Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 214
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Virol ; 97(7): e0068623, 2023 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-37367489

RESUMEN

Foot-and-mouth disease (FMD) is an acute, highly contagious disease of cloven-hoofed animals caused by FMD virus (FMDV). Currently, the molecular pathogenesis of FMDV infection remains poorly understood. Here, we demonstrated that FMDV infection induced gasdermin E (GSDME)-mediated pyroptosis independent of caspase-3 activity. Further studies showed that FMDV 3Cpro cleaved porcine GSDME (pGSDME) at the Q271-G272 junction adjacent to the cleavage site (D268-A269) of porcine caspase-3 (pCASP3). The inhibition of enzyme activity of 3Cpro failed to cleave pGSDME and induce pyroptosis. Furthermore, overexpression of pCASP3 or 3Cpro-mediated cleavage fragment pGSDME-NT was sufficient to induce pyroptosis. Moreover, the knockdown of GSDME attenuated the pyroptosis caused by FMDV infection. Our study reveals a novel mechanism of pyroptosis induced by FMDV infection and might provide new insights into the pathogenesis of FMDV and the design of antiviral drugs. IMPORTANCE Although FMDV is an important virulent infectious disease virus, few reports have addressed its relationship with pyroptosis or pyroptosis factors, and most studies focus on the immune escape mechanism of FMDV. GSDME (DFNA5) was initially identified as being associated with deafness disorders. Accumulating evidence indicates that GSDME is a key executioner for pyroptosis. Here, we first demonstrate that pGSDME is a novel cleavage substrate of FMDV 3Cpro and can induce pyroptosis. Thus, this study reveals a previously unrecognized novel mechanism of pyroptosis induced by FMDV infection and might provide new insights into the design of anti-FMDV therapies and the mechanisms of pyroptosis induced by other picornavirus infections.


Asunto(s)
Virus de la Fiebre Aftosa , Fiebre Aftosa , Animales , Porcinos , Virus de la Fiebre Aftosa/metabolismo , Caspasa 3/metabolismo , Cisteína Endopeptidasas/metabolismo , Gasderminas , Piroptosis , Proteínas Virales/metabolismo
2.
J Virol ; 97(5): e0045923, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37097154

RESUMEN

Numerous studies have illustrated that the Seneca Valley virus (SVV) shows sufficient oncolytic efficacy targeting small cell lung cancer (SCLC). However, the therapeutics of nonsmall cell lung carcinoma (NSCLC, accounts for 85% of lung cancer cases) using oncolytic virus have been resisting due to the filtration of neutralizing antibody and limited reproduction capacity. Here, we employed structural biology and reverse genetics to optimize novel oncolytic SVV mutants (viral receptor-associated mutant SVV-S177A and viral antigenic peptide-related variant SVV-S177A/P60S) with increased infectivity and lower immunogenicity. The results of the NSCLC-bearing athymic mouse model demonstrated that wild-type (wt) SVV-HB extended the median overall survival (mOS) from 11 days in the PBS group to 19 days. Notably, the newly discovered mutations significantly (P < 0.001) prolonged the mOS from 11 days in the control cohort to 23 days in the SVV-S177A cohort and the SVV-S177A/P60S cohort. Taken together, we present a structure-guided genetic modification strategy for oncolytic SVV optimization and provide a candidate for developing oncolytic viral therapy against nonsensitive NSCLC. IMPORTANCE Nonsmall cell lung cancer (NSCLC) accounts for approximately 85% of lung cancer cases (more than 1.85 million cases with 1.48 million deaths in 2020). In the present study, two novel oncolytic SVV mutants modified based on structural biology and reverse genetics (viral receptor-associated mutant SVV-S177A and viral antigenic peptide-related mutant SVV-S177A/P60S) with increased infectivity or lower immunogenicity significantly (P < 0.001) prolonged the mOS from 11 days in the control cohort to 23 days in the SVV-S177A cohort and the SVV-S177A/P60S cohort in the NSCLC-bearing athymic mouse model, which may provide the direction for modifying SVV to improve the effect of oncolysis.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Picornaviridae , Animales , Ratones , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/terapia , Pulmón , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Ratones Desnudos , Picornaviridae/genética
3.
Microb Pathog ; 191: 106646, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38631414

RESUMEN

Porcine viral diarrhea is a common ailment in clinical settings, causing significant economic losses to the swine industry. Notable culprits behind porcine viral diarrhea encompass transmissible gastroenteritis virus (TGEV), porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus (PDCoV), and porcine rotavirus-A (PoRVA). Co-infections involving the viruses are a common occurrence in clinical settings, thereby amplifying the complexities associated with differential diagnosis. As a consequence, it is therefore necessary to develop a method that can detect and differentiate all four porcine diarrhea viruses (TGEV, PEDV, PDCoV, and PoRVA) with a high sensitivity and specificity. Presently, polymerase chain reaction (PCR) is the go-to method for pathogen detection. In comparison to conventional PCR, TaqMan real-time PCR offers heightened sensitivity, superior specificity, and enhanced accuracy. This study aimed to develop a quadruplex real-time RT-qPCR assay, utilizing TaqMan probes, for the distinctive detection of TGEV, PEDV, PDCoV, and PoRVA. The quadruplex real-time RT-qPCR assay, as devised in this study, exhibited the capacity to avoid the detection of unrelated pathogens and demonstrated commendable specificity, sensitivity, repeatability, and reproducibility, boasting a limit of detection (LOD) of 27 copies/µL. In a comparative analysis involving 5483 clinical samples, the results from the commercial RT-qPCR kit and the quadruplex RT-qPCR for TGEV, PEDV, PDCoV, and PoRVA detection were entirely consistent. Following sample collection from October to March in Guangxi Zhuang Autonomous Region, we assessed the prevalence of TGEV, PEDV, PDCoV, and PoRVA in piglet diarrhea samples, revealing positive detection rates of 0.2 % (11/5483), 8.82 % (485/5483), 1.22 % (67/5483), and 4.94 % (271/5483), respectively. The co-infection rates of PEDV/PoRVA, PEDV/PDCoV, TGEV/PED/PoRVA, and PDCoV/PoRVA were 0.39 %, 0.11 %, 0.01 %, and 0.03 %, respectively, with no detection of other co-infections, as determined by the quadruplex real-time RT-qPCR. This research not only established a valuable tool for the simultaneous differentiation of TGEV, PEDV, PDCoV, and PoRVA in practical applications but also provided crucial insights into the prevalence of these viral pathogens causing diarrhea in Guangxi.


Asunto(s)
Virus de la Diarrea Epidémica Porcina , Reacción en Cadena en Tiempo Real de la Polimerasa , Rotavirus , Sensibilidad y Especificidad , Enfermedades de los Porcinos , Virus de la Gastroenteritis Transmisible , Animales , Porcinos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Virus de la Gastroenteritis Transmisible/genética , Virus de la Gastroenteritis Transmisible/aislamiento & purificación , Virus de la Diarrea Epidémica Porcina/genética , Virus de la Diarrea Epidémica Porcina/aislamiento & purificación , Virus de la Diarrea Epidémica Porcina/clasificación , Enfermedades de los Porcinos/virología , Enfermedades de los Porcinos/diagnóstico , Rotavirus/genética , Rotavirus/aislamiento & purificación , Rotavirus/clasificación , Gastroenteritis Porcina Transmisible/diagnóstico , Gastroenteritis Porcina Transmisible/virología , Deltacoronavirus/genética , Deltacoronavirus/aislamiento & purificación , Diarrea/virología , Diarrea/veterinaria , Diarrea/diagnóstico , Coronavirus/genética , Coronavirus/aislamiento & purificación , Coronavirus/clasificación , Heces/virología , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/virología
4.
J Gen Virol ; 104(4)2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37097881

RESUMEN

Swine are considered to be an important intermediate host in the cycle of Japanese encephalitis virus (JEV) infection. Most existing antiviral studies of JEV mainly focus on the host factor of the dead-end hosts. However, little research has addressed this in swine. Here, we found that swine interferon alpha-inducible protein 6 (sIFI6) possessed antiviral activity against JEV. In vitro studies showed that overexpression of sIFI6 inhibited the infection of JEV, while sIFI6 knockdown enhanced the infection of JEV in PK-15 cells. In addition, we also found that the structural integrity of sIFI6 was required by anti-JEV activity and that sIFI6 interacted with JEV nonstructural protein 4A (NS4A), an integral membrane protein with a pivotal function in replication complex during JEV replication. The interaction domain was mapped to the fourth transmembrane domain (TMD), also known as the 2K peptide of NS4A. The antiviral activity of sIFI6 was regulated by endoplasmic reticulum (ER) stress-related protein, Bip. In vivo studies revealed that sIFI6 alleviated symptoms of JEV infection in C57BL/6 mice. In addition, the antiviral spectrum of sIFI6 showed that sIFI6 specifically inhibited JEV infection. In conclusion, this study identified sIFI6 as a host factor against JEV infection for the first time. Our findings provide a potential drug target against JEV infection.


Asunto(s)
Virus de la Encefalitis Japonesa (Especie) , Encefalitis Japonesa , Animales , Ratones , Antivirales/uso terapéutico , Línea Celular , Virus de la Encefalitis Japonesa (Especie)/metabolismo , Encefalitis Japonesa/metabolismo , Ratones Endogámicos C57BL , Porcinos , Replicación Viral , Fosfoproteínas/metabolismo , Proteínas Nucleares/metabolismo
5.
J Gen Virol ; 104(3)2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36947577

RESUMEN

Seneca Valley virus (SVV, also known as Senecavirus A), an oncolytic virus, is a nonenveloped, positive-strand RNA virus and the sole member of the genus Senecavirus within the family Picornaviridae. The mechanisms of SVV entry into cells are currently almost unknown. In the present study, we found that SVV entry into HEK293T cells is acidic pH-dependent by using ammonium chloride (NH4Cl) and chloroquine, both of which could inhibit SVV infection. We confirmed that dynamin II is required for SVV entry by using dynasore, silencing the dynamin II protein, or expressing the dominant-negative (DN) K44A mutant of dynamin II. Then, we discovered that chlorpromazine (CPZ) treatment or knockdown of the clathrin heavy chain (CLTC) protein significantly inhibited SVV infection. In addition, overexpression of CLTC promoted SVV infection. Caveolin-1 and membrane cholesterol were also required for SVV endocytosis. Notably, utilizing genistein, EIPA or nocodazole, we observed that macropinocytosis and microtubules are not involved in SVV entry. Furthermore, overexpression of the Rab7 and Rab9 proteins but not the Rab5 or Rab11 proteins promoted SVV infection. The findings were further validated by the knockdown of four Rabs and Lamp1 proteins, indicating that after internalization, SVV is transported from late endosomes to the trans-Golgi network (TGN) or lysosomes, respectively, eventually releasing its RNA into the cytosol from the lysosomes. Our findings concretely revealed SVV endocytosis mechanisms in HEK293T cells and provided an insightful theoretical foundation for further research into SVV oncolytic mechanisms.


Asunto(s)
Dinamina II , Picornaviridae , Humanos , Células HEK293 , Endocitosis , Endosomas , Lisosomas , Internalización del Virus
6.
Fungal Genet Biol ; 167: 103796, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37146899

RESUMEN

Heat stress (HS) is a major abiotic factor influencing fungal growth and metabolism. However, the genetic basis of thermotolerance in Ganoderma lingzhi (G. lingzhi) remains largely unknown. In this study, we investigated the thermotolerance capacities of 21 G. lingzhi strains and screened the thermo-tolerant (S566) and heat-sensitive (Z381) strains. The mycelia of S566 and Z381 were collected and subjected to a tandem mass tag (TMT)-based proteome assay. We identified 1493 differentially expressed proteins (DEPs), with 376 and 395 DEPs specific to the heat-tolerant and heat-susceptible genotypes, respectively. In the heat-tolerant genotype, upregulated proteins were linked to stimulus regulation and response. Proteins related to oxidative phosphorylation, glycosylphosphatidylinositol-anchor biosynthesis, and cell wall macromolecule metabolism were downregulated in susceptible genotypes. After HS, the mycelial growth of the heat-sensitive Z381 strain was inhibited, and mitochondrial cristae and cell wall integrity of this strain were severely impaired, suggesting that HS may inhibit mycelial growth of Z381 by damaging the cell wall and mitochondrial structure. Furthermore, thermotolerance-related regulatory pathways were explored by analyzing the protein-protein interaction network of DEPs considered to participate in the controlling the thermotolerance capacity. This study provides insights into G. lingzhi thermotolerance mechanisms and a basis for breeding a thermotolerant germplasm bank for G. lingzhi and other fungi.


Asunto(s)
Ganoderma , Termotolerancia , Termotolerancia/genética , Proteómica , Respuesta al Choque Térmico/genética , Ganoderma/genética
7.
J Antimicrob Chemother ; 78(3): 747-756, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36659862

RESUMEN

OBJECTIVES: The genus Streptococcus contains species of important zoonotic pathogens such as those that cause bovine mastitis. Unfortunately, many Streptococcus species have developed antibiotic resistance. Phage lysins are considered promising alternatives to antibiotics because it is difficult for bacteria to develop lysin resistance. However, there remains a lack of phage lysin resources for the treatment of streptococci-induced mastitis. METHODS: We identified the prophage lysin Lys0859 from the genome of the Streptococcus suis SS0859 strain. Lys0859 was subsequently characterized to determine its host range, MIC, bactericidal activity in milk, and ability to clear biofilms in vitro. Finally, to determine the effects of Lys0859 on the treatment of both bovine mastitis and S. suis infection in vivo, we established models of Streptococcus agalactiae ATCC 13813-induced mastitis and S. suis serotype 2 SC19 systemic infection. RESULTS: Our results demonstrate that Lys0859 possesses broad-spectrum lytic activity against Streptococcus and Staphylococcus species isolated from animals with bovine mastitis and 15 serotypes of S. suis isolated from swine. Intramammary and intramuscular injection of Lys0859 reduced the number of bacteria in mammary tissue by 3.75 and 1.45 logs compared with the PBS group, respectively. Furthermore, 100 µg/mouse of Lys0859 administered intraperitoneally at 1 h post-infection protected 83.3% (5/6) of mice from a lethal dose of S. suis infection. CONCLUSIONS: Overall, our results enhance the understanding and development of new strategies to combat both streptococci-induced mastitis and S. suis infection.


Asunto(s)
Bacteriófagos , Mastitis Bovina , Infecciones Estreptocócicas , Fagos de Streptococcus , Streptococcus suis , Femenino , Bovinos , Animales , Porcinos , Ratones , Humanos , Profagos/genética , Mastitis Bovina/tratamiento farmacológico , Antibacterianos/farmacología , Infecciones Estreptocócicas/microbiología
8.
J Virol ; 96(17): e0112122, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-36000840

RESUMEN

Seneca Valley virus (SVV) is a new pathogen associated with porcine idiopathic vesicular disease (PIVD) in recent years. However, SVV-host interaction is still unclear. In this study, through LC-MS/MS analysis and coimmunoprecipitation analysis, DHX30 was identified as a 3Cpro-interacting protein. 3Cpro mediated the cleavage of DHX30 at a specific site, which depends on its protease activity. Further study showed that DHX30 was an intrinsic antiviral factor against SVV that was dependent on its helicase activity. DHX30 functioned as a viral-RNA binding protein that inhibited SVV replication at the early stage of viral infection. RIP-seq showed comparatively higher coverage depth at SVV 5'UTR, but the distribution across SVV RNA suggested that the interaction had low specificity. DHX30 expression strongly inhibited double-stranded RNA (dsRNA) production. Interestingly, DHX30 was determined to interact with 3D in an SVV RNA-dependent manner. Thus, DHX30 negatively regulated SVV propagation by blocking viral RNA synthesis, presumably by participating in the viral replication complex. IMPORTANCE DHX30, an RNA helicase, is identified as a 3Cpro-interacting protein regulating Seneca Valley virus (SVV) replication dependent on its helicase activity. DHX30 functioned as a viral-RNA binding protein that inhibited SVV replication at the early stage of virus infection. DHX30 expression strongly inhibited double-stranded RNA (dsRNA) production. In addition, 3Cpro abolished DHX30 antiviral effects by inducing DHX30 cleavage. Thus, DHX30 is an intrinsic antiviral factor that inhibits SVV replication.


Asunto(s)
Proteasas Virales 3C , Picornaviridae , Proteolisis , ARN Helicasas , Proteasas Virales 3C/metabolismo , Animales , Cromatografía Liquida , Inmunoprecipitación , Picornaviridae/enzimología , Picornaviridae/genética , Picornaviridae/crecimiento & desarrollo , Picornaviridae/fisiología , Unión Proteica , ARN Helicasas/antagonistas & inhibidores , ARN Helicasas/metabolismo , ARN Bicatenario/biosíntesis , ARN Viral/biosíntesis , Porcinos/virología , Enfermedad Vesicular Porcina/virología , Espectrometría de Masas en Tándem , Replicación Viral
9.
Virol J ; 20(1): 195, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37644571

RESUMEN

BACKGROUND: Porcine circovirus type 2 (PCV2), a member of the genus Circovirus and family Circoviridae, is a closed, small, circular, and single-stranded DNA virus, and it is a crucial swine pathogen of porcine circovirus-associated diseases (PCVADs). PCV2 was first detected in PK-15(ATCC-CCL) cells in 1974, which has caused significant economic loss to the swine industry throughout the world. And the first case of PCV2 was reported in China in 2000. At present, PCV2d is the main genotype circulating widely in China. METHODS: Lymph samples were obtained from piglets with emaciation and respiratory disease in Guangxi province, China. The main pathogens were detected via PCR from lymph samples, and then PCV2-single positive samples were used to inoculate with PK-15 cells. After successive generations, the isolate was subsequently identified by polymerase chain reaction (PCR), immunofluorescence assay (IFA), Western blot (WB), and transmission electron microscopic (TEM). The full-length genome and genetic characterization of isolates were analyzed by Sanger sequencing. The TCID50 of the PCV2-GX-6 was determined by IFA, and the pathogenicity of PCV2 in BALB/c mice was analyzed via the mouse model. RESULTS: The isolates were successfully isolated from clinical samples. The complete genome of PCV2-GX-4, PCV2-GX-6, PCV2-GX-7, PCV2-GX-11 and PCV2-GX-16 have been amplified, sequenced, and deposited in GenBank (accession no.: OR133747, OQ803314, OR133748, OR133749, OR133750). Homology and phylogenetic analysis with reference strains showed that the isolates belonged to the PCV2d genotype. The PCV2-GX-6 could be stably passaged more than 30 times in PK-15 cells. PCV2-GX-6 was identified by PCR, IFA, WB and TEM. The results of homology showed that PCV2-GX-6 was closely related to the reference strains PCV2-JS17-8 (GenBank accession no.: MH211363). Pathogenicity studies in mice have shown that PCV2-GX-6 can lead to growth inhibition of mice. Meanwhile PCV2-GX-6 caused the typical lesions of spleen, lung and kidney. The results of qPCR showed that PCV2 can effectively proliferate in the liver, spleen, lung, and kidney. CONCLUSION: PCV2-GX-6 can successfully infect BLAB/c mice, effectively proliferate in major organs, and possessed high pathogenicity. In conclusion, combined with the genotype and pathogenicity of PCV2d currently prevalent, PCV2-GX-6 can be used as a candidate vaccine strain.


Asunto(s)
Circovirus , Animales , Ratones , Porcinos , Circovirus/genética , China , Filogenia , Virulencia , Ratones Endogámicos BALB C
11.
Eur Radiol ; 33(12): 8542-8553, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37436506

RESUMEN

OBJECTIVES: To evaluate the performance of automatic deep learning (DL) algorithm for size, mass, and volume measurements in predicting prognosis of lung adenocarcinoma (LUAD) and compared with manual measurements. METHODS: A total of 542 patients with clinical stage 0-I peripheral LUAD and with preoperative CT data of 1-mm slice thickness were included. Maximal solid size on axial image (MSSA) was evaluated by two chest radiologists. MSSA, volume of solid component (SV), and mass of solid component (SM) were evaluated by DL. Consolidation-to-tumor ratios (CTRs) were calculated. For ground glass nodules (GGNs), solid parts were extracted with different density level thresholds. The prognosis prediction efficacy of DL was compared with that of manual measurements. Multivariate Cox proportional hazards model was used to find independent risk factors. RESULTS: The prognosis prediction efficacy of T-staging (TS) measured by radiologists was inferior to that of DL. For GGNs, MSSA-based CTR measured by radiologists (RMSSA%) could not stratify RFS and OS risk, whereas measured by DL using 0HU (2D-AIMSSA0HU%) could by using different cutoffs. SM and SV measured by DL using 0 HU (AISM0HU% and AISV0HU%) could effectively stratify the survival risk regardless of different cutoffs and were superior to 2D-AIMSSA0HU%. AISM0HU% and AISV0HU% were independent risk factors. CONCLUSION: DL algorithm can replace human for more accurate T-staging of LUAD. For GGNs, 2D-AIMSSA0HU% could predict prognosis rather than RMSSA%. The prediction efficacy of AISM0HU% and AISV0HU% was more accurate than of 2D-AIMSSA0HU% and both were independent risk factors. CLINICAL RELEVANCE STATEMENT: Deep learning algorithm could replace human for size measurements and could better stratify prognosis than manual measurements in patients with lung adenocarcinoma. KEY POINTS: • Deep learning (DL) algorithm could replace human for size measurements and could better stratify prognosis than manual measurements in patients with lung adenocarcinoma (LUAD). • For GGNs, maximal solid size on axial image (MSSA)-based consolidation-to-tumor ratio (CTR) measured by DL using 0 HU could stratify survival risk than that measured by radiologists. • The prediction efficacy of mass- and volume-based CTRs measured by DL using 0 HU was more accurate than of MSSA-based CTR and both were independent risk factors.


Asunto(s)
Adenocarcinoma del Pulmón , Aprendizaje Profundo , Neoplasias Pulmonares , Humanos , Pronóstico , Neoplasias Pulmonares/patología , Tomografía Computarizada por Rayos X/métodos , Adenocarcinoma del Pulmón/diagnóstico por imagen , Adenocarcinoma del Pulmón/patología , Estudios Retrospectivos
12.
J Immunol ; 207(1): 189-199, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34183365

RESUMEN

Seneca Valley virus (SVV), a newly emerging virus belonging to the Picornaviridae family, has caused vesicular disease in the swine industry. However, the molecular mechanism of viral pathogenesis remains poorly understood. This study revealed that SVV infection could induce pyroptosis in SK6 cells in a caspase-dependent and -independent manner. SVV may inhibit caspase-1 activation at late infection because of 3Cpro cleavage of NLRP3, which counteracted pyroptosis activation. Further study showed that 3Cpro targeted porcine gasdermin D (pGSDMD) for cleavage through its protease activity. 3Cpro cleaved porcine GSDMD (pGSDMD) at two sites, glutamine 193 (Q193) and glutamine 277 (Q277), and Q277 was close to the caspase-1-induced pGSDMD cleavage site. pGSDMD1-277 triggered cell death, which was similar to N-terminal fragment produced by caspase-1 cleavage of pGSDMD, and other fragments exhibited no significant inhibitory effects on cellular activity. Ectopic expression of pGSDMD converted 3Cpro-induced apoptosis to pyroptosis in 293T cells. Interestingly, 3Cpro did not cleave mouse GSDMD or human GSDMD. And, both pGSDMD and pGSDMD1-277 exhibited bactericidal activities in vivo. Nevertheless, pGSDMD cannot kill bacteria in vitro. Taken together, our results reveal a novel pyroptosis activation manner produced by viral protease cleavage of pGSDMD, which may provide an important insight into the pathogenesis of SVV and cancer therapy.


Asunto(s)
Proteasas Virales 3C/inmunología , Proteínas de Unión a Fosfato/inmunología , Picornaviridae/enzimología , Animales , Células Cultivadas , Células HEK293 , Humanos , Piroptosis/inmunología , Porcinos
13.
Virol J ; 19(1): 205, 2022 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-36461007

RESUMEN

BACKGROUND: Swine influenza viruses (SIV), considered the "mixing vessels" of influenza viruses, posed a significant threat to global health systems and are dangerous pathogens. Eurasian avian-like H1N1(EA-H1N1) viruses have become predominant in swine populations in China since 2016. METHODS: Lung tissue samples were obtained from pregnant sows with miscarriage and respiratory disease in Heilongjiang province, and pathogens were detected by Next-generation sequencing (NGS) and PCR. The nucleic acid of isolates was extracted to detect SIV by RT-PCR. Then, SIV-positive samples were inoculated into embryonated chicken eggs. After successive generations, the isolates were identified by RT-PCR, IFA, WB and TEM. The genetic evolution and pathogenicity to mice of A/swine/Heilongjiang/GN/2020 were analyzed. RESULTS: The major pathogens were influenza virus (31%), Simbu orthobunyavirus (15%) and Jingmen tick virus (8%) by NGS, while the pathogen that can cause miscarriage and respiratory disease was influenza virus. The SIV(A/swine/Heilongjiang/GN/2020) with hemagglutination activity was isolated from lung samples and was successfully identified by RT-PCR, IFA, WB and TEM. Homology and phylogenetic analysis showed that A/swine/Heilongjiang/GN/2020 is most closely related to A/swine/Henan/SN/10/2018 and belonged to EA-H1N1. Pathogenicity in mice showed that the EA-H1N1 could cause lethal or exhibit extrapulmonary virus spread and cause severe damage to respiratory tracts effectively proliferating in lung and trachea. CONCLUSION: A/swine/Heilongjiang/GN/2020 (EA-H1N1) virus was isolated from pregnant sows with miscarriage and respiratory disease in Heilongjiang province, China. Clinical signs associated with influenza infection were observed during 14 days with A/swine/Heilongjiang/GN/2020 infected mice. These data suggest that A/swine/Heilongjiang/GN/2020 (EA-H1N1) had high pathogenicity and could be systemic spread in mice.


Asunto(s)
Aborto Espontáneo , Subtipo H1N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Humana , Infecciones por Orthomyxoviridae , Embarazo , Humanos , Porcinos , Animales , Femenino , Ratones , Virus Reordenados , Subtipo H1N1 del Virus de la Influenza A/genética , Virulencia , Filogenia , Infecciones por Orthomyxoviridae/veterinaria , Pollos
14.
Virol J ; 19(1): 51, 2022 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-35331281

RESUMEN

BACKGROUND: Atypical porcine pestivirus (APPV) is a single-stranded RNA virus with high genetic variation that causes congenital tremor (CT) in newborn piglets, belonging to the genus Pestivirus of the family Flaviviridae. Increasing cases of APPV infection in China in the past few years would pose severe challenges to the development of pig production. In view of the high genetic variability of APPV, the genetic characteristics of APPV in Hubei province was determined. METHODS: 52 tissue samples from 8 CT-affected newborn piglets were collected at two different periods in the same pig farm in Hubei province. Viral nucleic acid was extracted to detect pathogens that can cause CT in piglets or other common clinical pathogens by RT-PCR. Haematoxylin and eosin (HE) staining, immunohistochemical (IHC) analysis, and qRT-PCR were performed to observe histopathological changes and histological distribution, and detect the viral load of APPV in CT-affected piglets. The full-length genome of APPV was obtained and sequence analysis was conducted to determine the phylogenetic relationship. RESULTS: Histopathological observation and histological distribution analysis showed that the histological lesions and distribution of APPV were mainly in central nervous system (CNS) tissues and immune tissues. Viral load analysis revealed that the viral copy number was higher in the cerebellum, submaxillary lymph nodes, tonsil, and serum than in other tissues. Phylogenetic analysis showed that CH-HB2020 and CH-HB2021 belonged to Clade I.3, and is most closely related to APPV_CH-GX2016. Sequence alignment based on APPV encoding sequences (CDS) showed that the nucleotide identities of CH-HB2020 or CH-HB2021 with Clade I, Clade II, and Clade III strains were 83.5-98.6%, 83.1-83.5%, and 81.1-81.4%, respectively, while the amino acid identities were 91.9-99.2%, 91.2-95.3%, and 90.77-91.4%, respectively. No recombination event was observed in CH-HB2020 or CH-HB2021 strains. CONCLUSIONS: These findings enhance our understanding of the pathogenesis of APPV and may provide potential molecular evidence for its prevalence and transmission.


Asunto(s)
Infecciones por Pestivirus , Pestivirus , Enfermedades de los Porcinos , Animales , Animales Recién Nacidos , China/epidemiología , Pestivirus/genética , Infecciones por Pestivirus/veterinaria , Filogenia , Porcinos , Temblor/congénito , Temblor/genética , Temblor/veterinaria
15.
Virol J ; 19(1): 65, 2022 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-35410270

RESUMEN

BACKGROUND: Seneca Valley virus (SVV) is a picornavirus that causes vesicular disease in swine. Clinical characteristics of the disease are similar to common viral diseases such as foot-and-mouth disease virus, porcine vesicular disease virus, and vesicular stomatitis virus, which can cause vesicles in the nose or hoof of pigs. Therefore, developing tools for detecting SVV infection is critical and urgent. METHODS: The neutralizing antibodies were produced to detect the neutralizing epitope. RESULTS: Five SVV neutralizing monoclonal antibodies (mAb), named 2C8, 3E4, 4C3, 6D7, and 7C11, were generated by immunizing mouses with ultra-purified SVV-LNSY01-2017. All five monoclonal antibodies exhibited high neutralizing titers to SVV. The epitopes targeted by these mAbs were further identified by peptide scanning using GST fusion peptides. The peptide 153QELNEE158 is defined as the smallest linear neutralizing epitope. The antibodies showed no reactivity to VP2 single mutants E157A. Furthermore, the antibodies showed no neutralizing activity with the recombinant virus (SVV-E157A). CONCLUSIONS: The five monoclonal antibodies and identified epitopes may contribute to further research on the structure and function of VP2 and the development of diagnostic methods for detecting different SVV strains. Additionally, the epitope recognized by monoclonal antibodies against VP2 protein may provide insights for novel SVV vaccines and oncolytic viruses development.


Asunto(s)
Anticuerpos Monoclonales , Vacunas , Animales , Epítopos , Ratones , Péptidos , Picornaviridae , Porcinos
16.
Inflamm Res ; 71(10-11): 1213-1227, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35802146

RESUMEN

BACKGROUND: Acute liver injury is liver cell injury that occurs rapidly in a short period of time. Caffeine has been shown to maintain hepatoprotective effect with an unclear mechanism. Endoplasmic reticulum stress (ERS) has significant effects in acute liver injury. Induction of GRP78 is a hallmark of ERS. Whether or not caffeine's function is related to GRP78 remains to be explored. METHODS: Acute liver injury model was established by LPS-treated L02 cells and in vivo administration of LPS/D-Gal in mice. Caffeine was pre-treated in L02 cells or mice. Gene levels was determined by real-time PCR and western blot. Cell viability was tested by CCK-8 assay and cell apoptosis was tested by flow cytometry. The interaction of GRP78 and NEDD4L was determined by Pull-down and co-immunoprecipitation (Co-IP) assay. The ubiquitination by NEDD4L on GRP78 was validated by in vitro ubiquitination assay. RESULTS: Caffeine protected liver cells against acute injury induced cell apoptosis and ERS both in vitro and in vivo. Suppression of GRP78 could block the LPS-induced cell apoptosis and ERS. NEDD4L was found to interact with GRP78 and ubiquitinate its lysine of 324 site directly. Caffeine treatment induced the expression of NEDD4L, resulting in the ubiquitination and inhibition of GRP78. CONCLUSION: Caffeine mitigated the acute liver injury by stimulating NEDD4L expression, which inhibited GRP78 expression via ubiquitination at its K324 site. Low dose of caffeine could be a promising therapeutic treatment for acute liver injury.


Asunto(s)
Cafeína , Enfermedad Hepática Inducida por Sustancias y Drogas , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico , Ubiquitina-Proteína Ligasas Nedd4 , Animales , Ratones , Apoptosis , Cafeína/farmacología , Cafeína/uso terapéutico , Chaperón BiP del Retículo Endoplásmico/metabolismo , Lipopolisacáridos/farmacología , Hígado/efectos de los fármacos , Ubiquitinación , Ubiquitina-Proteína Ligasas Nedd4/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico
17.
Mol Ther ; 29(3): 1138-1150, 2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33279723

RESUMEN

Cardiac fibrosis is a common pathological feature of cardiac hypertrophy. This study was designed to investigate a novel function of Yes-associated protein (YAP) circular RNA, circYap, in modulating cardiac fibrosis and the underlying mechanisms. By circular RNA sequencing, we found that three out of fifteen reported circYap isoforms were expressed in nine human heart tissues, with the isoform hsa_circ_0002320 being the highest. The levels of this isoform in the hearts of patients with cardiac hypertrophy were found to be significantly decreased. In the pressure overload mouse model, the levels of circYap were reduced in mouse hearts with transverse aortic constriction (TAC). Upon circYap plasmid injection, the cardiac fibrosis was attenuated, and the heart function was improved along with the elevation of cardiac circYap levels in TAC mice. Tropomyosin-4 (TMP4) and gamma-actin (ACTG) were identified to bind with circYap in cardiac cells and mouse heart tissues. Such bindings led to an increased TPM4 interaction with ACTG, resulting in the inhibition of actin polymerization and the following fibrosis. Collectively, our study uncovered a novel molecule that could regulate cardiac remodeling during cardiac fibrosis and implicated a new function of circular RNA. This process may be targeted for future cardio-therapy.


Asunto(s)
Actinas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Fibrosis/prevención & control , Miocitos Cardíacos/metabolismo , ARN Circular/genética , Factores de Transcripción/metabolismo , Tropomiosina/metabolismo , Actinas/genética , Animales , Proteínas de Ciclo Celular/genética , Fibrosis/genética , Fibrosis/patología , Humanos , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/patología , Polimerizacion , Factores de Transcripción/genética , Tropomiosina/genética , Remodelación Ventricular
18.
Plant Dis ; 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36320140

RESUMEN

Stephania tetrandra S. Moore belongs to the family Menispermaceae and is a Chinese medicinal plant widely distributed in tropical and subtropical regions of Asia and Africa. The root can be used for a variety of treatments (Jiang et al. 2020). In August 2021, leaf spot symptoms were observed on S. tetrandra cultivated in Jiangxi (114.456E, 27.379N, southern China). The disease symptoms included a slight constriction of the leaves, with irregularly shaped brown to black spots with well-defined borders. Severely affected leaves were shed by the plant. In order to determine the cause, symptomatic leaves were surface-disinfested with 0.6% NaOCl for 2 min, and rinsed twice in sterile water, then incubated on moist paper towels at 26°C in the dark for 2 days. Cream-colored sporodochia were observed within the leaf spots, turning dark green to black within 16 hours. A slow-growing white fungus was isolated from 95% of the samples (n = 30) on PDA. Dark green sporodochia emerged after 7 to 10 days of incubation, and released tip-end oval, non-septate, hyaline conidia measuring 6.7 to 8.5 µm (mean 7.5 µm, n = 50) by 2.0 to 3.3 µm (mean 2.7 µm, n = 50). Concentric rings were interspersed with sporodochia on the continually incubated mycelium. The morphological characteristics of the isolates matched the description of Albifimbria (Lombard et al. 2016). Nucleotide sequences, amplified from isolate FJL5C using primers of the internal transcribed spacer (ITS) (White et al. 1990), calmodulin (cmdA; Carbone and Kohn 1999), and RNA polymerase II second largest subunit (rpb2; O'Donnell et al. 2007), were deposited in GenBank under accession numbers OM317911, OM386815, and OM386816. A BLASTn analysis of the sequences showed 100% identity with the type strain CBS 328.52 (Lombard et al. 2016) of Albifimbria verrucaria (syn. Myrothecium verrucaria) for ITS, and 99% for cmdA and rpb2 (KU845893, KU845875, and KU845931, respectively). A phylogenetic tree generated using the three sequences showed that the isolate from S. tetrandra grouped with the A. verrucaria isolates, but away from other species of Albifimbria. These results together with the lack of a pale luteus exudate produced by A. viridis (Lombard et al. 2016) implied that the isolate was A. verrucaria. The culture was deposited in Guangdong Microbial Culture Collection Center (GDMCC 3.716). To verify pathogenicity, conidial suspension (106 conidia/mL in 0.05% Tween 20 solution) was sprayed onto six healthy plants. Six other plants sprayed with the Tween 20 solution alone served as controls. All plants were incubated in the dark at 26°C and 95% humidity for 30 hours, then transferred to a greenhouse at 26°C and 12 hours of illumination per day for 2 to 3 days. Inoculated leaves developed similar symptoms to those described above, whereas control plants remained healthy. The same pathogen was isolated from the diseased leaves, with the same morphological and molecular traits as those from the field plants. This experiment fulfilled Koch's postulates and confirmed that A. verrucaria causes leaf spots on S. tetrandra. This pathogen has been reported to cause disease in a wide range of weeds, legumes, and crop plants (Herman et al. 2020). To our knowledge, this is the first report of A. verrucaria causing leaf spots on S. tetrandra in natural or controlled environments. The disease can seriously threaten S. tetrandra on growth and yield loss.

19.
Plant Dis ; 2022 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-36222727

RESUMEN

Stephania tetrandra S. Moore is a perennial liana and is widely cultivated in southern China for traditional Chinese medicine as a diuretic, anti-inflammatory, and antirheumatic treatment (Jiang et al. 2020). In August 2021, it was observed that a severe stem rot disease affected St. tetrandra cultivated in Anfu, Jiangxi province, China (114°27'26" E, 27°22'46" N). The disease symptoms included constriction and rot at the base of the stem, and covered with a layer of white mycelia. The plants above-ground finally wilted and dried with a disease incidence ranging from 8% to 16%. Lots of dried plants formed withered patches of field. Sections (1.0~2.0 cm) from browning stem tissues were surface-disinfected with 75% ethanol for 15 s, followed by 60 s in 4% NaClO, rinsed twice in sterile water, dried on sterilized filter paper, placed on potato dextrose agar (PDA), and incubated at 26°C in the dark for 3 days. A white rhizomorphic fungal mycelium, that is similar to the mycelium of strain FJSR0 on the surface of an infected plant in the field, was isolated from the cultured tissues with 67% frequency. When incubated on PDA, white and fluffy mycelia with even margins and a slight halo formed. Mycelia-produced clamp connections were observed. Colonies grew quickly and covered the dish (diameter: 9 cm) in 5 or 6 days. After that, sclerotia were initially white, then turned yellow, and chestnut brown at maturity. Spherical and subspherical sclerotia were observed after 8 days, with each plate containing 448 to 634 sclerotia (0.8 to 1.4 mm diameter; mean = 0.94 mm; n = 50). On the basis of morphology, the pathogen was similar to Sclerotium rolfsii Sacc. [teleomorph: Athelia rolfsii (Curzi) Tu & Kimbrough] (Sun et al. 2020; Ling et al. 2021). For molecular confirmation, the internal transcribed spacer (ITS) region with approximately 680 bp was amplified from strains FJRS0 and FJRS1 using primers ITS1/ITS4 (White et al. 1990). Two distinct types (different in one SNP and one 1-bp InDel) of ITS sequences were obtained from each isolate, and all isolates contain the two types (FJSR0: ON972516, ON972517; FJSR1: ON972520, ON972518). BLAST analysis of each type found that the hits, with identities >99%, are A. rolfsii except for two Sc. delphinii sequences (GU567775.1 and MK073010.1). Phylogenetic analysis placed strains FJSR0 and FJSR1 in the same clade as Sc. rolfsii but away from Sc. delphinii based on the previous method (Sun et al. 2021). Both morphological and molecular characteristics confirmed that the strains were Sc. rolfsii. For pathogenicity tests, PDA plugs (8 mm in diameter) covered with 5-day-old fungal mycelium were inoculated at the stem bases of three healthy St. tetrandra seedings and incubated at 26℃ and relative humidity of 80%. On the fifth day, inoculated plants were wilting. The infected stem bases turned brown to black and constricted as previously observed in the field. Some leaves, infected by the mycelium expanded from the PDA plugs, developed an orange and irregular spot. Sclerotia were observed 20 days post inoculation. In contrast, the leaves and stems of non-inoculated control plants remained symptomless. Pathogenicity tests were repeated three times. The fungus was reisolated consistently from each symptomatic tissue, thus completing Koch's postulates. Although Sc. rolfsii has been previously reported to cause a southern blight symptoms on vegetables, ornamentals, grass, and medicinal and leguminous crops (Sun et al. 2020; Ling et al. 2021), this is the first report of Sc. rolfsii causing similar symptoms of southern blight on St. tetrandra in China.

20.
BMC Surg ; 22(1): 148, 2022 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35449101

RESUMEN

BACKGROUND: Laparoscopic low anterior rectal resection is the most widely used surgical procedure for middle and low rectal cancer. The aim of this study was to investigate the feasibility and safety of the extracorporeal placement of the anvil in preserving the left colic artery in laparoscopic low anterior rectal resection without auxiliary incisions for transanal specimen retrieval in this research. METHODS: Clinical data and follow-up data of patients undergoing laparoscopic low anterior rectal resection from January 2017 to October 2020 were collected. The resections were modified such that the resisting nail holder was extracorporeally placed for the transanal exenteration of the specimen without using auxiliary abdominal incisions while preserving the left colic artery. By analyzing the data of anastomotic stenosis, anastomotic bleeding and anastomotic fistulas after surgery, the advantages and disadvantages of this surgical method for patients were clarified. RESULTS: A total of 22 patients were enrolled. Five of 22 patients simultaneously underwent double-barrel terminal ileostomy. The postoperative exhaust time was 2-7 (median, 3) days. Postoperative anastomotic bleeding occurred in one patient, postoperative anastomotic fistula occurred in four patients, and postoperative anastomotic stenosis occurred in six patients. There were four patients with postoperative distant metastasis, of which three had concomitant local recurrence. Seventeen patients had no obvious symptoms or signs of recurrent metastases during follow-up appointments, and one died of liver failure. CONCLUSIONS: Modified laparoscopic low anterior rectal resection, which resects the specimen through anus eversion by inserting the anvil extracorporeally while preserving the left colic artery, is safe and feasible for patients with low rectal cancer.


Asunto(s)
Laparoscopía , Proctectomía , Neoplasias del Recto , Constricción Patológica/cirugía , Humanos , Laparoscopía/métodos , Arteria Mesentérica Inferior/patología , Arteria Mesentérica Inferior/cirugía , Complicaciones Posoperatorias/epidemiología , Complicaciones Posoperatorias/cirugía , Neoplasias del Recto/patología , Neoplasias del Recto/cirugía , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA