Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Luminescence ; 39(1): e4613, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37927147

RESUMEN

Hypochlorous acid (HClO/ClO- ) is one of the important reactive oxygen species (ROS). It acts as a second signaling molecule within and between cells and is an indispensable active molecule in living organisms to regulate physiological and pathological processes. In this article, two fluorescent probes (PTF and PTA) for highly selective fluorescent recognition of ClO- were successfully synthesized based on the ICT mechanism by condensing phenothiazines with two hydrazides via the hydrazide structure (). PTF can identify different concentrations of ClO- in two steps. Due to its ClO- two site recognition, the probe exhibited good selectivity (specific recognition of ClO- over a wide concentration range), a fast time response (rapid recognition in seconds), a sufficiently low detection limit (3.6 and 11.0 nM), and large Stokes shifts (180 and 145 nm). Furthermore, the recognition of ClO- by contrasting probes with different substituents exhibited different fluorescence changes of ratiometric type and turn-off. PTF successfully achieves the detection of exogenous and endogenous ClO- in aqueous solution and living cells.


Asunto(s)
Colorantes Fluorescentes , Ácido Hipocloroso , Colorantes Fluorescentes/química , Límite de Detección , Microscopía Fluorescente , Hidrazinas
2.
Mikrochim Acta ; 191(3): 127, 2024 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-38334844

RESUMEN

A one-target-many-trigger signal model sensing strategy is proposed for quickly, sensitive and on-site detection of the environmental pollutant p-aminophenol (PAP) by use of a commercial personal glucose meter (PGM) for signal readout with the core-shell "loading-type" nanomaterial MSNs@MnO2 as amplifiable nanoprobes. In this design, the mesoporous silica nanoparticles (MSNs) nanocontainer with entrapped signal molecule glucose is coated with redoxable manganese dioxide (MnO2) nanosheets to form the amplifiable nanoprobes (Glu-MSNs@MnO2). When encountered with PAP, the redox reaction between the MnO2 and PAP can induce the degradation of the outer layer of MSNs@MnO2, liberating multiple copies of the loaded glucose to light up the PGM signal. Owing to the high loading capability of nanocarriers, a "one-to-many" relationship exists between the target and the signal molecule glucose, which can generate adequate signal outputs to achieve the requirement of on-site determination of environmental pollutants. Taking advantage of this amplification mode, the developed PAP assay owns a dynamic linear range of 10.0-400 µM with a detection limit of 2.78 µM and provides good practical application performance with above 96.7 ± 4.83% recovery in environmental water and soil samples. Therefore, the PGM-based amplifiable sensor for PAP proposed can accommodate these requirements of environment monitoring and has promising potential for evaluating pollutants in real environmental samples.


Asunto(s)
Aminofenoles , Nanoestructuras , Óxidos , Compuestos de Manganeso , Glucosa , Dióxido de Silicio
3.
Mikrochim Acta ; 191(6): 326, 2024 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740583

RESUMEN

Migration is an initial step in tumor expansion and metastasis; suppressing cellular migration is beneficial to cancer therapy. Herein, we designed a novel biogated nanoagents that integrated the migration inhibitory factor into the mesoporous silica nanoparticle (MSN) drug delivery nanosystem to realize cell migratory inhibition and synergistic treatment. Antisense oligonucleotides (Anti) of microRNA-330-3p, which is positively related with cancer cell proliferation, migration, invasion, and angiogenesis, not only acted as the locker for blocking drugs but also acted as the inhibitory factor for suppressing migration via gene therapy. Synergistic with gene therapy, the biogated nanoagents (termed as MSNs-Gef-Anti) could achieve on-demand drug release based on the intracellular stimulus-recognition and effectively kill tumor cells. Experimental results synchronously demonstrated that the migration suppression ability of MSNs-Gef-Anti nanoagents (nearly 30%) significantly contributed to cancer therapy, and the lethality rate of the non-small-cell lung cancer was up to 70%. This strategy opens avenues for realizing efficacious cancer therapy and should provide an innovative way for pursuing the rational design of advanced nano-therapeutic platforms with the combination of cancer cell migratory inhibition.


Asunto(s)
Movimiento Celular , Quimioterapia Combinada , Nanopartículas , Neoplasias , Dióxido de Silicio , Movimiento Celular/efectos de los fármacos , Dióxido de Silicio/química , Quimioterapia Combinada/métodos , Neoplasias/tratamiento farmacológico , Sistema de Administración de Fármacos con Nanopartículas/química , Sistema de Administración de Fármacos con Nanopartículas/uso terapéutico , Nanopartículas/química , Nanopartículas/uso terapéutico , Nanopartículas/ultraestructura , Células A549 , Microscopía Electrónica de Transmisión , Humanos
4.
Glia ; 71(3): 758-774, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36484493

RESUMEN

Following peripheral nerve injury (PNI), Wallerian degeneration (WD) in the distal stump can generate a microenvironment favorable for nerve regeneration. Brief low-frequency electrical stimulation (ES) is an effective treatment for PNI, but the mechanism underlying its effect on WD remains unclear. Therefore, we hypothesized that ES could enhance nerve regeneration by accelerating WD. To verify this hypothesis, we used a rat model of sciatic nerve transection and provided ES at the distal stump of the injured nerve. The injured nerve was then evaluated after 1, 4, 7, 14 and 21 days post injury (dpi). The results showed that ES significantly promoted the degeneration and clearance of axons and myelin, and the dedifferentiation of Schwann cells. It upregulated the expression of BDNF and NGF and increased the number of monocytes and macrophages. Through transcriptome sequencing, we systematically investigated the effect of ES on the molecular processes involved in WD at 4 dpi. Evaluation of nerves bridged using silicone tubing after transection showed that ES accelerated early axonal and vascular regeneration while delaying gastrocnemius atrophy. These results demonstrate that ES promotes nerve regeneration by accelerating WD and upregulating the expression of neurotrophic factors.


Asunto(s)
Traumatismos de los Nervios Periféricos , Neuropatía Ciática , Ratas , Animales , Traumatismos de los Nervios Periféricos/metabolismo , Degeneración Walleriana/terapia , Degeneración Walleriana/patología , Neuropatía Ciática/patología , Nervio Ciático/metabolismo , Células de Schwann/metabolismo , Axones/metabolismo , Regeneración Nerviosa/fisiología , Estimulación Eléctrica
5.
J Am Chem Soc ; 145(2): 1273-1284, 2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-36621951

RESUMEN

Decrypting the dynamics of receptor dimerization on cell membranes bears great importance in identifying the mechanisms regulating diverse cellular activities. In this regard, long-term monitoring of single-molecule behavior during receptor dimerization allows deepening insight into the dimerization process and tracking of the behavior of individual receptors, yet this remains to be realized. Herein, real-time observation of the receptor tyrosine kinases family (RTKs) at single-molecule level based on plasmon rulers was achieved for the first time, which enabled precise regulation and dynamic monitoring of the dimerization process by DNA programming with excellent photostability. Additionally, those nanoprobes demonstrated substantial application in the regulation of RTKs protein dimerization/phosphorylation and activation of downstream signaling pathways. The proposed nanoprobes hold considerable potential for elucidating the molecular mechanisms of single-receptor dimerization as well as the conformational transitions upon dimerization, providing a new paradigm for the precise manipulation and monitoring of specific single-receptor crosslink events in biological systems.


Asunto(s)
ADN , Proteínas Tirosina Quinasas Receptoras , Dimerización , Membrana Celular/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Fosforilación , ADN/metabolismo
6.
Toxicol Appl Pharmacol ; 480: 116749, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37939859

RESUMEN

Corosolic acid (CA) is a plant-derived terpenoid compound with many health benefits. However, the anti-tumor effects of CA in bladder cancer remain unexplored. Here, we found that CA inhibited bladder tumor both in vitro and in vivo, and had no significant toxicity in mice. With the aid of transcriptomics and proteomics, we elucidated the regulatory network mechanism of CA inhibiting bladder cancer. Through cell viability detection, cell fluorescence staining and flow cytometry, we discovered that CA inhibited bladder cancer mainly through blocking cell cycle. Interestingly, CA played anticancer roles by distinct mechanisms at different concentrations: low concentrations (<7.0 µg/ml) of CA mainly inhibited DNA synthesis by downregulating TOP2A and LIG1, and diminished mitosis by downregulating CCNA2, CCNB1, CDC20, and RRM2; high concentrations (≥7.0 µg/ml) of CA induced cell death through triggering mitophagy via upregulating NBR1, TAXBP1, SQSTM1/P62, and UBB. CA, as a natural molecule of homology of medicine and food, is of great significance for the prevention and treatment of cancer patients following clarifying its anti-cancer mechanism. This study provides a comprehensive understanding of the pharmacological mechanism of CA inhibition in bladder cancer, which is helpful for the development of new anti-tumor drugs based on CA.


Asunto(s)
Transcriptoma , Neoplasias de la Vejiga Urinaria , Humanos , Animales , Ratones , Mitofagia , Línea Celular Tumoral , Proteómica , Ciclo Celular , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/metabolismo , Proliferación Celular , Apoptosis
7.
Anal Biochem ; 670: 115131, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37001597

RESUMEN

Hypochlorite (ClO-) plays a key role in life systems and it is necessary to develop an effective detection method. In view of the significant advantages of the fluorescent probe, we have synthesized a naked-eye recognition fluorescent probe NNCF for the detection of ClO- based on phenothiazine and naphthalimide. The probe NNCF is sensitive (LOD = 9.5 nM) and fast for ClO- (within 30 s), and its Stokes shift is as large as 161 nm. In addition, the probe NNCF has been successfully used for imaging detection of exogenous ClO- in MCF-7 cells with low toxicity.


Asunto(s)
Colorantes Fluorescentes , Ácido Hipocloroso , Humanos , Color del Ojo , Fenotiazinas
8.
J Fluoresc ; 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38060150

RESUMEN

For the efficient detection of Hg2+ and ClO-, a double-analyte-responsive fluorescent probe PTB was successfully synthesized by combining N-butyl-3-formyl phenothiazine with hydrazine benzothiazole, and designing a specific reaction site for recognizing two analytes (Hg2+ and ClO-) in a compound. It was shown that probe PTB successfully formed a stable complex with Hg2+ in the coordination ratio of 2:1 by using the strong sulfur affinity of Hg2+, which resulted in a remarkable "turn-off" effect, with a quenching efficiency of 92.5% and four reversible cycles of Hg2+ fluorescence detection. For the fluorescence detection of Hg2+, the response time is fast (≤ 2 min) and the detection limit is low (7.8 nM), showing extremely high sensitivity, and the performance is obviously better than that of the reported fluorescent probes for detecting Hg2+. In particular, probe PTB has low toxicity and good biocompatibility, and has been successfully used for imaging of Hg2+ in living cells. Moreover, probe PTB uses thioether bond and carbon-nitrogen double bond as reaction sites to detect ClO-, which has large Stokes Shift (149 nm), good selectivity, high quenching efficiency (96.5%) and fast time response (about 10 s), and successfully detects ClO- in actual water samples. The dual functional fluorescent probe PTB is sensitive for Hg2+ and ClO-. It has been successfully used for making pH fluorescent test paper and imaging detection of exogenous Hg2+ in VSMC cells with low toxicity.

9.
Phytother Res ; 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37010930

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is a major health problem. However, no effective treatments are currently available. Thus, there is a critical need to develop novel drugs that can prevent and treat NAFLD with few side effects. In this study, Tussilagone (TUS), a natural sesquiterpene isolated from Tussilago farfara L, was explored in vitro and in vivo for its potential to treat NAFLD. Our results showed that in vitro TUS reduced oleic acid palmitate acid-induced triglyceride and cholesterol synthesis in HepG2 cells, reduced intracellular lipid droplet accumulation, improved glucose metabolism disorders and increased energy metabolism and reduced oxidative stress levels. In vivo, TUS significantly reduced fat accumulation and improved liver injury in high-fat diet (HFD)-induced mice. TUS treatment significantly increased liver mitochondrial counts and antioxidant levels compared to the HFD group of mice. In addition, TUS was found to reduce the expression of genes involved in lipid synthesis sterol regulatory element binding protein-1 (SREBP1), fatty acid synthase (FASN), and stearoy-CoA desaturase 1 (SCD1) in vitro and in vivo. Our results suggest that TUS may be helpful in the treatment of NAFLD, suggesting that TUS is a promising compound for the treatment of NAFLD. Our findings provided novel insights into the application of TUS in regulating lipid metabolism.

10.
Mikrochim Acta ; 190(3): 99, 2023 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-36809414

RESUMEN

A versatile DNA nanomachine detection system has been developed via the combination of DNAzyme with catalytic hairpin assembly (CHA) technology for achieving accurate and sensitive detection of lead ions (Pb2+). In the presence of target Pb2+, capture DNA nanomachine formed by AuNP and DNAzyme recognized and reacted with Pb2+, which yielded an "active" DNAzyme, that induced the cleavage of substrate strand, and then released the initiator DNA (TT) for CHA. With the help of the initiator DNA TT, self-powered CHA was activated to achieve the signal amplification reaction in the detection of DNA nanomachine. Meanwhile, the initiator DNA TT was released and hybridized with the other H1 strand to initiate another CHA, replacement, and turnovers, producing enhanced fluorescence signal of fluorophore FAM (excitation 490 nm/emission 520 nm) for sensitive determination of Pb2+. Under the optimized conditions, the DNA nanomachine detection system revealed high selectivity toward Pb2+ in the concentration range 50-600 pM, with the limit of detection (LOD) of 31 pM. Recovery tests demonstrated that the DNA nanomachine detection system has excellent detection capability in real samples. Therefore, the proposed strategy can be extended and act as a basic platform for highly accurate and sensitive detection of various heavy metal ions.


Asunto(s)
Técnicas Biosensibles , ADN Catalítico , Plomo , ADN , Iones
11.
Angew Chem Int Ed Engl ; 62(12): e202213922, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36585379

RESUMEN

Cuproptosis is a new form of programmed cell death and exhibits enormous potential in cancer treatment. However, reducing the undesirable Cu ion release in normal tissue and maximizing the copper-induced therapeutic effect in cancer sites are two main challenges. In this study, we constructed a photothermally triggered nanoplatform (Au@MSN-Cu/PEG/DSF) to realize on-demand delivery for synergistic therapy. The released disulfiram (DSF) chelated with Cu2+ in situ to generate highly cytotoxic bis(diethyldithiocarbamate)copper (CuET), causing cell apoptosis, and the formed Cu+ species promoted toxic mitochondrial protein aggregation, leading to cell cuproptosis. Synergistic with photothermal therapy, Au@MSN-Cu/PEG/DSF could effectively kill tumor cells and inhibit tumor growth (inhibition rate up to 80.1 %). These results provide a promising perspective for potential cancer treatment based on cuproptosis, and may also inspire the design of advanced nano-therapeutic platforms.


Asunto(s)
Antineoplásicos , Apoptosis , Neoplasias , Humanos , Antineoplásicos/farmacología , Línea Celular Tumoral , Cobre/farmacología , Disulfiram/farmacología , Disulfiram/uso terapéutico , Ditiocarba , Neoplasias/tratamiento farmacológico
12.
Immunol Invest ; 51(6): 1785-1803, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35332841

RESUMEN

Previous studies have implicated that the transplantation of human umbilical cord mesenchymal stem cells (hUC-MSCs) effectively alleviates systemic lupus erythematosus (SLE) primarily due to immunomodulatory effects. However, little is known about the role of hUC-MSC-derived exosomes in SLE. This study is carried out to investigate the modifying effects of hUC-MSC-exosomes on the differentiation and function of immune cells in SLE. hUC-MSC-derived exosomes were extracted from the cultural supernatant of hUC-MSCs by ultrahigh speed centrifugation. Quantitative real-time polymerase chain reaction, western blot, enzyme-linked immunosorbent assay, and flow cytometry were performed to estimate the effect of hUC-MSC-derived exosomes on macrophage and regulatory T cell (Treg) polarization. In vivo, hUC-MSC-exosomes were injected intravenously into 28-week-old MRL/lpr mice. We had found that exosomes derived from hUC-MSC restrained the proliferation and inflammation of macrophages in vitro. Besides, MSC-exosomes inhibited CD68+M1 and HLA-DR+M1 but promoted CD206+M2 and CD163+M2 in vitro. Moreover, MRL/lpr mice administrated by intravenous injection of MSC-exosomes had less infiltration of CD14+CD11c+M1 cells but more CD14+CD163+M2 cells as well as Tregs in spleens compared with those in MRL/lpr mice treated by PBS. Additionally, MSC-exosomes could alleviate nephritis, liver and lung injuries of MRL/lpr mice. The survival of lupus mice could be improved after MSC-exosome treatment. This study has suggested that MSC-derived exosomes exert anti-inflammatory and immunomodulatory effects in SLE. MSC-exosomes ameliorate nephritis and other key organ injuries by inducing M2 macrophages and Tregs polarization. As natural nanocarriers, MSC-exosomes may serve as a promising cell-free therapeutic strategy for SLE.Abbreviations: SLE: Systemic lupus erythematosus; hUC-MSCs: Human umbilical cord mesenchymal stem cells; MSCs: Mesenchymal stem cells; qRT-PCR: Quantitative real-time polymerase chain reaction; ELISA: Enzyme-linked immunosorbent assay; Tregs: Regulatory cells; TNF-α: Tumor necrosis factor alfa; IL: Interleukin; COVID-19: Coronavirus disease 2019; pTHP-1: PMA-induced THP-1 macrophages; TEM: Transmission electron microscopy; LPS: Lipopolysaccharide; EVs: Extracellular vesicles; TRAF1: Tumor necrosis factor receptor-associated factor 1; IRAK1: Interferon-α-interleukin-1 receptor-associated kinase 1; NF-κB: Nuclear factor-κB; BLyS: B lymphocyte stimulator; APRIL: A proliferation-inducing ligand.


Asunto(s)
COVID-19 , Exosomas , Lupus Eritematoso Sistémico , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Nefritis , Animales , Proliferación Celular , Humanos , Macrófagos , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos MRL lpr , FN-kappa B , Linfocitos T Reguladores
13.
Kidney Blood Press Res ; 47(6): 375-390, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35114677

RESUMEN

BACKGROUND: Renal anemia is an important complication of chronic kidney disease (CKD). In addition to insufficient secretion of erythropoietin (EPO) and erythropoiesis disorders, the impact of eryptosis on renal anemia demands attention. However, a systemic analysis concerning the pathophysiology of eryptosis has not been expounded. SUMMARY: The complicated conditions in CKD patients, including oxidative stress, osmotic stress, metabolic stress, accumulation of uremic toxins, and iron deficiency, affect the normal skeleton structure of red blood cells (RBCs) and disturbs ionic homeostasis, causing phosphatidylserine to translocate to the outer lobules of the RBC membrane that leads to early elimination and/or shortening of the RBC lifespan. Inadequate synthesis of RBCs cannot compensate for their accelerated destruction, thus exacerbating renal anemia. Meanwhile, EPO treatment alone will not reverse renal anemia. A variety of eryptosis inhibitors have so far been found, but evidence of their effectiveness in the treatment of CKD remains to be established. KEY MESSAGES: In this review, the pathophysiological processes and factors influencing eryptosis in CKD were elucidated. The aim of this review was to underline the importance of eryptosis in renal anemia and determine some promising research directions or possible therapeutic targets to correct anemia in CKD.


Asunto(s)
Anemia , Eriptosis , Insuficiencia Renal Crónica , Anemia/etiología , Eritrocitos/metabolismo , Eritropoyesis , Humanos , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/metabolismo
14.
Endocr J ; 69(10): 1159-1172, 2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-35858781

RESUMEN

Findings of preclinical studies and recent phase I/II clinical trials have shown that mesenchymal stem cells (MSCs) play a significant role in the development of diabetic kidney disease (DKD). Thus, MSCs have attracted increasing attention as a novel regenerative therapy for kidney diseases. This review summarizes recent literature on the roles and potential mechanisms, including hyperglycemia regulation, anti-inflammation, anti-fibrosis, pro-angiogenesis, and renal function protection, of MSC-based treatment methods for DKD. This review provides novel insights into understanding the pathogenesis of DKD and guiding the development of biological therapies.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Hiperglucemia , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Humanos , Nefropatías Diabéticas/prevención & control , Fibrosis , Hiperglucemia/patología , Riñón/patología , Diabetes Mellitus/patología
15.
BMC Nephrol ; 23(1): 243, 2022 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-35804318

RESUMEN

BACKGROUND: Lupus nephritis (LN) is a common and serious complication of systemic lupus erythematosus (SLE). However, the aetiology and pathogenesis of LN remain unknown. 1,25-dihydroxyvitamin D3 [1,25-(OH)2-VitD3] is the active form of vitamin D, and it has been shown to perform important functions in inflammatory and immune-related diseases. In this study, we investigated the time-dependent effects of 1,25-dihydroxyvitamin D3 and explored the underlying mechanism in MRL/lpr mice, a well-studied animal model of LN. METHODS: Beginning at 8 weeks of age, 24-h urine samples were collected weekly to measure the levels of protein in the urine. We treated female MRL/lpr mice with 1,25-dihydroxyvitamin D3 (4 µg/kg) or 1% DMSO by intraperitoneal injection twice weekly for 3 weeks beginning at the age of 11 weeks. The mice were separately sacrificed, and serum and kidney samples were collected at the ages of 14, 16, 18, and 20 weeks to measure creatinine (Cr) levels, blood urea nitrogen (BUN) levels, histological damage, immunological marker (A-ds DNA, C1q, C3, IgG, IgM) levels, and inflammatory factor (TNF-α, IL-17, MCP-1) levels. Furthermore, the nuclear factor kappa B (NF-κB) and the mitogen-activated protein kinase (MAPK) signalling pathways were also assessed to elucidate the underlying mechanism. RESULTS: We found that MRL/lpr mice treated with 1,25-dihydroxyvitamin D3 displayed significantly attenuated LN. VitD3-treated mice exhibited significantly improved renal pathological damage and reduced proteinuria, BUN, SCr, A-ds DNA antibody and immune complex deposition levels (P < 0.05) compared with untreated MRL/lpr mice. Moreover, 1,25-dihydroxyvitamin D3 inhibited the complement cascade, inhibited the release of proinflammatory cytokines, such as TNF-α, IL-17, and MCP-1, and inhibited NF-κB and MAPK activation (P < 0.05). CONCLUSION: 1,25-dihydroxyvitamin D3 exerts a protective effect against LN by inhibiting the NF-κB and MAPK signalling pathways, providing a potential treatment strategy for LN. Interestingly, the NF-κB and MAPK signalling pathways are time-dependent mediators of LN and may be associated with lupus activity.


Asunto(s)
Nefritis Lúpica , Animales , Calcitriol/metabolismo , Calcitriol/farmacología , Calcitriol/uso terapéutico , Femenino , Interleucina-17/metabolismo , Riñón/patología , Nefritis Lúpica/tratamiento farmacológico , Sistema de Señalización de MAP Quinasas , Ratones , Ratones Endogámicos MRL lpr , FN-kappa B/metabolismo , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo
16.
Anal Chem ; 93(29): 10317-10325, 2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34270215

RESUMEN

A simple process, rich information, and intelligent response are the goals pursued by cancer diagnosis and treatment. Herein, we developed a core-shell plasmonic nanomaterial (Au@MnO2-DNA), which consisted of a AuNP core with an outer shell MnO2 nanosheet decorated with fluorophore modified DNA, to achieve the aforementioned aims. On the basis of the unique optical properties of plasmonic nanoparticles and the oxidability of the shell MnO2, scattering signal and fluorescence (FL) signal changes were both related to the expression level of glutathione (GSH), for which a dual-mode imaging analysis was successfully achieved on single optical microscope equipment with one-key switching. Meanwhile, the product of Mn2+ from the reaction between MnO2 and GSH not only served as a smart chemodynamic agent to initiate Fenton-like reaction for achieving chemodynamic therapy (CDT) of cancer cells but also relieved the side effect of intracellular GSH in cancer therapy. Therefore, the core-shell plasmonic nanomaterials with dual modal switching features and diagnostic properties act as excellent probes for achieving bioanalysis of aberrant levels of intracellular GSH and simultaneously activating the CDT of cancer cells based on the in situ reactions in cancer cells.


Asunto(s)
Nanopartículas , Nanoestructuras , Glutatión , Humanos , Compuestos de Manganeso , Óxidos
17.
Ecotoxicol Environ Saf ; 214: 112096, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33647854

RESUMEN

Nicosulfuron is an ingredient in photosynthesis-inhibiting herbicides and has been widely used in corn post-emergence weed control. In the current study, a pair of sister lines, HK301 (nicosulfuron-tolerence, NT) and HK320 (nicosulfuron-sensitive, NS), was used to study the effect of nicosulfuron in sweet maize seedlings on C4 photosynthetic enzymes and non-enzymatic substances, expression levels of key enzymes, and chloroplast structure. Nicosulfuron was sprayed at the four-leaf stage, and water was sprayed as a control. After nicosulfuron treatment, phosphoenolpyruvate carboxylase (PEPC), NADP-malic dehydrogenase (NADP-MDH), NADP-malic enzyme (NADP-ME), pyruvate orthophosphate dikinase (PPDK), and ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activities of NT were significantly higher than those of NS. Compared to NT, malate, oxaloacetic acid, and pyruvic acid significantly decreased as exposure time increased in NS. Compared to NS, nicosulfuron treatment significantly increased the expression levels of PEPC, NADP-MDH, NADP-ME, PPDK, and Rubisco genes in NT. Under nicosulfuron treatment, chloroplast ultrastructure of NS, compared to that of NT, nicosulfuron induced swelling of the chloroplast volume and reduced starch granules in NS. In general, our results indicate that in different resistant sweet maize, C4 photosynthetic enzymes activity and key genes expression play a critical role in enhancing the adaptability of plants to nicosulfuron stress at a photosynthetic physiological level.


Asunto(s)
Piridinas/toxicidad , Compuestos de Sulfonilurea/toxicidad , Zea mays/fisiología , Aclimatación , Adaptación Fisiológica , Malato Deshidrogenasa , Fosfoenolpiruvato Carboxilasa/genética , Fosfoenolpiruvato Carboxilasa/metabolismo , Fotosíntesis/genética , Hojas de la Planta/metabolismo , Piruvato Ortofosfato Diquinasa/genética , Piruvato Ortofosfato Diquinasa/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo , Plantones/metabolismo , Zea mays/metabolismo
18.
Anal Chem ; 92(23): 15647-15654, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33170659

RESUMEN

To date, plasmon resonance energy transfer (PRET)-based analytical approaches still inevitably suffer from limitations, such as lack of appropriate acceptor-donor pairs and the extra requirements of active groups of acceptors, which place great obstacles in extending the application of such methods, especially in the area of living cell studies. Herein, we design and fabricate a kind of "loading-type" plasmonic nanomaterials constituting gold nanoparticles as donors of PRET coated with mesoporous silicon, in which organic small molecules (CHCN) as acceptors of PRET were loaded (Au@MSN-CHCN). This "loading-type" strategy could conveniently integrate acceptor-donor pairs into one nanoparticle, so as to achieve the goal of sensitive detection of biomolecules in a complex physiological microenvironment. Based on the change of PRET efficiency of Au@MSN-CHCN induced by the specific reaction between CHCN and peroxynitrite (ONOO-), ONOO-, which plays an irreplaceable role in a series of physiological and pathological processes, is sensitively and selectively detected. Furthermore, in situ imaging of exogenous and endogenous ONOO- in living cells was achieved even at a single nanoparticle level. This work provides a general approach to construct PRET probes for visualizing various biomolecules in living cells.


Asunto(s)
Transferencia de Energía , Oro/química , Nanopartículas del Metal/química , Ácido Peroxinitroso/análisis , Supervivencia Celular , Células HeLa , Humanos , Límite de Detección
19.
Anal Chem ; 92(6): 4558-4565, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-32066238

RESUMEN

Despite great achievements in sensitive and selective detection of important biomolecules in living cells, it is still challenging to develop smart and controllable sensing nanodevices for cellular studies that can be activated at desired time in target sites. To address this issue, we have constructed a remote-controlled "lock-unlock" nanosystem for visual analysis of endogenous potassium ions (K+), which employed a dual-stranded aptamer precursor (DSAP) as recognition molecules, SiO2 based gold nanoshells (AuNS) as nanocarriers, and near-infrared ray (NIR) as the remotely applied stimulus. With the well-designed and activatable DSAP-AuNS, the deficiencies of traditional aptamer-based sensors have been successfully overcome, and the undesired response during transport has been avoided, especially in complex physiological microenvironments. While triggered by NIR, the increased local temperature of AuNS induced the dehybridiztion of DSAP, realized the "lock-unlock" switch of the DSAP-AuNS nanosystem, activated the binding capability of aptamer, and then monitored intracellular K+ via the change of fluorescence signal. This DSAP-AuNS nanosystem not only allows us to visualize endogenous ions in living cells at a desired time but also paves the way for fabricating temporal controllable nanodevices for cellular studies.


Asunto(s)
Nanotecnología , Imagen Óptica , Potasio/análisis , Oro/química , Células HeLa , Humanos , Rayos Infrarrojos , Iones/análisis , Nanopartículas del Metal/química , Microscopía Electrónica de Transmisión , Tamaño de la Partícula , Dióxido de Silicio/química , Propiedades de Superficie , Células Tumorales Cultivadas
20.
Nanotechnology ; 31(9): 095712, 2020 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-31739294

RESUMEN

Hydrophobic particles have been suffering from aggregation in aqueous media, which limits their applications in oil/water separation. Surfactants have been used to increase the dispersity of the hydrophobic particles in water, but this approach compromises particles' hydrophobicity and oil absorption capabilities. Recently, hierarchical microparticles decorated with nanospikes were found to exhibit long-term anomalous dispersion in liquid medium without adding any surfactants. However, whether this anomalous dispersion phenomenon was applicable to 2D nano-petals decorated microparticles still remains unknown. Here, we developed a ZnO-based flower-like microparticles (FLMPs) whose surfaces were attached with 2D nano-petals, and we examined their anomalous dispersity. Our results showed that both hydrophilic and hydrophobic FLMPs could achieve anomalous dispersity either in water or organic solvents, likely due to reduced interparticle collision by the 2D nano-petals. In addition, the functional hydrophobic FLMPs also possessed a large surface area and superhydrophobic surfaces to efficiently absorb oil spills on water and oil emulsion suspended in water. In contrast, the hydrophobic microbeads (MBs) without nano-petals structure seriously aggregated in water and exhibited reduced oil absorption abilities. Our work demonstrated the new finding of 2D nano-pedal structure-mediated anomalous dispersity, and provided a new method for effective oil/water separation using superhydrophobic particles without surfactants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA