolved resistance to pyrazosulfuron-ethyl and other acetohydroxyacid synthase (AHAS) inhibitors in paddy fields in China. To understand the distribution of resistance and the mutations involved, 38 populations collected were from 7 provinces and compared. Application of pyrazosulfuron-ethyl at 30 g a.i. ha-1 identified 16 populations that survived, demonstrating resistance to this herbicide. Two exons of 498 and 1428 bp in length and a 1228-1233-bp intron of AHAS were cloned by genome walking, and three pairs of primers were designed to amplify eight conserved regions in this gene. In the 16 resistant (R) populations, five different types of mutations in the conserved region of the AHAS gene were identified: Pro-197-Ser, Pro-197-Arg, Pro-197-Leu, Asp-376-Glu, and Trp-574-Leu. Three R populations, YX15-22, YX12-10 and YX15-38, were chosen for in vitro AHAS activity assays, and the results showed that AHAS from YX15-22 carrying the Pro-197 mutation was insensitive to pyrazosulfuron-ethyl (resistance index (RI) = 310.0) and penoxsulam (RI = 10.0), whereas the enzyme from YX12--10 and YX15-38 was insensitive to pyrazosulfuron-ethyl, penoxsulam, imazapic and bispyribac­sodium (RI values ranging from 4.3 to 4462.0). AHAS inhibitor cross-resistance bioassays showed that YX12-10 and YX15-38 had cross-resistance to all of the tested herbicides (RI values ranging from 5.8 to 3321.9), while the YX15-22 population only had resistance to pyrazosulfuron-ethyl (RI = 827.4) and penoxsulam (RI = 6.6). This study clarified the distribution of resistant C. difformis in China and the different cross-resistance patterns given by various mutation types of AHAS.


Asunto(s)
Acetolactato Sintasa , Cyperus , China , Resistencia a los Herbicidas , Mutación
17.
Plants (Basel) ; 13(8)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38674548

RESUMEN

Bromus japonicus is a common monocot weed that occurs in major winter wheat fields in the Huang-Huai-Hai region of China. Pyroxsulam is a highly efficient and safe acetolactate synthase (ALS)-inhibiting herbicide that is widely used to control common weeds in wheat fields. However, B. japonicus populations in China have evolved resistance to pyroxsulam by different mutations in the ALS gene. To understand the resistance distribution, target-site resistance mechanisms, and cross-resistance patterns, 208 B. japonicus populations were collected from eight provinces. In the resistant population screening experiment, 59 populations from six provinces showed different resistance levels to pyroxsulam compared with the susceptible population, of which 17 B. japonicus populations with moderate or high levels of resistance to pyroxsulam were mainly from the Hebei (4), Shandong (4) and Shanxi (9) Provinces. Some resistant populations were selected to investigate the target site-resistance mechanism to the ALS-inhibiting herbicide pyroxsulam. Three pairs of primers were designed to amplify the ALS sequence, which was assembled into the complete ALS sequence with a length of 1932 bp. DNA sequencing of ALS revealed that four different ALS mutations (Pro-197-Ser, Pro-197-Thr, Pro-197-Phe and Asp-376-Glu) were found in 17 moderately or highly resistant populations. Subsequently, five resistant populations, QM21-41 with Pro-197-Ser, QM20-8 with Pro-197-Thr and Pro-197-Phe, and QM21-72, QM21-76 and QM21-79 with Asp-376-Glu mutations in ALS genes, were selected to characterize their cross-resistance patterns to ALS inhibitors. The QM21-41, QM20-8, QM21-72, QM21-76 and QM21-79 populations showed broad-spectrum cross-resistance to pyroxsulam, mesosulfuron-methyl and flucarbazone-sodium. This study is the first to report evolving cross-resistance to ALS-inhibiting herbicides due to Pro-197-Phe mutations in B. japonicus.

18.
Environ Sci Pollut Res Int ; 31(17): 25978-25990, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38492140

RESUMEN

China has become one of the most serious countries suffering from biological invasions in the world. In the context of global climate change, invasive alien species (IAS) are likely to invade a wider area, posing greater ecological and economic threats in China. Western mosquitofish (Gambusia affinis), which is known as one of the 100 most invasive alien species, has distributed widely in southern China and is gradually spreading to the north, causing serious ecological damage and economic losses. However, its distribution in China is still unclear. Hence, there is an urgent need for a more convenient way to detect and monitor the distribution of G. affinis to put forward specific management. Therefore, we detected the distribution of G. affinis in China under current and future climate change by combing Maxent modeling prediction and eDNA verification, which is a more time-saving and reliable method to estimate the distribution of species. The Maxent modeling showed that G. affinis has a broad habitat suitability in China (especially in southern China) and would continue to spread in the future with ongoing climate change. However, eDNA monitoring showed that occurrences can already be detected in regions that Maxent still categorized as unsuitable. Besides temperature, precipitation and human influence were the most important environmental factors affecting the distribution of G. affinis in China. In addition, by environmental DNA analysis, we verified the presence of G. affinis predicted by Maxent in the Qinling Mountains where the presence of G. affinis had not been previously recorded.


Asunto(s)
Ciprinodontiformes , ADN Ambiental , Animales , Humanos , Especies Introducidas , Ecosistema , China
19.
Beijing Da Xue Xue Bao Yi Xue Ban ; 45(3): 464-8, 2013 Jun 18.
Artículo en Zh | MEDLINE | ID: mdl-23774929

RESUMEN

OBJECTIVE: To compare the values of endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) and TBNA for the diagnosis of hilar and mediastinal lesions. METHODS: The clinical data of 100 patients who underwent EBUS-TBNA (n=50) and TBNA (n=50) between January 2010 and May 2011 were retrospectively reviewed, and the results and complications were recorded. RESULTS: A total of 121 lesions in the 100 patients were evaluated, the sample yeilds of EBUS-TBNA and TBNA were 90.6% and 78.9% and the diagnostic accuracy rates in the two groups were 90.0% and 72.0%(P=0.022), respectively. No major complications happened. The sensitivity, specificity and accuracy of EBUS-TBNA were higher and the complication rate was not increased as compared with TBNA. CONCLUSION: EBUS-TBNA has a higher diagnostic yield for the evaluation of hilar and mediastinal lesions.


Asunto(s)
Biopsia con Aguja Fina/métodos , Broncoscopía/métodos , Enfermedades del Mediastino/diagnóstico , Ultrasonografía/métodos , Humanos , Enfermedades del Mediastino/diagnóstico por imagen , Enfermedades del Mediastino/patología , Mediastino/patología , Sensibilidad y Especificidad
20.
J Agric Food Chem ; 71(1): 186-196, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36534090

RESUMEN

The acetolactate synthase (ALS) inhibitor mesosulfuron-methyl is currently the only selective herbicide to control Aegilops tauschii in wheat fields; however, the mechanism underlying this selectivity remains unclear. Results showed that the tolerance of Triticum aestivum to mesosulfuron-methyl was much higher than that of A. tauschii. Mesosulfuron-methyl inhibited the in vitro ALS activity of A. tauschii and T. aestivum similarly, but the predicted structural interactions of ALS with mesosulfuron-methyl and induced expression of als were different in the two species. Compared with T. aestivum, A. tauschii was found to absorb more mesosulfuron-methyl and metabolize much less mesosulfuron-methyl. The cytochrome P450 monooxygenase (CYP450) inhibitor, malathion, greatly increased the sensitivity of T. aestivum to mesosulfuron-methyl, while its synergistic effect was smaller in A. tauschii. Finally, 19 P450 genes were selected as candidate genes related with metabolism-based mesosulfuron-methyl selectivity. Collectively, different sensitivities to mesosulfuron-methyl in the two species were likely to be attributed to metabolism variances.


Asunto(s)
Aegilops , Triticum , Triticum/genética , Compuestos de Sulfonilurea/farmacología , Sistema Enzimático del Citocromo P-450/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA